
The Objective-C Programming Language

2007-03-06

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Cocoa, Mac,
and Mac OS are trademarks of Apple Inc.,
registered in the United States and other
countries.

Objective-C is a registered trademark of
NeXT Software, Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction Introduction to The Objective-C Programming Language 9

Who Should Read This Document 9
Organization of This Document 10
Conventions 10
See Also 11

Chapter 1 Why Objective-C? 13

Chapter 2 Object-Oriented Programming 15

Interface and Implementation 15
The Object Model 18

The Messaging Metaphor 19
Classes 20
Mechanisms Of Abstraction 23
Inheritance 25
Dynamism 27

Structuring Programs 31
Outlet Connections 31
Aggregation and Decomposition 33
Models and Frameworks 34

Structuring the Programming Task 35
Collaboration 35
Organizing Object-Oriented Projects 36

Chapter 3 The Language 39

Objects 39
id 40
Dynamic Typing 40

Object Messaging 41
Message Syntax 41
The Receiver’s Instance Variables 42
Polymorphism 43
Dynamic Binding 43

Classes 44
Inheritance 44

3
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

Class Types 47
Class Objects 49
Class Names in Source Code 53

Defining a Class 54
The Interface 55
The Implementation 57

How Messaging Works 62
Selectors 64
Hidden Arguments 67
Messages to self and super 67

Extending Classes 71
Categories—Adding Methods to Existing Classes 72
Protocols—Declaring Interfaces for Others to Implement 74

Enabling Static Behaviors 82
Static Typing 82
Getting a Method Address 85
Getting an Object Data Structure 85

Exception Handling and Thread Synchronization 86
Handling Exceptions 86
Synchronizing Thread Execution 88

Using C++ With Objective-C 89
Mixing Objective-C and C++ Language Features 90
C++ Lexical Ambiguities and Conflicts 92

Chapter 4 The Runtime System 95

Interacting with the Runtime System 95
Allocating, Initializing, and Deallocating Objects 96

Allocating and Initializing Objects 97
Object Ownership 103
Deallocation 104

Forwarding 105
Forwarding and Multiple Inheritance 107
Surrogate Objects 107
Forwarding and Inheritance 108

Dynamic Loading 109
Remote Messaging 109

Distributed Objects 110
Language Support 111

Type Encodings 115

Appendix A Language Summary 119

Messages 119
Defined Types 119
Preprocessor Directives 120

4
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Compiler Directives 120
Classes 122
Categories 122
Formal Protocols 123
Method Declarations 123
Method Implementations 124
Naming Conventions 124

Appendix B Grammar 127

External Declarations 128
Type Specifiers 131
Type Qualifiers 131
Primary Expressions 132
Exceptions 133
Synchronization 133

Document Revision History 135

Glossary 139

Index 143

5
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

6
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Figures, Tables, and Listings

Chapter 2 Object-Oriented Programming 15

Figure 2-1 Interface and Implementation 16
Figure 2-2 An Object 18
Figure 2-3 Object Network 19
Figure 2-4 Inheritance Hierarchy 25
Figure 2-5 Outlets 32

Chapter 3 The Language 39

Figure 3-1 Some Drawing Program Classes 45
Figure 3-2 Rectangle Instance Variables 46
Figure 3-3 Inheritance hierarchy for NSCell 51
Figure 3-4 The scope of instance variables 60
Figure 3-5 Messaging Framework 63
Figure 3-6 High, Mid, Low 69
Listing 3-1 Implementation of the initialize method 53
Listing 3-2 An exception handler 87
Listing 3-3 Locking a method using self 88
Listing 3-4 Locking a method using _cmd 89
Listing 3-5 Locking a method using a custom semaphore 89
Listing 3-6 Using C++ and Objective-C instances as instance variables 90

Chapter 4 The Runtime System 95

Figure 4-1 Incorporating an Inherited Initialization Method 99
Figure 4-2 Covering an Inherited Initialization Model 100
Figure 4-3 Covering the Designated Initializer 101
Figure 4-4 Initialization Chain 102
Figure 4-5 Forwarding 107
Figure 4-6 Remote Messages 111
Figure 4-7 Round-Trip Message 112
Table 4-1 Objective-C type encodings 115
Table 4-2 Objective-C method encodings 117

7
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

8
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

An object-oriented approach to application development makes programs more intuitive to design,
faster to develop, more amenable to modification, and easier to understand. Most object-oriented
development environments consist of at least three parts:

 ■ A library of objects

 ■ A set of development tools

 ■ An object-oriented programming language and support library

This document is about the third component of the development environment—the programming
language and its runtime environment. It fully describes the Objective-C language, and provides a
foundation for learning about the Mac OS X Objective-C application development framework—Cocoa.

The Objective-C language is a simple computer language designed to enable sophisticated
object-oriented programming. Objective-C is defined as small but powerful set of extensions to the
standard ANSI C language. Its additions to C are mostly based on Smalltalk, one of the first
object-oriented programming languages. Objective-C is designed to give C full object-oriented
programming capabilities, and to do so in a simple and straightforward way.

For those who have never used object-oriented programming to create applications before, this
document is also designed to help you become familiar with object-oriented development. It spells
out some of the implications of object-oriented design and gives you a flavor of what writing an
object-oriented program is really like.

Who Should Read This Document

The document is intended for readers who might be interested in:

 ■ Learning about object-oriented programming

 ■ Finding out about the basis for the Cocoa application framework

 ■ Programming in Objective-C

This document both introduces the object-oriented model that Objective-C is based upon and fully
documents the language. It concentrates on the Objective-C extensions to C, not on the C language
itself.

Who Should Read This Document 9
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to The Objective-C
Programming Language

Because this isn’t a document about C, it assumes some prior acquaintance with that language.
However, it doesn’t have to be an extensive acquaintance. Object-oriented programming in Objective-C
is sufficiently different from procedural programming in ANSI C that you won’t be hampered if
you’re not an experienced C programmer.

Organization of This Document

This document is divided into four chapters and two appendixes. The chapters are:

 ■ “Why Objective-C?” (page 13) explains why Objective-C was chosen as the development language
for the Cocoa frameworks.

 ■ “Object-Oriented Programming” (page 15) discusses the rationale for object-oriented programming
languages and introduces much of the terminology. It develops the ideas behind object-oriented
programming techniques. Even if you’re already familiar with object-oriented programming, you
are encouraged to read this chapter to gain a sense of the Objective-C perspective on
object-orientation and its use of terminology.

 ■ “The Language” (page 39) describes the basic concepts and syntax of Objective-C. It covers many
of the same topics as “Object-Oriented Programming” (page 15), but looks at them from the
standpoint of the Objective-C language. It reintroduces the terminology of object-oriented
programming, but in the context of Objective-C.

 ■ “The Runtime System” (page 95) looks at the NSObject class and how Objective-C programs
interact with the runtime system. In particular, it examines the paradigms for managing object
allocations, dynamically loading new classes at runtime, and forwarding messages to other objects.

The appendixes contain reference material that might be useful for understanding the language. They
are:

 ■ “Language Summary” (page 119) lists and briefly comments on all of the Objective-C extensions
to the C language.

 ■ “Grammar” (page 127) presents, without comment, a formal grammar of the Objective-C extensions
to the C language. This reference manual is meant to be read as a companion to the reference
manual for C presented in The C Programming Language by Brian W. Kernighan and Dennis M.
Ritchie, published by Prentice Hall.

Conventions

Where this document discusses functions, methods, and other programming elements, it makes
special use of computer voice and italic fonts. Computer voice denotes words or characters that are
to be taken literally (typed as they appear). Italic denotes words that represent something else or can
be varied. For example, the syntax:

@interfaceClassName(CategoryName)

means that @interface and the two parentheses are required, but that you can choose the class name
and category name.

10 Organization of This Document
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to The Objective-C Programming Language

Where example code is shown, ellipsis points indicates the parts, often substantial parts, that have
been omitted:

- (void)encodeWithCoder:(NSCoder *)coder
{

[super encodeWithCoder:coder];
...

}

The conventions used in the reference appendix are described in that appendix.

See Also

Objective-C Runtime Reference describes the data structures and functions of the Objective-C runtime
support library. Your programs can use these interfaces to interact with the Objective-C runtime
system. For example, you can add classes or methods, or obtain a list of all class definitions for loaded
classes.

See Also 11
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to The Objective-C Programming Language

12 See Also
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to The Objective-C Programming Language

The Objective-C language was chosen for the Cocoa frameworks for a variety of reasons. First and
foremost, it’s an object-oriented language. The kind of functionality that’s packaged in the Cocoa
frameworks can only be delivered through object-oriented techniques. This document explains the
operation of the frameworks and how you can take advantage of them. Second, because Objective-C
is an extension of standard ANSI C, existing C programs can be adapted to use the software frameworks
without losing any of the work that went into their original development. Since Objective-C
incorporates C, you get all the benefits of C when working within Objective-C. You can choose when
to do something in an object-oriented way (define a new class, for example) and when to stick to
procedural programming techniques (define a structure and some functions instead of a class).

Moreover, Objective-C is a simple language. Its syntax is small, unambiguous, and easy to learn.
Object-oriented programming, with its self-conscious terminology and emphasis on abstract design,
often presents a steep learning curve to new recruits. A well-organized language like Objective-C can
make becoming a proficient object-oriented programmer that much less difficult. The length of the
chapter describing the language itself is a testament to the simplicity of Objective-C. It’s not a long
chapter.

Compared to other object oriented languages based on C, Objective-C is very dynamic. The compiler
preserves a great deal of information about the objects themselves for use at runtime. Decisions that
otherwise might be made at compile time can be postponed until the program is running. This gives
Objective-C programs unusual flexibility and power. For example, Objective-C’s dynamism yields
two big benefits that are hard to get with other nominally object-oriented languages:

 ■ Objective-C supports an open style of dynamic binding, a style that can accommodate a simple
architecture for interactive user interfaces. Messages are not necessarily constrained by either the
class of the receiver or the method selector, so a software framework can allow for user choices
at runtime and permit developers freedom of expression in their design. (Terminology like
“dynamic binding,” “message,” “class,” “receiver,” and “selector” are explained in due course
in this document.)

 ■ Objective-C’s dynamism enables the construction of sophisticated development tools. An interface
to the runtime system provides access to information about running applications, so it’s possible
to develop tools that monitor, intervene, and reveal the underlying structure and activity of
Objective-C applications.

13
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Why Objective-C?

14
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Why Objective-C?

Programming languages have traditionally divided the world into two parts—data and operations
on data. Data is static and immutable, except as the operations may change it. The procedures and
functions that operate on data have no lasting state of their own; they’re useful only in their ability
to affect data.

This division is, of course, grounded in the way computers work, so it’s not one that you can easily
ignore or push aside. Like the equally pervasive distinctions between matter and energy and between
nouns and verbs, it forms the background against which we work. At some point, all
programmers—even object-oriented programmers—must lay out the data structures that their
programs will use and define the functions that will act on the data.

With a procedural programming language like C, that’s about all there is to it. The language may
offer various kinds of support for organizing data and functions, but it won’t divide the world any
differently. Functions and data structures are the basic elements of design.

Object-oriented programming doesn’t so much dispute this view of the world as restructure it at a
higher level. It groups operations and data into modular units called objects and lets you combine
objects into structured networks to form a complete program. In an object-oriented programming
language, objects and object interactions are the basic elements of design.

Every object has both state (data) and behavior (operations on data). In that, they’re not much different
from ordinary physical objects. It’s easy to see how a mechanical device, such as a pocket watch or a
piano, embodies both state and behavior. But almost anything that’s designed to do a job does, too.
Even simple things with no moving parts such as an ordinary bottle combine state (how full the bottle
is, whether or not it’s open, how warm its contents are) with behavior (the ability to dispense its
contents at various flow rates, to be opened or closed, to withstand high or low temperatures).

It’s this resemblance to real things that gives objects much of their power and appeal. They can not
only model components of real systems, but equally as well fulfill assigned roles as components in
software systems.

Interface and Implementation

As humans, we’re constantly faced with myriad facts and impressions that we must make sense of.
To do so, we have to abstract underlying structure away from surface details and discover the
fundamental relations at work. Abstractions reveal causes and effects, expose patterns and frameworks,
and separate what’s important from what’s not. They’re at the root of understanding.

Interface and Implementation 15
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

To invent programs, you need to be able to capture the same kinds of abstractions and express them
in the program design.

It’s the job of a programming language to help you do this. The language should facilitate the process
of invention and design by letting you encode abstractions that reveal the way things work. It should
let you make your ideas concrete in the code you write. Surface details shouldn’t obscure the
architecture of your program.

All programming languages provide devices that help express abstractions. In essence, these devices
are ways of grouping implementation details, hiding them, and giving them, at least to some extent,
a common interface—much as a mechanical object separates its interface from its implementation, as
illustrated in Figure 2-1.

Figure 2-1 Interface and Implementation

9

10
11

8
7 6

implementationinterface

Looking at such a unit from the inside, as the implementor, you’d be concerned with what it’s
composed of and how it works. Looking at it from the outside, as the user, you’re concerned only
with what it is and what it does. You can look past the details and think solely in terms of the role
that the unit plays at a higher level.

The principal units of abstraction in the C language are structures and functions. Both, in different
ways, hide elements of the implementation:

 ■ On the data side of the world, C structures group data elements into larger units which can then
be handled as single entities. While some code must delve inside the structure and manipulate
the fields separately, much of the program can regard it as a single thing—not as a collection of
elements, but as what those elements taken together represent. One structure can include others,
so a complex arrangement of information can be built from simpler layers.

In modern C, the fields of a structure live in their own name space—that is, their names won’t
conflict with identically named data elements outside the structure. Partitioning the program
name space is essential for keeping implementation details out of the interface. Imagine, for
example, the enormous task of assigning a different name to every piece of data in a large program
and of making sure new names don’t conflict with old ones.

 ■ On the procedural side of the world, functions encapsulate behaviors that can be used repeatedly
without being reimplemented. Data elements local to a function, like the fields within a structure,
are protected within their own name space. Functions can reference (call) other functions, so quite
complex behaviors can be built from smaller pieces.

16 Interface and Implementation
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Functions are reusable. Once defined, they can be called any number of times without again
considering the implementation. The most generally useful functions can be collected in libraries
and reused in many different applications. All the user needs is the function interface, not the
source code.

However, unlike data elements, functions aren’t partitioned into separate name spaces. Each
function must have a unique name. Although the function may be reusable, its name is not.

C structures and functions are able to express significant abstractions, but they maintain the distinction
between data and operations on data. In a procedural programming language, the highest units of
abstraction still live on one side or the other of the data-versus-operations divide. The programs you
design must always reflect, at the highest level, the way the computer works.

Object-oriented programming languages don’t lose any of the virtues of structures and functions—they
go a step further and add a unit capable of abstraction at a higher level, a unit that hides the interaction
between a function and its data.

Suppose, for example, that you have a group of functions that act on a particular data structure. You
want to make those functions easier to use by, as far as possible, taking the structure out of the interface.
So you supply a few additional functions to manage the data. All the work of manipulating the data
structure—allocating it, initializing it, getting information from it, modifying values within it, keeping
it up to date, and freeing it—is done through the functions. All the user does is call the functions and
pass the structure to them.

With these changes, the structure has become an opaque token that other programmers never need
to look inside. They can concentrate on what the functions do, not how the data is organized. You’ve
taken the first step toward creating an object.

The next step is to give this idea support in the programming language and completely hide the data
structure so that it doesn’t even have to be passed between the functions. The data becomes an internal
implementation detail; all that’s exported to users is a functional interface. Because objects completely
encapsulate their data (hide it), users can think of them solely in terms of their behavior.

With this step, the interface to the functions has become much simpler. Callers don’t need to know
how they’re implemented (what data they use). It’s fair now to call this an “object.”

The hidden data structure unites all the functions that share access to it. So, an object is more than a
collection of random functions; it’s a bundle of related behaviors that are supported by shared data.
To use a function that belongs to an object, you first create the object (thus giving it its internal data
structure), then tell the object which function it should perform. You begin to think in terms of what
the object does, rather than in terms of the individual functions.

This progression from thinking about functions and data structures to thinking about object behaviors
is the essence of learning object-oriented programming. It may seem unfamiliar at first, but as you
gain experience with object-oriented programming, you find it’s a more natural way to think about
things. Everyday programming terminology is replete with analogies to real-world objects of various
kinds—lists, containers, tables, controllers, even managers. Implementing such things as programming
objects merely extends the analogy in a natural way.

A programming language can be judged by the kinds of abstractions that it enables you to encode.
You shouldn’t be distracted by extraneous matters or forced to express yourself using a vocabulary
that doesn’t match the reality you’re trying to capture.

Interface and Implementation 17
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

If, for example, you must always tend to the business of keeping the right data matched with the right
procedure, you’re forced at all times to be aware of the entire program at a low level of implementation.
While you might still invent programs at a high level of abstraction, the path from imagination to
implementation can become quite tenuous—and more and more difficult as programs become bigger
and more complicated.

By providing another, higher level of abstraction, object-oriented programming languages give you
a larger vocabulary and a richer model to program in.

The Object Model

The insight of object-oriented programming is to combine state and behavior—data and operations
on data—in a high-level unit, an object, and to give it language support. An object is a group of related
functions and a data structure that serves those functions. The functions are known as the object’s
methods, and the fields of its data structure are its instance variables. The methods wrap around the
instance variables and hide them from the rest of the program, as Figure 2-2 illustrates:

Figure 2-2 An Object

method

m
et

h
o

d

method

m
eth

o
d

data

Likely, if you’ve ever tackled any kind of difficult programming problem, your design has included
groups of functions that work on a particular kind of data—implicit “objects” without the language
support. Object-oriented programming makes these function groups explicit and permits you to think
in terms of the group, rather than its components. The only way to an object’s data, the only interface,
is through its methods.

By combining both state and behavior in a single unit, an object becomes more than either alone; the
whole really is greater than the sum of its parts. An object is a kind of self-sufficient “subprogram”
with jurisdiction over a specific functional area. It can play a full-fledged modular role within a larger
program design.

Terminology: Object-oriented terminology varies from language to language. For example, in C++,
methods are called “member functions” and instance variables are known as “data members.” This
document uses the terminology of Objective-C, which has its basis in Smalltalk.

For example, if you were to write a program that modeled home water usage, you might invent objects
to represent the various components of the water-delivery system. One might be a Faucet object that
would have methods to start and stop the flow of water, set the rate of flow, return the amount of
water consumed in a given period, and so on. To do this work, a Faucet object would need instance
variables to keep track of whether the tap is open or shut, how much water is being used, and where
the water is coming from.

18 The Object Model
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Clearly, a programmatic Faucet can be smarter than a real one (it’s analogous to a mechanical faucet
with lots of gauges and instruments attached). But even a real faucet, like any system component,
exhibits both state and behavior. To effectively model a system, you need programming units, like
objects, that also combine state and behavior.

A program consists of a network of interconnected objects that call upon each other to solve a part
of the puzzle. Each object has a specific role to play in the overall design of the program and is able
to communicate with other objects. Objects communicate through messages, requests to perform
methods.

Figure 2-3 Object Network

data

data

data

message

The objects in the network won’t all be the same. For example, in addition to Faucets, the program
that models water usage might also have Pipe objects that can deliver water to the Faucets and Valve
objects to regulate the flow among Pipes. There could be a Building object to coordinate a set of Pipes,
Valves, and Faucets, some Appliance objects—corresponding to dishwashers, toilets, and washing
machines—that can turn Valves on and off, and maybe some Users to work the Appliances and
Faucets. When a Building object is asked how much water is being used, it might call upon each
Faucet and Valve to report its current state. When a User starts up an Appliance, the Appliance will
need to turn on a Valve to get the water it requires.

The Messaging Metaphor

Every programming paradigm comes with its own terminology and metaphors. None more so than
object-oriented programming. Its jargon invites you to think about what goes on in a program from
a particular perspective.

There’s a tendency, for example, to think of objects as “actors” and to endow them with human-like
intentions and abilities. It’s tempting sometimes to talk about an object “deciding” what to do about
a situation, “asking” other objects for information, “introspecting” about itself to get requested
information, “delegating” responsibility to another object, or “managing” a process.

The Object Model 19
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Rather than think in terms of functions or methods doing the work, as you would in a procedural
programming language, this metaphor asks you to think of objects as “performing” their methods.
Objects are not passive containers for state and behavior, but are said to be the agents of the program’s
activity.

This is actually a useful metaphor. An object is like an actor in a couple of respects: It has a particular
role to play within the overall design of the program, and within that role it can act fairly independently
of the other parts of the program. It interacts with other objects as they play their own roles, but is
self-contained and to a certain extent can act on its own. Like an actor on stage, it can’t stray from the
script, but the role it plays can be multi-faceted and quite complex.

The idea of objects as actors fits nicely with the principal metaphor of object-oriented
programming—the idea that objects communicate through “messages.” Instead of calling a method
as you would a function, you send a message to an object requesting it to perform one of its methods.

Although it can take some getting used to, this metaphor leads to a useful way of looking at methods
and objects. It abstracts methods away from the particular data they act on and concentrates on
behavior instead. For example, in an object-oriented programming interface, a start method might
initiate an operation, an archive method might archive information, and a draw method might
produce an image. Exactly which operation is initiated, which information is archived, and which
image is drawn isn’t revealed by the method name. Different objects might perform these methods
in different ways.

Thus, methods are a vocabulary of abstract behaviors. To invoke one of those behaviors, you have to
make it concrete by associating the method with an object. This is done by naming the object as the
“receiver” of a message. The object you choose as receiver will determine the exact operation that’s
initiated, the data that’s archived, or the image that’s drawn.

Since methods belong to objects, they can be invoked only through a particular receiver (the owner
of the method and of the data structure the method will act on). Different receivers can have different
implementations of the same method, so different receivers can do different things in response to the
same message. The result of a message can’t be calculated from the message or method name alone;
it also depends on the object that receives the message.

By separating the message (the requested behavior) from the receiver (the owner of a method that
can respond to the request), the messaging metaphor perfectly captures the idea that behaviors can
be abstracted away from their particular implementations.

Classes

A program can have more than one object of the same kind. The program that models water usage,
for example, might have several Faucets and Pipes and perhaps a handful of Appliances and Users.
Objects of the same kind are said to be members of the same class. All members of a class are able to
perform the same methods and have matching sets of instance variables. They also share a common
definition; each kind of object is defined just once.

In this, objects are similar to C structures. Declaring a structure defines a type. For example, this
declaration

struct key {
char *word;
int count;

};

20 The Object Model
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

defines the struct key type. Once defined, the structure name can be used to produce any number
of instances of the type:

struct key a, b, c, d;
struct key *p = malloc(sizeof(struct key) * MAXITEMS);

The declaration is a template for a kind of structure, but it doesn’t create a structure that the program
can use. It takes another step to allocate memory for an actual structure of that type, a step that can
be repeated any number of times.

Similarly, defining an object creates a template for a kind of object. It defines a class of objects. The
template can be used to produce any number of similar objects—instances of the class. For example,
there would be a single definition of the Faucet class. Using this definition, a program could allocate
as many Faucet instances as it needed.

A class definition is like a structure definition in that it lays out an arrangement of data elements
(instance variables) that become part of every instance. Each instance has memory allocated for its
own set of instance variables, which store values peculiar to the instance.

However, a class definition differs from a structure declaration in that it also defines methods that
specify the behavior of class members. Every instance is characterized by its access to the methods
defined for the class. Two objects with equivalent data structures but different methods would not
belong to the same class.

Modularity

To a C programmer, a “module” is nothing more than a file containing source code. Breaking a large
(or even not-so-large) program into different files is a convenient way of splitting it into manageable
pieces. Each piece can be worked on independently and compiled alone, then integrated with other
pieces when the program is linked. Using the static storage class designator to limit the scope of
names to just the files where they’re declared enhances the independence of source modules.

This kind of module is a unit defined by the file system. It’s a container for source code, not a logical
unit of the language. What goes into the container is up to each programmer. You can use them to
group logically related parts of the code, but you don’t have to. Files are like the drawers of a dresser;
you can put your socks in one drawer, underwear in another, and so on, or you can use another
organizing scheme or simply choose to mix everything up.

Access to Methods: It’s convenient to think of methods as being part of an object, just as instance
variables are. As in Figure 2-2 (page 18), methods can be diagrammed as surrounding the object’s
instance variables. But, of course, methods aren’t grouped with instance variables in memory. Memory
is allocated for the instance variables of each new object, but there’s no need to allocate memory for
methods. All an instance needs is access to its methods, and all instances of the same class share access
to the same set of methods. There’s only one copy of the methods in memory, no matter how many
instances of the class are created.

Object-oriented programming languages support the use of file containers for source code, but they
also add a logical module to the language—class definitions. As you’d expect, it’s often the case that
each class is defined in its own source file—logical modules are matched to container modules.

The Object Model 21
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

In Objective-C, for example, it would be possible to define the part of the Valve class that interacts
with Pipes in the same file that defines the Pipe class, thus creating a container module for Pipe-related
code and splitting the Valve class into more than one file. The Valve class definition would still act
as a modular unit within the construction of the program—it would still be a logical module—no
matter how many files the source code was located in.

The mechanisms that make class definitions logical units of the language are discussed in some detail
under “Mechanisms Of Abstraction” (page 23).

Reusability

A principal goal of object-oriented programming is to make the code you write as reusable as
possible—to have it serve many different situations and applications—so that you can avoid
reimplementing, even if only slightly differently, something that’s already been done.

Reusability is influenced by a variety of different factors, including:

 ■ How reliable and bug-free the code is

 ■ How clear the documentation is

 ■ How simple and straightforward the programming interface is

 ■ How efficiently the code performs its tasks

 ■ How full the feature set is

Clearly, these factors don’t apply just to the object model. They can be used to judge the reusability
of any code—standard C functions as well as class definitions. Efficient and well-documented functions,
for example, would be more reusable than undocumented and unreliable ones.

Nevertheless, a general comparison would show that class definitions lend themselves to reusable
code in ways that functions do not. There are various things you can do to make functions more
reusable—passing data as arguments rather than assuming specifically named global variables, for
example. Even so, it turns out that only a small subset of functions can be generalized beyond the
applications they were originally designed for. Their reusability is inherently limited in at least three
ways:

 ■ Function names are global; each function must have a unique name (except for those declared
static). This makes it difficult to rely heavily on library code when building a complex system.
The programming interface would be hard to learn and so extensive that it couldn’t easily capture
significant generalizations.

Classes, on the other hand, can share programming interfaces. When the same naming conventions
are used over and over, a great deal of functionality can be packaged with a relatively small and
easy-to-understand interface.

 ■ Functions are selected from a library one at a time. It’s up to programmers to pick and choose
the individual functions they need.

In contrast, objects come as packages of functionality, not as individual methods and instance
variables. They provide integrated services, so users of an object-oriented library won’t get bogged
down piecing together their own solutions to a problem.

 ■ Functions are typically tied to particular kinds of data structures devised for a specific program.
The interaction between data and function is an unavoidable part of the interface. A function is
useful only to those who agree to use the same kind of data structures it accepts as arguments.

22 The Object Model
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Because it hides its data, an object doesn’t have this problem. This is one of the principal reasons
why classes can be reused more easily than functions.

An object’s data is protected and won’t be touched by any other part of the program. Methods can
therefore trust its integrity. They can be sure that external access hasn’t put it in an illogical or untenable
state. This makes an object data structure more reliable than one passed to a function, so methods
can depend on it more. Reusable methods are consequently easier to write.

Moreover, because an object’s data is hidden, a class can be reimplemented to use a different data
structure without affecting its interface. All programs that use the class can pick up the new version
without changing any source code; no reprogramming is required.

Mechanisms Of Abstraction

To this point, objects have been introduced as units that embody higher-level abstractions and as
coherent role-players within an application. However, they couldn’t be used this way without the
support of various language mechanisms. Two of the most important mechanisms are: encapsulation
and polymorphism.

Encapsulation keeps the implementation of an object out of its interface, and polymorphism results
from giving each class its own name space. The following sections discuss each of these mechanisms
in turn.

Encapsulation

To design effectively at any level of abstraction, you need to be able to leave details of implementation
behind and think in terms of units that group those details under a common interface. For a
programming unit to be truly effective, the barrier between interface and implementation must be
absolute. The interface must encapsulate the implementation—hide it from other parts of the program.
Encapsulation protects an implementation from unintended actions and inadvertent access.

In C, a function is clearly encapsulated; its implementation is inaccessible to other parts of the program
and protected from whatever actions might be taken outside the body of the function. Method
implementations are similarly encapsulated, but, more importantly, so are an object’s instance variables.
They’re hidden inside the object and invisible outside it. The encapsulation of instance variables is
sometimes also called information hiding.

It might seem, at first, that hiding the information in instance variables would constrain your freedom
as a programmer. Actually, it gives you more room to act and frees you from constraints that might
otherwise be imposed. If any part of an object’s implementation could leak out and become accessible
or a concern to other parts of the program, it would tie the hands both of the object’s implementor
and of those who would use the object. Neither could make modifications without first checking with
the other.

Suppose, for example, that you’re interested in the Faucet object being developed for the program
that models water use and you want to incorporate it in another program you’re writing. Once the
interface to the object is decided, you don’t have to be concerned as others work on it, fix bugs, and
find better ways to implement it. You get the benefit of these improvements, but none of them affects
what you do in your program. Because you depend solely on the interface, nothing they do can break
your code. Your program is insulated from the object’s implementation.

The Object Model 23
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Moreover, although those implementing the Faucet object would be interested in how you use the
class and might try to make sure it meets your needs, they don’t have to be concerned with the way
you write your code. Nothing you do can touch the implementation of the object or limit their freedom
to make implementation changes in future releases. The implementation is insulated from anything
that you or other users of the object might do.

Polymorphism

The ability of different objects to respond, each in its own way, to identical messages is called
polymorphism.

Polymorphism results from the fact that every class lives in its own name space. The names assigned
within a class definition don’t conflict with names assigned anywhere outside it. This is true both of
the instance variables in an object’s data structure and of the object’s methods:

 ■ Just as the fields of a C structure are in a protected namespace, so are an object’s instance variables.

 ■ Method names are also protected. Unlike the names of C functions, method names aren’t global
symbols. The name of a method in one class can’t conflict with method names in other classes;
two very different classes could implement identically named methods.

Method names are part of an object’s interface. When a message is sent requesting an object to do
something, the message names the method the object should perform. Because different objects can
have methods with the same name, the meaning of a message must be understood relative to the
particular object that receives the message. The same message sent to two different objects could
invoke two distinct methods.

The main benefit of polymorphism is that it simplifies the programming interface. It permits
conventions to be established that can be reused in class after class. Instead of inventing a new name
for each new function you add to a program, the same names can be reused. The programming
interface can be described as a set of abstract behaviors, quite apart from the classes that implement
them.

Overloading: The terms “polymorphism” and “argument overloading” refer basically to the same
thing, but from slightly different points of view. Polymorphism takes a pluralistic point of view and
notes that several classes can each have a method with the same name. Argument overloading takes
the point of the view of the method name and notes that it can have different effects depending on
the arguments passed to it. Operator overloading is similar. It refers to the ability to turn operators
of the language (such as == and + in C) into methods that can be assigned particular meanings for
particular kinds of objects. Objective-C implements polymorphism of method names, but not argument
or operator overloading.

For example, suppose you want to report the amount of water used by an Appliance object over a
given period of time. Instead of defining an amountConsumed method for the Appliance class, an
amountDispensedAtFaucetmethod for a Faucet class, and a cumulativeUsagemethod for a Building
class, you can simply define a waterUsedmethod for each class. This consolidation reduces the number
of methods used for what is conceptually the same operation.

24 The Object Model
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Polymorphism also permits code to be isolated in the methods of different objects rather than be
gathered in a single function that enumerates all the possible cases. This makes the code you write
more extensible and reusable. When a new case comes along, you don’t have to reimplement existing
code; you need only to add a new class with a new method, leaving the code that’s already written
alone.

For example, suppose you have code that sends a draw message to an object. Depending on the
receiver, the message might produce one of two possible images. When you want to add a third case,
you don’t have to change the message or alter existing code, but merely allow another object to be
assigned as the message receiver.

Inheritance

The easiest way to explain something new is to start with something understood. If you want to
describe what a “schooner” is, it helps if your listeners already know what a “sailboat” is. If you want
to explain how a harpsichord works, it’s best if you can assume your audience has already looked
inside a piano, or has seen a guitar played, or at least is familiar with the idea of a “musical instrument.”

The same is true if you want to define a new kind of object; the description is simpler if it can start
from the definition of an existing object.

With this in mind, object-oriented programming languages permit you to base a new class definition
on a class already defined. The base class is called a superclass; the new class is its subclass. The
subclass definition specifies only how it differs from the superclass; everything else is taken to be the
same.

Nothing is copied from superclass to subclass. Instead, the two classes are connected so that the
subclass inherits all the methods and instance variables of its superclass, much as you want your
listener’s understanding of “schooner” to inherit what they already know about sailboats. If the
subclass definition were empty (if it didn’t define any instance variables or methods of its own), the
two classes would be identical (except for their names) and share the same definition. It would be
like explaining what a “fiddle” is by saying that it’s exactly the same as a “violin.” However, the
reason for declaring a subclass isn’t to generate synonyms, but to create something at least a little
different from its superclass. You’d want to let the fiddle play bluegrass in addition to classical music.

Class Hierarchies

Any class can be used as a superclass for a new class definition. A class can simultaneously be a
subclass of another class and a superclass for its own subclasses. Any number of classes can thus be
linked in a hierarchy of inheritance, such as the one depicted in Figure 2-4.

Figure 2-4 Inheritance Hierarchy

root

C

E FD

A

B

The Object Model 25
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Every inheritance hierarchy begins with a root class that has no superclass. From the root class, the
hierarchy branches downward. Each class inherits from its superclass, and through its superclass,
from all the classes above it in the hierarchy. Every class inherits from the root class.

Each class is the accumulation of all the class definitions in its inheritance chain. In the example above,
class D inherits both from C, its superclass, and the root class. Members of the D class have methods
and instance variables defined in all three classes—D, C, and root.

Typically, every class has just one superclass and can have an unlimited number of subclasses.
However, in some object-oriented programming languages (though not in Objective-C), a class can
have more than one superclass; it can inherit through multiple sources. Instead of a single hierarchy
that branches downward as shown in Figure 2-4, multiple inheritance lets some branches of the
hierarchy (or of different hierarchies) merge.

Subclass Definitions

A subclass can make three kinds of changes to the definition it inherits through its superclass:

 ■ It can expand the class definition it inherits by adding new methods and instance variables. This
is the most common reason for defining a subclass. Subclasses always add new methods, and
new instance variables if the methods require it.

 ■ It can modify the behavior it inherits by replacing an existing method with a new version. This
is done by simply implementing a new method with the same name as one that’s inherited. The
new version overrides the inherited version. (The inherited method doesn’t disappear; it’s still
valid for the class that defined it and other classes that inherit it.)

 ■ It can refine or extend the behavior it inherits by replacing an existing method with a new version
but still retain the old version by incorporating it in the new method. This is done by sending a
message to perform the old version in the body of the new method. Each class in an inheritance
chain can contribute part of a method’s behavior. In Figure 2-4 (page 25), for example, class D
might override a method defined in class C and incorporate C’s version, while C’s version
incorporates a version defined in the root class.

Subclasses thus tend to fill out a superclass definition, making it more specific and specialized. They
add, and sometimes replace, code rather than subtract it. Note that methods generally can’t be
disinherited and instance variables can’t be removed or overridden.

Uses of Inheritance

The classic examples of an inheritance hierarchy are borrowed from animal and plant taxonomies.
For example, there could be a class corresponding to the Pinaceae (pine) family of trees. Its subclasses
could be Fir, Spruce, Pine, Hemlock, Tamarack, DouglasFir, and TrueCedar, corresponding to the
various genera that make up the family. The Pine class might have SoftPine and HardPine subclasses,
with WhitePine, SugarPine, and BristleconePine as subclasses of SoftPine, and PonderosaPine, JackPine,
MontereyPine, and RedPine as subclasses of HardPine.

There’s rarely a reason to program a taxonomy like this, but the analogy is a good one. Subclasses
tend to specialize a superclass or adapt it to a special purpose, much as a species specializes a genus.

Here are some typical uses of inheritance:

26 The Object Model
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

 ■ Reusing code. If two or more classes have some things in common but also differ in some ways,
the common elements can be put in a single class definition that the other classes inherit. The
common code is shared and need only be implemented once.

For example, Faucet, Valve, and Pipe objects, defined for the program that models water use, all
need a connection to a water source and should be able to record the rate of flow. These
commonalities can be encoded once, in a class that the Faucet, Valve, and Pipe classes inherit
from. A Faucet can be said to be a kind of Valve, so perhaps the Faucet class would inherit most
of what it is from Valve, and add very little of its own.

 ■ Setting up a protocol. A class can declare a number of methods that its subclasses are expected
to implement. The class might have empty versions of the methods, or it might implement partial
versions that are to be incorporated into the subclass methods. In either case, its declarations
establish a protocol that all its subclasses must follow.

When different classes implement similarly named methods, a program is better able to make
use of polymorphism in its design. Setting up a protocol that subclasses must implement helps
enforce these conventions.

 ■ Delivering generic functionality. One implementor can define a class that contains a lot of basic,
general code to solve a problem, but doesn’t fill in all the details. Other implementors can then
create subclasses to adapt the generic class to their specific needs. For example, the Appliance
class in the program that models water use might define a generic water-using device that
subclasses would turn into specific kinds of appliances.

Inheritance is thus both a way to make someone else’s programming task easier and a way to
separate levels of implementation.

 ■ Making slight modifications. When inheritance is used to deliver generic functionality, set up a
protocol, or reuse code, a class is devised that other classes are expected to inherit from. But you
can also use inheritance to modify classes that aren’t intended as superclasses. Suppose, for
example, that there’s an object that would work well in your program, but you’d like to change
one or two things that it does. You can make the changes in a subclass.

 ■ Previewing possibilities. Subclasses can also be used to factor out alternatives for testing purposes.
For example, if a class is to be encoded with a particular user interface, alternative interfaces can
be factored into subclasses during the design phase of the project. Each alternative can then be
demonstrated to potential users to see which they prefer. When the choice is made, the selected
subclass can be reintegrated into its superclass.

Dynamism

At one time in programming history, the question of how much memory a program would use was
settled when the source code was compiled and linked. All the memory the program would ever
need was set aside for it as it was launched. This memory was fixed; it could neither grow nor shrink.

In hindsight, it’s evident what a serious constraint this was. It limited not only how programs were
constructed, but what you could imagine a program doing. It constrained design, not just programming
technique. Functions (like malloc) that dynamically allocate memory as a program runs opened
possibilities that didn’t exist before.

Compile-time and link-time constraints are limiting because they force issues to be decided from
information found in the programmer’s source code, rather than from information obtained from the
user as the program runs.

The Object Model 27
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Although dynamic allocation removes one such constraint, many others, equally as limiting as static
memory allocation, remain. For example, the elements that make up an application must be matched
to data types at compile time. And the boundaries of an application are typically set at link time.
Every part of the application must be united in a single executable file. New modules and new types
can’t be introduced as the program runs.

Objective-C seeks to overcome these limitations and to make programs as dynamic and fluid as
possible. It shifts much of the burden of decision making from compile time and link time to runtime.
The goal is to let program users decide what will happen, rather than constrain their actions artificially
by the demands of the language and the needs of the compiler and linker.

Three kinds of dynamism are especially important for object-oriented design:

 ■ Dynamic typing, waiting until runtime to determine the class of an object

 ■ Dynamic binding, determining at runtime what method to invoke

 ■ Dynamic loading, adding new components to a program as it runs

Dynamic Typing

The compiler typically complains if the code you write assigns a value to a type that can’t accommodate
it. You might see warnings like these:

incompatible types in assignment
assignment of integer from pointer lacks a cast

Type checking is useful, but there are times when it can interfere with the benefits you get from
polymorphism, especially if the type of every object must be known to the compiler.

Suppose, for example, that you want to send an object a message to perform the start method. Like
other data elements, the object is represented by a variable. If the variable’s type (its class) must be
known at compile time, it would be impossible to let runtime factors influence the decision about
what kind of object should be assigned to the variable. If the class of the variable is fixed in source
code, so is the version of start that the message invokes.

If, on the other hand, it’s possible to wait until runtime to discover the class of the variable, any kind
of object could be assigned to it. Depending on the class of the receiver, the start message might
invoke different versions of the method and produce very different results.

Dynamic typing thus gives substance to dynamic binding (discussed next). But it does more than
that. It permits associations between objects to be determined at runtime, rather than forcing them
to be encoded in a static design. For example, a message could pass an object as an argument without
declaring exactly what kind of object it is—that is, without declaring its class. The message receiver
might then send its own messages to the object, again without ever caring about what kind of object
it is. Because the receiver uses the object it’s passed to do some of its work, it is in a sense customized
by an object of indeterminate type (indeterminate in source code, that is, not at runtime).

Dynamic Binding

In standard C, you can declare a set of alternative functions, like the standard string-comparison
functions,

int strcmp(const char *, const char *); /* case sensitive */

28 The Object Model
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

int strcasecmp(const char *, const char *); /*case insensitive*/

and declare a pointer to a function that has the same return and argument types:

int (* compare)(const char *, const char *);

You can then wait until runtime to determine which function to assign to the pointer,

if (**argv == ’i’)
compare = strcasecmp;

else
compare = strcmp;

and call the function through the pointer:

if (compare(s1, s2))
...

This is akin to what in object-oriented programming is called dynamic binding, delaying the decision
of exactly which method to perform until the program is running.

Although not all object-oriented languages support it, dynamic binding can be routinely and
transparently accomplished through messaging. You don’t have to go through the indirection of
declaring a pointer and assigning values to it as shown in the example above. You also don’t have to
assign each alternative procedure a different name.

Messages invoke methods indirectly. Every message expression must find a method implementation
to “call.” To find that method, the messaging machinery must check the class of the receiver and
locate its implementation of the method named in the message. When this is done at runtime, the
method is dynamically bound to the message. When it’s done by the compiler, the method is statically
bound.

Late Binding: Some object-oriented programming languages (notably C++) require a message receiver
to be statically typed in source code, but don’t require the type to be exact. An object can be typed to
its own class or to any class that it inherits from. The compiler therefore can’t tell whether the message
receiver is an instance of the class specified in the type declaration, an instance of a subclass, or an
instance of some more distantly derived class. Since it doesn’t know the exact class of the receiver, it
can’t know which version of the method named in the message to invoke. In this circumstance, the
choice is between treating the receiver as if it were an instance of the specified class and simply bind
the method defined for that class to the message, or waiting until some later time to resolve the
situation. In C++, the decision is postponed to link time for methods (member functions) that are
declared virtual. This is sometimes referred to as “late binding” rather than “dynamic binding.” While
“dynamic” in the sense that it happens at runtime, it carries with it strict compile-time type constraints.
As discussed here (and implemented in Objective-C), “dynamic binding” is unconstrained.

Dynamic binding is possible even in the absence of dynamic typing, but it’s not very interesting.
There’s little benefit in waiting until runtime to match a method to a message when the class of the
receiver is fixed and known to the compiler. The compiler could just as well find the method itself;
the runtime result won’t be any different.

However, if the class of the receiver is dynamically typed, there’s no way for the compiler to determine
which method to invoke. The method can be found only after the class of the receiver is resolved at
runtime. Dynamic typing thus entails dynamic binding.

The Object Model 29
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Dynamic typing also makes dynamic binding interesting, for it opens the possibility that a message
might have very different results depending on the class of the receiver. Runtime factors can influence
the choice of receiver and the outcome of the message.

Dynamic typing and binding also open the possibility that the code you write can send messages to
objects not yet invented. If object types don’t have to be decided until runtime, you can give others
the freedom to design their own classes and name their own data types, and still have your code send
messages to their objects. All you need to agree on are the messages, not the data types.

Note: Dynamic binding is routine in Objective-C. You don’t need to arrange for it specially, so your
design never needs to bother with what’s being done when.

Dynamic Loading

The usual rule has been that, before a program can run, all its parts must be linked together in one
file. When it’s launched, the entire program is loaded into memory at once.

Some object-oriented programming environments overcome this constraint and allow different parts
of an executable program to be kept in different files. The program can be launched in bits and pieces
as they’re needed. Each piece is dynamically loaded and linked with the rest of program as it’s
launched. User actions can determine which parts of the program are in memory and which aren’t.

Only the core of a large program needs to be loaded at the start. Other modules can be added as the
user requests their services. Modules the user doesn’t request make no memory demands on the
system.

Dynamic loading raises interesting possibilities. For example, an entire program wouldn’t have to be
developed at once. You could deliver your software in pieces and update one part of it at a time. You
could devise a program that groups several tools under a single interface, and load just the tools the
user wants. The program could even offer sets of alternative tools to do the same job. The user would
select one tool from the set and only that tool would be loaded. It’s not hard to imagine the possibilities.
But because dynamic loading is relatively new, it’s harder to predict its eventual benefits.

Perhaps the most important current benefit of dynamic loading is that it makes applications extensible.
You can allow others to add to and customize a program you’ve designed. All your program needs
to do is provide a framework that others can fill in, and, at runtime, find the pieces that they’ve
implemented and load them dynamically.

For example, Interface Builder dynamically loads custom palettes and inspectors, and the Desktop
dynamically loads inspectors for particular file formats. Anyone can design their own custom palettes
and inspectors that these applications load and incorporate into themselves.

The main challenge that dynamic loading faces is getting a newly loaded part of a program to work
with parts already running, especially when the different parts were written by different people.
However, much of this problem disappears in an object-oriented environment because code is
organized into logical modules with a clear division between implementation and interface. When
classes are dynamically loaded, nothing in the newly loaded code can clash with the code already in
place. Each class encapsulates its implementation and has an independent namespace.

In addition, dynamic typing and dynamic binding let classes designed by others fit effortlessly into
the program you’ve designed. Once a class is dynamically loaded, it’s treated no differently than any
other class. Your code can send messages to their objects and theirs to yours. Neither of you has to
know what classes the other has implemented. You need only agree on a communications protocol.

30 The Object Model
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Loading and Linking: Although it’s the term commonly used, “dynamic loading” could just as well
be called “dynamic linking.” Programs are linked when their various parts are joined so that they
can work together; they’re loaded when they’re read into volatile memory at launch time. Linking
usually precedes loading. Dynamic loading refers to the process of separately loading new or additional
parts of a program and linking them dynamically to the parts already running.

Structuring Programs

Object-oriented programs have two kinds of structure. One can be seen in the inheritance hierarchy
of class definitions. The other is evident in the pattern of message passing as the program runs. These
messages reveal a network of object connections.

 ■ The inheritance hierarchy explains how objects are related by type. For example, in the program
that models water use, it might turn out that Faucets and Pipes are the same kind of object, except
that Faucets can be turned on and off and Pipes can have multiple connections to other Pipes.
This similarity would be captured in the program design if the Faucet and Pipe classes inherit
from a common superclass.

 ■ The network of object connections explains how the program works. For example, Appliance
objects might send messages requesting water to Valves, and Valves to Pipes. Pipes might
communicate with the Building object, and the Building object with all the Valves, Faucets, and
Pipes, but not directly with Appliances. To communicate with each other in this way, objects
must know about each other. An Appliance would need a connection to a Valve, and a Valve to
a Pipe, and so on. These connections define a program structure.

Object-oriented programs are designed by laying out the network of objects with their behaviors and
patterns of interaction and by arranging the hierarchy of classes. There’s structure both in the program’s
activity and in its definition.

Outlet Connections

Part of the task of designing an object-oriented program is to arrange the object network. The network
doesn’t have to be static; it can change dynamically as the program runs. Relationships between
objects can be improvised as needed, and the cast of objects that play assigned roles can change from
time to time. But there has to be a script.

Some connections can be entirely transitory. A message might contain an argument identifying an
object, perhaps the sender of the message, that the receiver can communicate with. As it responds to
the message, the receiver can send messages to that object, perhaps identifying itself or still another
object that the object can in turn communicate with. Such connections are fleeting; they last only as
long as the chain of messages.

But not all connections between objects can be handled on the fly. Some need to be recorded in program
data structures. There are various ways to do this. A table might be kept of object connections, or
there might be a service that identifies objects by name. However, the simplest way is for each object
to have instance variables that keep track of the other objects it must communicate with. These instance
variables—termed outlets because they record the outlets for messages—define the principal
connections between objects in the program network.

Structuring Programs 31
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Although the names of outlet instance variables are arbitrary, they generally reflect the roles that
outlet objects play. Figure 2-5 illustrates an object with four outlets—an “agent,” a “friend,” a
“neighbor,” and a “boss.” The objects that play these parts may change every now and then, but the
roles remain the same.

Figure 2-5 Outlets

agent
friend

neighbor
boss

Some outlets are set when the object is first initialized and may never change. Others might be set
automatically as the consequence of other actions. Still others can be set freely, using methods provided
just for that purpose.

However they’re set, outlet instance variables reveal the structure of the application. They link objects
into a communicating network, much as the components of a water system are linked by their physical
connections or as individuals are linked by their patterns of social relations.

Extrinsic and Intrinsic Connections

Outlet connections can capture many different kinds of relationships between objects. Sometimes the
connection is between objects that communicate more or less as equal partners in an application, each
with its own role to play and neither dominating the other. For example, an Appliance object might
have an outlet instance variable to keep track of the Valve it’s connected to.

Sometimes one object should be seen as being part of another. For example, a Faucet might use a
Meter object to measure the amount of water being released. The Meter would serve no other object
and would act only under orders from the Faucet. It would be an intrinsic part of the Faucet, in contrast
to an Appliance’s extrinsic connection to a Valve.

Similarly, an object that oversees other objects might keep a list of its charges. A Building object, for
example, might have a list of all the Pipes in the program. The Pipes would be considered an intrinsic
part of the Building and belong to it. Pipes, on the other hand, would maintain extrinsic connections
to each other.

32 Structuring Programs
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Intrinsic outlets behave differently from extrinsic ones. When an object is freed or archived in a file
on disk, the objects that its intrinsic outlets point to must be freed or archived with it. For example,
when a Faucet is freed, its Meter is rendered useless and therefore should be freed as well. A Faucet
archived without its Meter would be of little use when it’s unarchived (unless it could create a new
Meter for itself).

Extrinsic outlets, on the other hand, capture the organization of the program at a higher level. They
record connections between relatively independent program subcomponents. When an Appliance is
freed, the Valve it was connected to still is of use and remains in place. When an Appliance is
unarchived, it can be connected to another Valve and resume playing the same sort of role it played
before.

Activating the Object Network

The object network is set into motion by an external stimulus. If you’re writing an interactive
application with a user interface, it will respond to user actions on the keyboard and mouse. A program
that tries to factor very large numbers might start when you pass it a target number on the command
line. Other programs might respond to data received over a phone line, information obtained from
a database, or information about the state of a mechanical process the program monitors.

Programs often are activated by a flow of events, reports of external activity of some sort. Applications
that display a user interface are driven by events from the keyboard and mouse. Every press of a key
or click of the mouse generates events that the application receives and responds to. An object-oriented
program structure (a network of objects that’s prepared to respond to an external stimulus) is ideally
suited for this kind of user-driven application.

Aggregation and Decomposition

Another part of the design task is deciding the arrangement of classes—when to add functionality to
an existing class by defining a subclass and when to define an independent class. The problem can
be clarified by imagining what would happen in the extreme case:

 ■ It’s possible to conceive of a program consisting of just one object. Since it’s the only object, it can
send messages only to itself. It therefore can’t take advantage of polymorphism, or the modularity
of a variety of classes, or a program design conceived as a network of interconnected objects. The
true structure of the program would be hidden inside the class definition. Despite being written
in an object-oriented language, there would be very little that was object-oriented about it.

 ■ On the other hand, it’s also possible to imagine a program that consists of hundreds of different
kinds of objects, each with very few methods and limited functionality. Here, too, the structure
of the program would be lost, this time in a maze of object connections.

Obviously, it’s best to avoid either of these extremes, to keep objects large enough to take on a
substantial role in the program but small enough to keep that role well-defined. The structure of the
program should be easy to grasp in the pattern of object connections.

Nevertheless, the question often arises of whether to add more functionality to a class or to factor out
the additional functionality and put it in an separate class definition. For example, a Faucet needs to
keep track of how much water is being used over time. To do that, you could either implement the
necessary methods in the Faucet class, or you could devise a generic Meter object to do the job, as
suggested earlier. Each Faucet would have an outlet connecting it to a Meter, and the Meter would
not interact with any object but the Faucet.

Structuring Programs 33
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

The choice often depends on your design goals. If the Meter object could be used in more than one
situation, perhaps in another project entirely, it would increase the reusability of your code to factor
the metering task into a separate class. If you have reason to make Faucet objects as self-contained as
possible, the metering functionality could be added to the Faucet class.

It’s generally better to try for reusable code and avoid having large classes that do so many things
that they can’t be adapted to other situations. When objects are designed as components, they become
that much more reusable. What works in one system or configuration might well work in another.

Dividing functionality between different classes doesn’t necessarily complicate the programming
interface. If the Faucet class keeps the Meter object private, the Meter interface wouldn’t have to be
published for users of the Faucet class; the object would be as hidden as any other Faucet instance
variable.

Models and Frameworks

Objects combine state and behavior, and so resemble things in the real world. Because they resemble
real things, designing an object-oriented program is very much like thinking about real things—what
they do, how they work, and how one thing is connected to another.

When you design an object-oriented program, you are, in effect, putting together a computer simulation
of how something works. Object networks look and behave like models of real systems. An
object-oriented program can be thought of as a model, even if there’s no actual counterpart to it in
the real world.

Each component of the model—each kind of object—is described in terms of its behavior,
responsibilities, and interactions with other components. Because an object’s interface lies in its
methods, not its data, you can begin the design process by thinking about what a system component
must do, not how it’s represented in data. Once the behavior of an object is decided, the appropriate
data structure can be chosen, but this is a matter of implementation, not the initial design.

For example, in the water-use program, you wouldn’t begin by deciding what the Faucet data structure
looked like, but what you wanted a Faucet to do—make a connection to a Pipe, be turned on and off,
adjust the rate of flow, and so on. The design is therefore not bound from the outset by data choices.
You can decide on the behavior first, and implement the data afterwards. Your choice of data structures
can change over time without affecting the design.

Designing an object-oriented program doesn’t necessarily entail writing great amounts of code. The
reusability of class definitions means that the opportunity is great for building a program largely out
of classes devised by others. It might even be possible to construct interesting programs entirely out
of classes someone else defined. As the suite of class definitions grows, you have more and more
reusable parts to choose from.

Reusable classes come from many sources. Development projects often yield reusable class definitions,
and some enterprising developers market them. Object-oriented programming environments typically
come with class libraries. There are well over two hundred classes in the Cocoa libraries. Some of
these classes offer basic services (hashing, data storage, remote messaging). Others are more specific
(user interface devices, video displays, sound).

Typically, a group of library classes work together to define a partial program structure. These classes
constitute a software framework (or kit) that can be used to build a variety of different kinds of
applications. When you use a framework, you accept the program model it provides and adapt your
design to it. You use the framework by:

34 Structuring Programs
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

 ■ Initializing and arranging instances of framework classes

 ■ Defining subclasses of framework classes

 ■ Defining new classes of your own to work with classes defined in the framework

In each of these ways, you not only adapt your program to the framework, but you also adapt the
generic framework structure to the specialized purposes of your application.

The framework, in essence, sets up part of a object network for your program and provides part of
its class hierarchy. Your own code completes the program model started by the framework.

Structuring the Programming Task

Object-oriented programming not only structures programs in a better way, it also helps structure
the programming task.

As software tries to do more and more, and programs become bigger and more complicated, the
problem of managing the task also grows. There are more pieces to fit together and more people
working together to build them. The object-oriented approach offers ways of dealing with this
complexity, not just in design, but also in the organization of the work.

Collaboration

Complex software requires an extraordinary collaborative effort among people who must be
individually creative, yet still make what they do fit exactly with what others are doing.

The sheer size of the effort and the number of people working on the same project at the same time
in the same place can get in the way of the group’s ability to work cooperatively towards a common
goal. In addition, collaboration is often impeded by barriers of time, space, and organization:

 ■ Code must be maintained, improved, and used long after it’s written. Programmers who collaborate
on a project may not be working on it at the same time, so they may not be in a position to talk
things over and keep each other informed about details of the implementation.

 ■ Even if programmers work on the same project at the same time, they may not be located in the
same place. This also inhibits how closely they can work together.

 ■ Programmers working in different groups with different priorities and different schedules often
must collaborate on projects. Communication across organizational barriers isn’t always easy to
achieve.

The answer to these difficulties must grow out of the way programs are designed and written. It can’t
be imposed from the outside in the form of hierarchical management structures and strict levels of
authority. These often get in the way of people’s creativity, and become burdens in and of themselves.
Rather, collaboration must be built into the work itself.

Structuring the Programming Task 35
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

That’s where object-oriented programming techniques can help. For example, the reusability of
object-oriented code means that programmers can collaborate effectively, even when they work on
different projects at different times or are in different organizations, just by sharing their code in
libraries. This kind of collaboration holds a great deal of promise, for it can conceivably lighten difficult
tasks and make seemingly impossible projects achievable.

Organizing Object-Oriented Projects

Object-oriented programming helps restructure the programming task in ways that benefit
collaboration. It helps eliminate the need to collaborate on low-level implementation details, while
providing structures that facilitate collaboration at a higher level. Almost every feature of the object
model, from the possibility of large-scale design to the increased reusability of code, has consequences
for the way people work together.

Designing on a Large Scale

When programs are designed at a high level of abstraction, the division of labor is more easily
conceived. It can match the division of the program on logical lines; the way a project is organized
can grow out of its design.

With an object-oriented design, it’s easier to keep common goals in sight, instead of losing them in
the implementation, and easier for everyone to see how the piece they’re working on fits into the
whole. Their collaborative efforts are therefore more likely to be on target.

Separating the Interface from the Implementation

The connections between the various components of an object-oriented program are worked out early
in the design process. They can be well-defined, at least for the initial phase of development, before
implementation begins.

During implementation, only this interface needs to be coordinated, and most of that falls naturally
out of the design. Since each class encapsulates its implementation and has its own name space, there’s
no need to coordinate implementation details. Collaboration is simpler when there are fewer
coordination requirements.

Modularizing the Work

The modularity of object-oriented programming means that the logical components of a large program
can each be implemented separately. Different people can work on different classes. Each
implementation task is isolated from the others.

This has benefits, not just for organizing the implementation, but for fixing problems later. Since
implementations are contained within class boundaries, problems that come up are also likely to be
isolated. It’s easier to track down bugs when they’re located in a well-defined part of the program.

Separating responsibilities by class also means that each part can be worked on by specialists. Classes
can be updated periodically to optimize their performance and make the best use of new technologies.
These updates don’t have to be coordinated with other parts of the program. As long as the interface
to an object doesn’t change, improvements to its implementation can be scheduled at any time.

36 Structuring the Programming Task
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

Keeping the Interface Simple

The polymorphism of object-oriented programs yields simpler programming interfaces, since the
same names and conventions can be reused in any number of classes. The result is less to learn, a
greater shared understanding of how the whole system works, and a simpler path to cooperation
and collaboration.

Making Decisions Dynamically

Because object-oriented programs make decisions dynamically at runtime, less information needs to
be supplied at compile time (in source code) to make two pieces of code work together. Consequently,
there’s less to coordinate and less to go wrong.

Inheriting Generic Code

Inheritance is a way of reusing code. If you can define your classes as specializations of more generic
classes, your programming task is simplified. The design is simplified as well, since the inheritance
hierarchy lays out the relationships between the different levels of implementation and makes them
easier to understand.

Inheritance also increases the reusability and reliability of code. The code placed in a superclass is
tested by its subclasses. The generic class you find in a library will have been tested by other subclasses
written by other developers for other applications.

Reusing Tested Code

The more software you can borrow from others and incorporate in your own programs, the less you
have to do yourself. There’s more software to borrow in an object-oriented programming environment
because the code is more reusable. Collaboration between programmers working in different places
for different organizations is enhanced, while the burden of each project is eased.

Classes and frameworks from an object-oriented library can make substantial contributions to your
program. When you program with the software frameworks provided by Apple, for example, you’re
effectively collaborating with the programmers at Apple; you’re contracting a part of your program,
often a substantial part, to them. You can concentrate on what you do best and leave other tasks to
the library developer. Your projects can be prototyped faster, completed faster, with less of a
collaborative challenge at your own site.

The increased reusability of object-oriented code also increases its reliability. A class taken from a
library is likely to have found its way into a variety of applications and situations. The more the code
has been used, the more likely it is that problems will have been encountered and fixed. Bugs that
would have seemed strange and hard to find in your program might already have been tracked down
and eliminated.

Structuring the Programming Task 37
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

38 Structuring the Programming Task
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Object-Oriented Programming

This chapter describes the Objective-C language and discusses the principles of object-oriented
programming as they’re implemented in Objective-C. It covers all the features that the language adds
to standard C and C++.

Because object-oriented programs postpone many decisions from compile time to runtime,
object-oriented languages depend on a runtime system for executing the compiled code. The runtime
system for the Objective-C language is discussed in “The Runtime System” (page 95). This chapter
presents the language, but touches on important elements of the runtime system.

The Apple compilers are based on the compilers of the GNU Compiler Collection. Objective-C syntax
is a superset of GNU C/C++ syntax, and the Objective-C compiler works for C, C++ and Objective-C
source code. The compiler recognizes Objective-C source files by the filename extension .m, just as it
recognizes files containing only standard C syntax by filename extension .c. Similarly, the compiler
recognizes C++ files that use Objective-C by the extension .mm. Other issues when using Objective-C
with C++ are covered in the section “Using C++ With Objective-C” (page 89).

Objects

As the name implies, object-oriented programs are built around objects. An object associates data
with the particular operations that can use or affect that data. In Objective-C, these operations are
known as the object’s methods; the data they affect are its instance variables. In essence, an object
bundles a data structure (instance variables) and a group of procedures (methods) into a self-contained
programming unit.

For example, if you are writing a drawing program that allows a user to create images composed of
lines, circles, rectangles, text, bit-mapped images, and so forth, you might create classes for many of
the basic shapes that a user can manipulate. A Rectangle object, for instance, might have instance
variables that identify the position of the rectangle within the drawing along with its width and its
height. Other instance variables could define the rectangle’s color, whether or not it is to be filled,
and a line pattern that should be used to display the rectangle. A Rectangle class would have methods
to set an instance’s position, size, color, fill status, and line pattern, along with a method that causes
the instance to display itself.

In Objective-C, an object’s instance variables are internal to the object; generally, you get access to an
object’s state only through the object’s methods (you can specify whether subclasses or other objects
can access instance variables directly by using scope directives, see “The Scope of Instance

Objects 39
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Variables” (page 59)). For others to find out something about an object, there has to be a method to
supply the information. For example, a Rectangle would have methods that reveal its size and its
position.

Moreover, an object sees only the methods that were designed for it; it can’t mistakenly perform
methods intended for other types of objects. Just as a C function protects its local variables, hiding
them from the rest of the program, an object hides both its instance variables and its method
implementations.

id

In Objective-C, object identifiers are a distinct data type: id. This type is defined as a pointer to an
object—in reality, a pointer to the instance variables of the object, the object’s unique data. Like a C
function or an array, an object is identified by its address. All objects, regardless of their instance
variables or methods, are of type id.

id anObject;

For the object-oriented constructs of Objective-C, such as method return values, id replaces int as
the default data type. (For strictly C constructs, such as function return values, int remains the default
type.)

The keyword nil is defined as a null object, an id with a value of 0. id, nil, and the other basic types
of Objective-C are defined in the header file objc/objc.h.

Dynamic Typing

The id type is completely nonrestrictive. By itself, it yields no information about an object, except
that it is an object.

But objects aren’t all the same. A Rectangle won’t have the same methods or instance variables as an
object that represents a bit-mapped image. At some point, a program needs to find more specific
information about the objects it contains—what the object’s instance variables are, what methods it
can perform, and so on. Since the id type designator can’t supply this information to the compiler,
each object has to be able to supply it at runtime.

This is possible because every object carries with it an isa instance variable that identifies the object’s
class—what kind of object it is. Every Rectangle object would be able to tell the runtime system that
it is a Rectangle. Every Circle can say that it is a Circle. Objects with the same behavior (methods)
and the same kinds of data (instance variables) are members of the same class.

Objects are thus dynamically typed at runtime. Whenever it needs to, the runtime system can find
the exact class that an object belongs to, just by asking the object. Dynamic typing in Objective-C
serves as the foundation for dynamic binding, discussed later.

The isa pointer also enables objects to perform introspection—to find out about themselves (or other
objects). The compiler records information about class definitions in data structures for the runtime
system to use. The functions of the runtime system use isa, to find this information at runtime. Using
the runtime system, you can, for example, determine whether an object implements a particular
method, or discover the name of its superclass.

Object classes are discussed in more detail under “Classes” (page 44).

40 Objects
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

It’s also possible to give the compiler information about the class of an object by statically typing it
in source code using the class name. Classes are particular kinds of objects, and the class name can
serve as a type name. See “Class Types” (page 47) and “Enabling Static Behaviors” (page 82).

Object Messaging

This section explains the syntax of sending messages, including how you can nest message expressions.
It also discusses the “visibility” of an object’s instance variables, and the concepts of polymorphism
and dynamic binding.

Message Syntax

To get an object to do something, you send it a message telling it to apply a method. In Objective-C,
message expressions are enclosed in brackets:

[receiver message]

The receiver is an object, and the message tells it what to do. In source code, the message is simply
the name of a method and any arguments that are passed to it. When a message is sent, the runtime
system selects the appropriate method from the receiver’s repertoire and invokes it.

For example, this message tells the myRect object to perform its display method, which causes the
rectangle to display itself:

[myRect display];

Methods can also take arguments. The imaginary message below tells myRect to set its location within
the window to coordinates (30.0, 50.0):

[myRect setOrigin:30.0 :50.0];

Here the method name, setOrigin::, has two colons, one for each of its arguments. The arguments
are inserted after the colons. This method name uses unlabeled arguments. Unlabeled arguments
make it difficult to determine the kind and purpose of a method’s arguments. Instead, method names
should include labels describing each of their arguments. Argument labels precede each colon in the
method name. The setWidth:height:method, for example, makes the purpose of its two arguments
clear:

[myRect setWidth:10.0 height:15.0];

Methods that take a variable number of arguments are also possible, though they’re somewhat rare.
Extra arguments are separated by commas after the end of the method name. (Unlike colons, the
commas aren’t considered part of the name.) In the following example, the imaginary makeGroup:
method is passed one required argument (group) and three that are optional:

[receiver makeGroup:group, memberOne, memberTwo, memberThree];

Like standard C functions, methods can return values. The following example sets the variable
isFilled to YES if myRect is drawn as a solid rectangle, or NO if it’s drawn in outline form only.

BOOL isFilled;

Object Messaging 41
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

isFilled = [myRect isFilled];

Note that a variable and a method can have the same name.

One message expression can be nested inside another. Here, the color of one rectangle is set to the
color of another:

[myRect setPrimaryColor:[otherRect primaryColor]];

A message to nil also is valid, as long as the message returns an object, any pointer type, or any
integer scalar of size less than or equal to sizeof(void*); if it does, a message sent to nil returns
nil. If the message sent to nil returns anything other than the aforementioned value types (for
example, if it returns any struct type, any floating-point type, or any vector type) the return value is
undefined. You should therefore not rely on the return value of messages sent to nil unless the
method’s return type is an object, any pointer type, or any integer scalar of size less than or equal to
sizeof(void*):

id anObject = nil;

// this is valid
if ([anObject methodThatReturnsAnInt] == nil) {

// implementation continues...
}

// this is not valid
if ([anObject methodThatReturnsAFloat] == nil) {

// implementation continues...
}

The Receiver’s Instance Variables

A method has automatic access to the receiving object’s instance variables. You don’t need to pass
them to the method as arguments. For example, the primaryColor method illustrated above takes
no arguments, yet it can find the primary color for otherRect and return it. Every method assumes
the receiver and its instance variables, without having to declare them as arguments.

This convention simplifies Objective-C source code. It also supports the way object-oriented
programmers think about objects and messages. Messages are sent to receivers much as letters are
delivered to your home. Message arguments bring information from the outside to the receiver; they
don’t need to bring the receiver to itself.

A method has automatic access only to the receiver’s instance variables. If it requires information
about a variable stored in another object, it must send a message to the object asking it to reveal the
contents of the variable. The primaryColor and isFilled methods shown above are used for just
this purpose.

See “Defining a Class” (page 54) for more information on referring to instance variables.

42 Object Messaging
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Polymorphism

As the examples above illustrate, messages in Objective-C appear in the same syntactic positions as
function calls in standard C. But, because methods “belong to” an object, messages behave differently
than function calls.

In particular, an object can be operated on by only those methods that were defined for it. It can’t
confuse them with methods defined for other kinds of objects, even if another object has a method
with the same name. This means that two objects can respond differently to the same message. For
example, each kind of object sent a display message could display itself in a unique way. A Circle
and a Rectangle would respond differently to identical instructions to track the cursor.

This feature, referred to as polymorphism, plays a significant role in the design of object-oriented
programs. Together with dynamic binding, it permits you to write code that might apply to any
number of different kinds of objects, without you having to choose at the time you write the code
what kinds of objects they might be. They might even be objects that will be developed later, by other
programmers working on other projects. If you write code that sends a display message to an id
variable, any object that has a display method is a potential receiver.

Dynamic Binding

A crucial difference between function calls and messages is that a function and its arguments are
joined together in the compiled code, but a message and a receiving object aren’t united until the
program is running and the message is sent. Therefore, the exact method that’s invoked to respond
to a message can only be determined at runtime, not when the code is compiled.

The precise method that a message invokes depends on the receiver. Different receivers may have
different method implementations for the same method name (polymorphism). For the compiler to
find the right method implementation for a message, it would have to know what kind of object the
receiver is—what class it belongs to. This is information the receiver is able to reveal at runtime when
it receives a message (dynamic typing), but it’s not available from the type declarations found in
source code.

The selection of a method implementation happens at runtime. When a message is sent, a runtime
messaging routine looks at the receiver and at the method named in the message. It locates the
receiver’s implementation of a method matching the name, “calls” the method, and passes it a pointer
to the receiver’s instance variables. (For more on this routine, see “How Messaging Works” (page
62).)

The method name in a message thus serves to “select” a method implementation. For this reason,
method names in messages are often referred to as selectors.

This dynamic binding of methods to messages works hand-in-hand with polymorphism to give
object-oriented programming much of its flexibility and power. Since each object can have its own
version of a method, a program can achieve a variety of results, not by varying the message itself,
but by varying just the object that receives the message. This can be done as the program runs; receivers
can be decided “on the fly” and can be made dependent on external factors such as user actions.

When executing code based upon the Application Kit, for example, users determine which objects
receive messages from menu commands like Cut, Copy, and Paste. The message goes to whatever
object controls the current selection. An object that displays text would react to a copy message
differently from an object that displays scanned images. An object that represents a set of shapes

Object Messaging 43
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

would respond differently from a Rectangle. Since messages don’t select methods (methods aren’t
bound to messages) until runtime, these differences are isolated in the methods that respond to the
message. The code that sends the message doesn’t have to be concerned with them; it doesn’t even
have to enumerate the possibilities. Each application can invent its own objects that respond in their
own way to copy messages.

Objective-C takes dynamic binding one step further and allows even the message that’s sent (the
method selector) to be a variable that’s determined at runtime. This is discussed in the section “How
Messaging Works” (page 62).

Classes

An object-oriented program is typically built from a variety of objects. A program based on the Cocoa
frameworks might use NSMatrix objects, NSWindow objects, NSDictionary objects, NSFont objects,
NSText objects, and many others. Programs often use more than one object of the same kind or
class—several NSArray objects or NSWindow objects, for example.

In Objective-C, you define objects by defining their class. The class definition is a prototype for a kind
of object; it declares the instance variables that become part of every member of the class, and it defines
a set of methods that all objects in the class can use.

The compiler creates just one accessible object for each class, a class object that knows how to build
new objects belonging to the class. (For this reason it’s traditionally called a “factory object.”) The
class object is the compiled version of the class; the objects it builds are instances of the class. The
objects that do the main work of your program are instances created by the class object at runtime.

All instances of a class have the same set of methods, and they all have a set of instance variables cut
from the same mold. Each object gets its own instance variables, but the methods are shared.

By convention, class names begin with an uppercase letter (such as “Rectangle”); the names of instances
typically begin with a lowercase letter (such as “myRect”).

Inheritance

Class definitions are additive; each new class that you define is based on another class from which it
inherits methods and instance variables. The new class simply adds to or modifies what it inherits.
It doesn’t need to duplicate inherited code.

Inheritance links all classes together in a hierarchical tree with a single class at its root. When writing
code that is based upon the Foundation framework, that root class is typically NSObject. Every class
(except a root class) has a superclass one step nearer the root, and any class (including a root class)
can be the superclass for any number of subclasses one step farther from the root. Figure 3-1 illustrates
the hierarchy for a few of the classes used in the drawing program.

44 Classes
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Figure 3-1 Some Drawing Program Classes

Image Text

NSObject

Graphic

Shape

Line CircleRectangle

Square

This figure shows that the Square class is a subclass of the Rectangle class, the Rectangle class is a
subclass of Shape, Shape is a subclass of Graphic, and Graphic is a subclass of NSObject. Inheritance
is cumulative. So a Square object has the methods and instance variables defined for Rectangle, Shape,
Graphic, and NSObject, as well as those defined specifically for Square. This is simply to say that a
Square object isn’t only a Square, it’s also a Rectangle, a Shape, a Graphic, and an NSObject.

Every class but NSObject can thus be seen as a specialization or an adaptation of another class. Each
successive subclass further modifies the cumulative total of what’s inherited. The Square class defines
only the minimum needed to turn a Rectangle into a Square.

When you define a class, you link it to the hierarchy by declaring its superclass; every class you create
must be the subclass of another class (unless you define a new root class). Plenty of potential
superclasses are available. Cocoa includes the NSObject class and several frameworks containing
definitions for more than 250 additional classes. Some are classes that you can use “off the
shelf”—incorporate into your program as is. Others you might want to adapt to your own needs by
defining a subclass.

Some framework classes define almost everything you need, but leave some specifics to be implemented
in a subclass. You can thus create very sophisticated objects by writing only a small amount of code,
and reusing work done by the programmers of the framework.

The NSObject Class

NSObject is a root class, and so doesn’t have a superclass. It defines the basic framework for Objective-C
objects and object interactions. It imparts to the classes and instances of classes that inherit from it
the ability to behave as objects and cooperate with the runtime system.

A class that doesn’t need to inherit any special behavior from another class should nevertheless be
made a subclass of the NSObject class. Instances of the class must at least have the ability to behave
like Objective-C objects at runtime. Inheriting this ability from the NSObject class is much simpler
and much more reliable than reinventing it in a new class definition.

Classes 45
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Note: Implementing a new root class is a delicate task and one with many hidden hazards. The class
must duplicate much of what the NSObject class does, such as allocate instances, connect them to
their class, and identify them to the runtime system. For this reason, you should generally use the
NSObject class provided with Cocoa as the root class. For more information, see the Foundation
framework documentation for the NSObject class and the NSObject protocol.

Inheriting Instance Variables

When a class object creates a new instance, the new object contains not only the instance variables
that were defined for its class but also the instance variables defined for its superclass and for its
superclass’s superclass, all the way back to the root class. Thus, the isa instance variable defined in
the NSObject class becomes part of every object. isa connects each object to its class.

Figure 3-2 shows some of the instance variables that could be defined for a particular implementation
of Rectangle, and where they may come from. Note that the variables that make the object a Rectangle
are added to the ones that make it a Shape, and the ones that make it a Shape are added to the ones
that make it a Graphic, and so on.

Figure 3-2 Rectangle Instance Variables

Class
NSPoint
NSColor
Pattern
. . .
float
float
BOOL
NSColor
. . .

declared in Shape

declared in Rectangle

declared in NSObject
declared in Graphic

isa;
origin;
*primaryColor;
linePattern;

width;
height;
filled;
*fillColor;

A class doesn’t have to declare instance variables. It can simply define new methods and rely on the
instance variables it inherits, if it needs any instance variables at all. For example, Square might not
declare any new instance variables of its own.

Inheriting Methods

An object has access not only to the methods defined for its class, but also to methods defined for its
superclass, and for its superclass’s superclass, all the way back to the root of the hierarchy. For instance,
a Square object can use methods defined in the Rectangle, Shape, Graphic, and NSObject classes as
well as methods defined in its own class.

Any new class you define in your program can therefore make use of the code written for all the
classes above it in the hierarchy. This type of inheritance is a major benefit of object-oriented
programming. When you use one of the object-oriented frameworks provided by Cocoa, your programs
can take advantage of the basic functionality coded into the framework classes. You have to add only
the code that customizes the standard functionality to your application.

Class objects also inherit from the classes above them in the hierarchy. But because they don’t have
instance variables (only instances do), they inherit only methods.

46 Classes
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Overriding One Method With Another

There’s one useful exception to inheritance: When you define a new class, you can implement a new
method with the same name as one defined in a class farther up the hierarchy. The new method
overrides the original; instances of the new class perform it rather than the original, and subclasses
of the new class inherit it rather than the original.

For example, Graphic defines a display method that Rectangle overrides by defining its own version
of display. The Graphic method is available to all kinds of objects that inherit from the Graphic
class—but not to Rectangle objects, which instead perform the Rectangle version of display.

Although overriding a method blocks the original version from being inherited, other methods defined
in the new class can skip over the redefined method and find the original (see “Messages to self and
super” (page 67) to learn how).

A redefined method can also incorporate the very method it overrides. When it does, the new method
serves only to refine or modify the method it overrides, rather than replace it outright. When several
classes in the hierarchy define the same method, but each new version incorporates the version it
overrides, the implementation of the method is effectively spread over all the classes.

Although a subclass can override inherited methods, it can’t override inherited instance variables.
Since an object has memory allocated for every instance variable it inherits, you can’t override an
inherited variable by declaring a new one with the same name. If you try, the compiler will complain.

Abstract Classes

Some classes are designed only so that other classes can inherit from them. These abstract classes
group methods and instance variables that can be used by a number of different subclasses into a
common definition. The abstract class is incomplete by itself, but contains useful code that reduces
the implementation burden of its subclasses.

The NSObject class is the prime example of an abstract class. Although programs often define NSObject
subclasses and use instances belonging to the subclasses, they never use instances belonging directly
to the NSObject class. An NSObject instance wouldn’t be good for anything; it would be a generic
object with the ability to do nothing in particular.

Abstract classes often contain code that helps define the structure of an application. When you create
subclasses of these classes, instances of your new classes fit effortlessly into the application structure
and work automatically with other objects.

(Because abstract classes must have subclasses to be useful, they’re sometimes also called abstract
superclasses.)

Class Types

A class definition is a specification for a kind of object. The class, in effect, defines a data type. The
type is based not just on the data structure the class defines (instance variables), but also on the
behavior included in the definition (methods).

A class name can appear in source code wherever a type specifier is permitted in C—for example, as
an argument to the sizeof operator:

Classes 47
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

int i = sizeof(Rectangle);

Static Typing

You can use a class name in place of id to designate an object’s type:

Rectangle *myRect;

Because this way of declaring an object type gives the compiler information about the kind of object
it is, it’s known as static typing. Just as id is defined as a pointer to an object, objects are statically
typed as pointers to a class. Objects are always typed by a pointer. Static typing makes the pointer
explicit; id hides it.

Static typing permits the compiler to do some type checking—for example, to warn if an object could
receive a message that it appears not to be able to respond to—and to loosen some restrictions that
apply to objects generically typed id. In addition, it can make your intentions clearer to others who
read your source code. However, it doesn’t defeat dynamic binding or alter the dynamic determination
of a receiver’s class at runtime.

An object can be statically typed to its own class or to any class that it inherits from. For example,
since inheritance makes a Rectangle a kind of Graphic, a Rectangle instance could be statically typed
to the Graphic class:

Graphic *myRect;

This is possible because a Rectangle is a Graphic. It’s more than a Graphic since it also has the instance
variables and method capabilities of a Shape and a Rectangle, but it’s a Graphic nonetheless. For
purposes of type checking, the compiler considers myRect to be a Graphic, but at runtime it’s treated
as a Rectangle.

See “Enabling Static Behaviors” (page 82) in the next chapter for more on static typing and its benefits.

Type Introspection

Instances can reveal their types at runtime. The isMemberOfClass: method, defined in the NSObject
class, checks whether the receiver is an instance of a particular class:

if ([anObject isMemberOfClass:someClass])
...

The isKindOfClass: method, also defined in the NSObject class, checks more generally whether the
receiver inherits from or is a member of a particular class (whether it has the class in its inheritance
path):

if ([anObject isKindOfClass:someClass])
...

The set of classes for which isKindOfClass: returns YES is the same set to which the receiver can be
statically typed.

Introspection isn’t limited to type information. Later sections of this chapter discuss methods that
return the class object, report whether an object can respond to a message, and reveal other information.

See the NSObject class specification in the Foundation framework reference for more on
isKindOfClass:, isMemberOfClass:, and related methods.

48 Classes
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Class Objects

A class definition contains various kinds of information, much of it about instances of the class:

 ■ The name of the class and its superclass

 ■ A template describing a set of instance variables

 ■ The declarations of method names and their return and argument types

 ■ The method implementations

This information is compiled and recorded in data structures made available to the runtime system.
The compiler creates just one object, a class object, to represent the class. The class object has access
to all the information about the class, which means mainly information about what instances of the
class are like. It’s able to produce new instances according to the plan put forward in the class definition.

Although a class object keeps the prototype of a class instance, it’s not an instance itself. It has no
instance variables of its own and it can’t perform methods intended for instances of the class. However,
a class definition can include methods intended specifically for the class object—class methods as
opposed to instance methods. A class object inherits class methods from the classes above it in the
hierarchy, just as instances inherit instance methods.

In source code, the class object is represented by the class name. In the following example, the Rectangle
class returns the class version number using a method inherited from the NSObject class:

int versionNumber = [Rectangle version];

However, the class name stands for the class object only as the receiver in a message expression.
Elsewhere, you need to ask an instance or the class to return the class id. Both respond to a class
message:

id aClass = [anObject class];
id rectClass = [Rectangle class];

As these examples show, class objects can, like all other objects, be typed id. But class objects can also
be more specifically typed to the Class data type:

Class aClass = [anObject class];
Class rectClass = [Rectangle class];

All class objects are of type Class. Using this type name for a class is equivalent to using the class
name to statically type an instance.

Class objects are thus full-fledged objects that can be dynamically typed, receive messages, and inherit
methods from other classes. They’re special only in that they’re created by the compiler, lack data
structures (instance variables) of their own other than those built from the class definition, and are
the agents for producing instances at runtime.

Classes 49
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Note: The compiler also builds a “metaclass object” for each class. It describes the class object just as
the class object describes instances of the class. But while you can send messages to instances and to
the class object, the metaclass object is used only internally by the runtime system.

Creating Instances

A principal function of a class object is to create new instances. This code tells the Rectangle class to
create a new Rectangle instance and assign it to the myRect variable:

id myRect;
myRect = [Rectangle alloc];

The allocmethod dynamically allocates memory for the new object’s instance variables and initializes
them all to 0—all, that is, except the isa variable that connects the new instance to its class. For an
object to be useful, it generally needs to be more completely initialized. That’s the function of an init
method. Initialization typically follows immediately after allocation:

myRect = [[Rectangle alloc] init];

This line of code, or one like it, would be necessary before myRect could receive any of the messages
that were illustrated in previous examples in this chapter. The alloc method returns a new instance
and that instance performs an init method to set its initial state. Every class object has at least one
method (like alloc) that enables it to produce new objects, and every instance has at least one method
(like init) that prepares it for use. Initialization methods often take arguments to allow particular
values to be passed and have keywords to label the arguments (initWithPosition:size:, for
example, is a method that might initialize a new Rectangle instance), but they all begin with “init”.

Customization With Class Objects

It’s not just a whim of the Objective-C language that classes are treated as objects. It’s a choice that
has intended, and sometimes surprising, benefits for design. It’s possible, for example, to customize
an object with a class, where the class belongs to an open-ended set. In the Application Kit, for example,
an NSMatrix object can be customized with a particular kind of NSCell object.

An NSMatrix object can take responsibility for creating the individual objects that represent its cells.
It can do this when the matrix is first initialized and later when new cells are needed. The visible
matrix that an NSMatrix object draws on the screen can grow and shrink at runtime, perhaps in
response to user actions. When it grows, the matrix needs to be able to produce new objects to fill the
new slots that are added.

But what kind of objects should they be? Each matrix displays just one kind of NSCell, but there are
many different kinds. The inheritance hierarchy in Figure 3-3 shows some of those provided by the
Application Kit. All inherit from the generic NSCell class:

50 Classes
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Figure 3-3 Inheritance hierarchy for NSCell

NSObject

NSCell

NSActionCell

NSTextFieldCell NSSliderCellNSButtonCell NSFormCell

NSMenuCell

NSBrowserCell

When an matrix creates NSCell objects, should they be NSButtonCell objects to display a bank of
buttons or switches, NSTextFieldCell objects to display fields where the user can enter and edit text,
or some other kind of NSCell? The NSMatrix object must allow for any kind of cell, even types that
haven’t been invented yet.

One solution to this problem is to define the NSMatrix class as an abstract class and require everyone
who uses it to declare a subclass and implement the methods that produce new cells. Because they
would be implementing the methods, users of the class could be sure that the objects they created
were of the right type.

But this requires others to do work that ought to be done in the NSMatrix class, and it unnecessarily
proliferates the number of classes. Since an application might need more than one kind of NSMatrix,
each with a different kind of NSCell, it could become cluttered with NSMatrix subclasses. Every time
you invented a new kind of NSCell, you’d also have to define a new kind of NSMatrix. Moreover,
programmers on different projects would be writing virtually identical code to do the same job, all
to make up for NSMatrix's failure to do it.

A better solution, the solution the NSMatrix class actually adopts, is to allow NSMatrix instances to
be initialized with a kind of NSCell—with a class object. It defines a setCellClass: method that
passes the class object for the kind of NSCell object an NSMatrix should use to fill empty slots:

[myMatrix setCellClass:[NSButtonCell class]];

The NSMatrix object uses the class object to produce new cells when it’s first initialized and whenever
it’s resized to contain more cells. This kind of customization would be difficult if classes weren’t
objects that could be passed in messages and assigned to variables.

Variables and Class Objects

When you define a new class, you can specify instance variables. Every instance of the class can
maintain its own copy of the variables you declare—each object controls its own data. There is,
however, no “class variable” counterpart to an instance variable. Only internal data structures,
initialized from the class definition, are provided for the class. Moreover, a class object has no access
to the instance variables of any instances; it can’t initialize, read, or alter them.

For all the instances of a class to share data, you must define an external variable of some sort. The
simplest way to do this is to declare a variable in the class implementation file as illustrated in the
following code fragment.

int MCLSGlobalVariable;

Classes 51
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

@implementation MyClass
// implementation continues

In a more sophisticated implementation, you can declare a variable to be static, and provide class
methods to manage it. Declaring a variable static limits its scope to just the class—and to just the
part of the class that’s implemented in the file. (Thus unlike instance variables, static variables cannot
be inherited by, or directly manipulated by, subclasses.) This pattern is commonly used to define
shared instances of a class (such as singletons, see Creating a Singleton Instance).

static MyClass *MCLSSharedInstance;

@implementation MyClass

+ (MyClass *)sharedInstance
{

// check for existence of shared instance
// create if necessary
return MCLSSharedInstance;

}
// implementation continues

Static variables help give the class object more functionality than just that of a “factory” producing
instances; it can approach being a complete and versatile object in its own right. A class object can be
used to coordinate the instances it creates, dispense instances from lists of objects already created, or
manage other processes essential to the application. In the case when you need only one object of a
particular class, you can put all the object’s state into static variables and use only class methods. This
saves the step of allocating and initializing an instance.

Note: It is also possible to use external variables that are not declared static, but the limited scope
of static variables better serves the purpose of encapsulating data into separate objects.

Initializing a Class Object

If a class object is to be used for anything besides allocating instances, it may need to be initialized
just as an instance is. Although programs don’t allocate class objects, Objective-C does provide a way
for programs to initialize them.

If a class makes use of static or global variables, the initialize method is a good place to set their
initial values. For example, if a class maintains an array of instances, the initialize method could
set up the array and even allocate one or two default instances to have them ready.

The runtime system sends an initialize message to every class object before the class receives any
other messages and after its superclass has received the initialize message. This gives the class a
chance to set up its runtime environment before it’s used. If no initialization is required, you don’t
need to write an initialize method to respond to the message.

Because of inheritance, an initializemessage sent to a class that doesn’t implement the initialize
method is forwarded to the superclass, even though the superclass has already received the initialize
message. For example, assume class A implements the initialize method, and class B inherits from
class A but does not implement the initialize method. Just before class B is to receive its first
message, the runtime system sends initialize to it. But, because class B doesn’t implement
initialize, class A’s initialize is executed instead. Therefore, class A should ensure that its
initialization logic is performed only once.

52 Classes
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

To avoid performing initialization logic more than once, use the template in Listing 3-1 when
implementing the initialize method.

Listing 3-1 Implementation of the initialize method

+ (void)initialize
{

static BOOL initialized = NO;
if (!initialized) {

// Perform initialization here.
...
initialized = YES;

}
}

Note: Remember that the runtime system sends initialize to each class individually. Therefore, in
a class’s implementation of the initialize method, you must not send the initialize message to
its superclass.

Methods of the Root Class

All objects, classes and instances alike, need an interface to the runtime system. Both class objects and
instances should be able to introspect about their abilities and to report their place in the inheritance
hierarchy. It’s the province of the NSObject class to provide this interface.

So that NSObject's methods don’t have to be implemented twice—once to provide a runtime interface
for instances and again to duplicate that interface for class objects—class objects are given special
dispensation to perform instance methods defined in the root class. When a class object receives a
message that it can’t respond to with a class method, the runtime system determines whether there’s
a root instance method that can respond. The only instance methods that a class object can perform
are those defined in the root class, and only if there’s no class method that can do the job.

For more on this peculiar ability of class objects to perform root instance methods, see the NSObject
class specification in the Foundation framework reference.

Class Names in Source Code

In source code, class names can be used in only two very different contexts. These contexts reflect the
dual role of a class as a data type and as an object:

 ■ The class name can be used as a type name for a kind of object. For example:

Rectangle * anObject;

Here anObject is statically typed to be a pointer to a Rectangle. The compiler expects it to have
the data structure of a Rectangle instance and the instance methods defined and inherited by the
Rectangle class. Static typing enables the compiler to do better type checking and makes source
code more self-documenting. See “Enabling Static Behaviors” (page 82) for details.

Only instances can be statically typed; class objects can’t be, since they aren’t members of a class,
but rather belong to the Class data type.

Classes 53
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

 ■ As the receiver in a message expression, the class name refers to the class object. This usage was
illustrated in several of the earlier examples. The class name can stand for the class object only
as a message receiver. In any other context, you must ask the class object to reveal its id (by
sending it a class message). The example below passes the Rectangle class as an argument in an
isKindOfClass: message.

if ([anObject isKindOfClass:[Rectangle class]])
...

It would have been illegal to simply use the name “Rectangle” as the argument. The class name
can only be a receiver.

If you don’t know the class name at compile time but have it as a string at runtime,
NSClassFromString will return the class object:

NSString *className;
...

if ([anObject isKindOfClass:NSClassFromString(className)])
...

This function returns nil if the string it’s passed is not a valid class name.

Classnames exist in the same namespace as global variables and function names. A class and a global
variable can’t have the same name. Classnames are about the only names with global visibility in
Objective-C.

Defining a Class

Much of object-oriented programming consists of writing the code for new objects—defining new
classes. In Objective-C, classes are defined in two parts:

 ■ An interface that declares the methods and instance variables of the class and names its superclass

 ■ An implementation that actually defines the class (contains the code that implements its methods)

Although the compiler doesn’t require it, the interface and implementation are usually separated into
two different files. The interface file must be made available to anyone who uses the class.

A single file can declare or implement more than one class. Nevertheless, it’s customary to have a
separate interface file for each class, if not also a separate implementation file. Keeping class interfaces
separate better reflects their status as independent entities.

Interface and implementation files typically are named after the class. The name of the implementation
file has the .m extension, indicating that it contains Objective-C source code. The interface file can be
assigned any other extension. Because it’s included in other source files, the name of the interface file
usually has the .h extension typical of header files. For example, the Rectangle class would be declared
in Rectangle.h and defined in Rectangle.m.

Separating an object’s interface from its implementation fits well with the design of object-oriented
programs. An object is a self-contained entity that can be viewed from the outside almost as a “black
box.” Once you’ve determined how an object interacts with other elements in your program—that
is, once you’ve declared its interface—you can freely alter its implementation without affecting any
other part of the application.

54 Defining a Class
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

The Interface

The declaration of a class interface begins with the compiler directive @interface and ends with the
directive @end. (All Objective-C directives to the compiler begin with “@”.)

@interface ClassName : ItsSuperclass
{

instance variable declarations
}
method declarations
@end

The first line of the declaration presents the new class name and links it to its superclass. The superclass
defines the position of the new class in the inheritance hierarchy, as discussed under
“Inheritance” (page 44). If the colon and superclass name are omitted, the new class is declared as a
root class, a rival to the NSObject class.

Following the first part of the class declaration, braces enclose declarations of instance variables, the
data structures that are part of each instance of the class. Here’s a partial list of instance variables that
might be declared in the Rectangle class:

float width;
float height;
BOOL filled;
NSColor *fillColor;

Methods for the class are declared next, after the braces enclosing instance variables and before the
end of the class declaration. The names of methods that can be used by class objects, class methods,
are preceded by a plus sign:

+ alloc;

The methods that instances of a class can use, instance methods, are marked with a minus sign:

- (void)display;

Although it’s not a common practice, you can define a class method and an instance method with the
same name. A method can also have the same name as an instance variable. This is more common,
especially if the method returns the value in the variable. For example, Circle has a radius method
that could match a radius instance variable.

Method return types are declared using the standard C syntax for casting one type to another:

- (float)radius;

Argument types are declared in the same way:

- (void)setRadius:(float)aRadius;

If a return or argument type isn’t explicitly declared, it’s assumed to be the default type for methods
and messages—an id. The alloc method illustrated earlier returns id.

When there’s more than one argument, the arguments are declared within the method name after
the colons. Arguments break the name apart in the declaration, just as in a message. For example:

- (void)setWidth:(float)width height:(float)height;

Defining a Class 55
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Methods that take a variable number of arguments declare them using a comma and ellipsis points,
just as a function would:

- makeGroup:group, ...;

Importing the Interface

The interface file must be included in any source module that depends on the class interface—that
includes any module that creates an instance of the class, sends a message to invoke a method declared
for the class, or mentions an instance variable declared in the class. The interface is usually included
with the #import directive:

#import "Rectangle.h"

This directive is identical to #include, except that it makes sure that the same file is never included
more than once. It’s therefore preferred and is used in place of #include in code examples throughout
Objective-C–based documentation.

To reflect the fact that a class definition builds on the definitions of inherited classes, an interface file
begins by importing the interface for its superclass:

#import "ItsSuperclass.h"

@interface ClassName : ItsSuperclass
{

instance variable declarations
}
method declarations
@end

This convention means that every interface file includes, indirectly, the interface files for all inherited
classes. When a source module imports a class interface, it gets interfaces for the entire inheritance
hierarchy that the class is built upon.

Note that if there is a precomp—a precompiled header—that supports the superclass, you may prefer
to import the precomp instead.

Referring to Other Classes

An interface file declares a class and, by importing its superclass, implicitly contains declarations for
all inherited classes, from NSObject on down through its superclass. If the interface mentions classes
not in this hierarchy, it must import them explicitly or declare them with the @class directive:

@class Rectangle, Circle;

This directive simply informs the compiler that “Rectangle” and “Circle” are class names. It doesn’t
import their interface files.

An interface file mentions class names when it statically types instance variables, return values, and
arguments. For example, this declaration

- (void)setPrimaryColor:(NSColor *)aColor;

mentions the NSColor class.

56 Defining a Class
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Since declarations like this simply use the class name as a type and don’t depend on any details of
the class interface (its methods and instance variables), the @class directive gives the compiler
sufficient forewarning of what to expect. However, where the interface to a class is actually used
(instances created, messages sent), the class interface must be imported. Typically, an interface file
uses @class to declare classes, and the corresponding implementation file imports their interfaces
(since it will need to create instances of those classes or send them messages).

The @class directive minimizes the amount of code seen by the compiler and linker, and is therefore
the simplest way to give a forward declaration of a class name. Being simple, it avoids potential
problems that may come with importing files that import still other files. For example, if one class
declares a statically typed instance variable of another class, and their two interface files import each
other, neither class may compile correctly.

The Role of the Interface

The purpose of the interface file is to declare the new class to other source modules (and to other
programmers). It contains all the information they need to work with the class (programmers might
also appreciate a little documentation).

 ■ The interface file tells users how the class is connected into the inheritance hierarchy and what
other classes—inherited or simply referred to somewhere in the class—are needed.

 ■ The interface file also lets the compiler know what instance variables an object contains, and tells
programmers what variables subclasses inherit. Although instance variables are most naturally
viewed as a matter of the implementation of a class rather than its interface, they must nevertheless
be declared in the interface file. This is because the compiler must be aware of the structure of an
object where it’s used, not just where it’s defined. As a programmer, however, you can generally
ignore the instance variables of the classes you use, except when defining a subclass.

 ■ Finally, through its list of method declarations, the interface file lets other modules know what
messages can be sent to the class object and instances of the class. Every method that can be used
outside the class definition is declared in the interface file; methods that are internal to the class
implementation can be omitted.

The Implementation

The definition of a class is structured very much like its declaration. It begins with the
@implementation directive and ends with the @end directive:

@implementation ClassName : ItsSuperclass
{

instance variable declarations
}
method definitions
@end

However, every implementation file must import its own interface. For example, Rectangle.m imports
Rectangle.h. Because the implementation doesn’t need to repeat any of the declarations it imports,
it can safely omit:

 ■ The name of the superclass

 ■ The declarations of instance variables

Defining a Class 57
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

This simplifies the implementation and makes it mainly devoted to method definitions:

#import "ClassName.h"

@implementation ClassName
method definitions
@end

Methods for a class are defined, like C functions, within a pair of braces. Before the braces, they’re
declared in the same manner as in the interface file, but without the semicolon. For example:

+ alloc
{

...
}

- (BOOL)isfilled
{

...
}

- (void)setFilled:(BOOL)flag
{

...
}

Methods that take a variable number of arguments handle them just as a function would:

#import <stdarg.h>

...

- getGroup:group, ...
{

va_list ap;
va_start(ap, group);
...

}

Referring to Instance Variables

By default, the definition of an instance method has all the instance variables of the object within its
scope. It can refer to them simply by name. Although the compiler creates the equivalent of C structures
to store instance variables, the exact nature of the structure is hidden. You don’t need either of the
structure operators (. or ->) to refer to an object’s data. For example, the following method definition
refers to the receiver’s filled instance variable:

- (void)setFilled:(BOOL)flag
{

filled = flag;
...

}

Neither the receiving object nor its filled instance variable is declared as an argument to this method,
yet the instance variable falls within its scope. This simplification of method syntax is a significant
shorthand in the writing of Objective-C code.

58 Defining a Class
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

When the instance variable belongs to an object that’s not the receiver, the object’s type must be made
explicit to the compiler through static typing. In referring to the instance variable of a statically typed
object, the structure pointer operator (->) is used.

Suppose, for example, that the Sibling class declares a statically typed object, twin, as an instance
variable:

@interface Sibling : NSObject
{

Sibling *twin;
int gender;
struct features *appearance;

}

As long as the instance variables of the statically typed object are within the scope of the class (as they
are here because twin is typed to the same class), a Sibling method can set them directly:

- makeIdenticalTwin
{

if (!twin) {
twin = [[Sibling alloc] init];
twin->gender = gender;
twin->appearance = appearance;

}
return twin;

}

The Scope of Instance Variables

Although they’re declared in the class interface, instance variables are more a matter of the way a
class is implemented than of the way it’s used. An object’s interface lies in its methods, not in its
internal data structures.

Often there’s a one-to-one correspondence between a method and an instance variable, as in the
following example:

- (BOOL)isFilled
{

return filled;
}

But this need not be the case. Some methods might return information not stored in instance variables,
and some instance variables might store information that an object is unwilling to reveal.

As a class is revised from time to time, the choice of instance variables may change, even though the
methods it declares remain the same. As long as messages are the vehicle for interacting with instances
of the class, these changes won’t really affect its interface.

To enforce the ability of an object to hide its data, the compiler limits the scope of instance
variables—that is, limits their visibility within the program. But to provide flexibility, it also lets you
explicitly set the scope at three different levels. Each level is marked by a compiler directive:

MeaningDirective

The instance variable is accessible only within the class that declares it.@private

Defining a Class 59
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

MeaningDirective

The instance variable is accessible within the class that declares it and within classes
that inherit it.

@protected

The instance variable is accessible everywhere.@public

This is illustrated in Figure 3-4.

Figure 3-4 The scope of instance variables

Unrelated code

The class that
declares the

instance variable

A class that
inherits the

instance variable

@private

@protected

@public

A directive applies to all the instance variables listed after it, up to the next directive or the end of the
list. In the following example, the age and evaluation instance variables are private, name, job, and
wage are protected, and boss is public.

@interface Worker : NSObject
{

char *name;
@private

int age;
char *evaluation;

@protected
id job;
float wage;

@public
id boss;

}

By default, all unmarked instance variables (like name above) are @protected.

60 Defining a Class
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

All instance variables that a class declares, no matter how they’re marked, are within the scope of the
class definition. For example, a class that declares a job instance variable, such as the Worker class
shown above, can refer to it in a method definition:

- promoteTo:newPosition
{

id old = job;
job = newPosition;
return old;

}

Obviously, if a class couldn’t access its own instance variables, the instance variables would be of no
use whatsoever.

Normally, a class also has access to the instance variables it inherits. The ability to refer to an instance
variable is usually inherited along with the variable. It makes sense for classes to have their entire
data structures within their scope, especially if you think of a class definition as merely an elaboration
of the classes it inherits from. The promoteTo: method illustrated earlier could just as well have been
defined in any class that inherits the job instance variable from the Worker class.

However, there are reasons why you might want to restrict inheriting classes from directly accessing
an instance variable:

 ■ Once a subclass accesses an inherited instance variable, the class that declares the variable is tied
to that part of its implementation. In later versions, it can’t eliminate the variable or alter the role
it plays without inadvertently breaking the subclass.

 ■ Moreover, if a subclass accesses an inherited instance variable and alters its value, it may
inadvertently introduce bugs in the class that declares the variable, especially if the variable is
involved in class-internal dependencies.

To limit an instance variable’s scope to just the class that declares it, you must mark it @private.
Instance variables marked @private are only available to subclasses by calling public accessor methods,
if they exist.

At the other extreme, marking a variable @public makes it generally available, even outside of class
definitions that inherit or declare the variable. Normally, to get information stored in an instance
variable, other objects must send a message requesting it. However, a public instance variable can be
accessed anywhere as if it were a field in a C structure. For example:

Worker *ceo = [[Worker alloc] init];
ceo->boss = nil;

Note that the object must be statically typed.

Marking instance variables @public defeats the ability of an object to hide its data. It runs counter to
a fundamental principle of object-oriented programming—the encapsulation of data within objects
where it’s protected from view and inadvertent error. Public instance variables should therefore be
avoided except in extraordinary cases.

Defining a Class 61
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

How Messaging Works

In Objective-C, messages aren’t bound to method implementations until runtime. The compiler
converts a message expression,

[receiver message]

into a call on a messaging function, objc_msgSend. This function takes the receiver and the name of
the method mentioned in the message—that is, the method selector—as its two principal parameters:

objc_msgSend(receiver, selector)

Any arguments passed in the message are also handed to objc_msgSend:

objc_msgSend(receiver, selector, arg1, arg2, ...)

The messaging function does everything necessary for dynamic binding:

 ■ It first finds the procedure (method implementation) that the selector refers to. Since the same
method can be implemented differently by separate classes, the precise procedure that it finds
depends on the class of the receiver.

 ■ It then calls the procedure, passing it the receiving object (a pointer to its data), along with any
arguments that were specified for the method.

 ■ Finally, it passes on the return value of the procedure as its own return value.

Note: The compiler generates calls to the messaging function. You should never call it directly in the
code you write.

The key to messaging lies in the structures that the compiler builds for each class and object. Every
class structure includes these two essential elements:

 ■ A pointer to the superclass.

 ■ A class dispatch table. This table has entries that associate method selectors with the class-specific
addresses of the methods they identify. The selector for the setOrigin:: method is associated
with the address of (the procedure that implements) setOrigin::, the selector for the display
method is associated with display’s address, and so on.

When a new object is created, memory for it is allocated, and its instance variables are initialized.
First among the object’s variables is a pointer to its class structure. This pointer, called isa, gives the
object access to its class and, through the class, to all the classes it inherits from.

Note: While not strictly a part of the language, the isa pointer is required for an object to work with
the Objective-C runtime system. An object needs to be “equivalent” to a struct objc_object (defined
in objc/objc.h) in whatever fields the structure defines. However, you rarely, if ever, need to create
your own root object, and objects that inherit from NSObject or NSProxy automatically have the isa
variable.

These elements of class and object structure are illustrated in Figure 3-5.

62 How Messaging Works
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Figure 3-5 Messaging Framework

. . .

superclass

selector...address
selector...address
selector...address

. . .

superclass

selector...address
selector...address
selector...address

. . .

superclass

selector...address
selector...address
selector...address

isa
instance variable
instance variable

. . .

The object’s superclass

The root class (NSObject)

The object’s class

When a message is sent to an object, the messaging function follows the object’s isa pointer to the
class structure where it looks up the method selector in the dispatch table. If it can’t find the selector
there, objc_msgSend follows the pointer to the superclass and tries to find the selector in its dispatch
table. Successive failures cause objc_msgSend to climb the class hierarchy until it reaches the NSObject
class. Once it locates the selector, the function calls the method entered in the table and passes it the
receiving object’s data structure.

This is the way that method implementations are chosen at runtime—or, in the jargon of object-oriented
programming, that methods are dynamically bound to messages.

To speed the messaging process, the runtime system caches the selectors and addresses of methods
as they are used. There’s a separate cache for each class, and it can contain selectors for inherited
methods as well as for methods defined in the class. Before searching the dispatch tables, the messaging
routine first checks the cache of the receiving object’s class (on the theory that a method that was used

How Messaging Works 63
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

once may likely be used again). If the method selector is in the cache, messaging is only slightly slower
than a function call. Once a program has been running long enough to “warm up” its caches, almost
all the messages it sends find a cached method. Caches grow dynamically to accommodate new
messages as the program runs.

Selectors

For efficiency, full ASCII names are not used as method selectors in compiled code. Instead, the
compiler writes each method name into a table, then pairs the name with a unique identifier that
represents the method at runtime. The runtime system makes sure each identifier is unique: No two
selectors are the same, and all methods with the same name have the same selector. Compiled selectors
are assigned to a special type, SEL, to distinguish them from other data. Valid selectors are never 0.
You must let the system assign SEL identifiers to methods; it’s futile to assign them arbitrarily.

The @selector() directive lets Objective-C source code refer to the compiled selector, rather than to
the full method name. Here, the selector for setWidth:height: is assigned to the setWidthHeight
variable:

SEL setWidthHeight;
setWidthHeight = @selector(setWidth:height:);

It’s most efficient to assign values to SEL variables at compile time with the @selector() directive.
However, in some cases, a program may need to convert a character string to a selector at runtime.
This can be done with the NSSelectorFromString function:

setWidthHeight = NSSelectorFromString(aBuffer);

Conversion in the opposite direction is also possible. The NSStringFromSelector function returns
a method name for a selector:

NSString *method;
method = NSStringFromSelector(setWidthHeight);

These and other runtime functions are described in the Cocoa framework reference documentation.

Methods and Selectors

Compiled selectors identify method names, not method implementations. Rectangle’s displaymethod,
for example, has the same selector as display methods defined in other classes. This is essential for
polymorphism and dynamic binding; it lets you send the same message to receivers belonging to
different classes. If there were one selector per method implementation, a message would be no
different than a function call.

A class method and an instance method with the same name are assigned the same selector. However,
because of their separate domains, there’s no confusion between the two. A class could define a
display class method in addition to a display instance method.

Method Return and Argument Types

The messaging routine has access to method implementations only through selectors, so it treats all
methods with the same selector alike. It discovers the return type of a method, and the data types of
its arguments, from the selector. Therefore, except for messages sent to statically typed receivers,

64 How Messaging Works
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

dynamic binding requires all implementations of identically named methods to have the same return
type and the same argument types. (Statically typed receivers are an exception to this rule, since the
compiler can learn about the method implementation from the class type.)

Although identically named class methods and instance methods are represented by the same selector,
they can have different argument and return types.

Varying the Message at Runtime

The performSelector:, performSelector:withObject:, and
performSelector:withObject:withObject: methods, defined in the NSObject protocol, take SEL
identifiers as their initial arguments. All three methods map directly into the messaging function. For
example,

[friend performSelector:@selector(gossipAbout:)
withObject:aNeighbor];

is equivalent to:

[friend gossipAbout:aNeighbor];

These methods make it possible to vary a message at runtime, just as it’s possible to vary the object
that receives the message. Variable names can be used in both halves of a message expression:

id helper = getTheReceiver();
SEL request = getTheSelector();
[helper performSelector:request];

In this example, the receiver (helper) is chosen at runtime (by the fictitious getTheReceiver function),
and the method the receiver is asked to perform (request) is also determined at runtime (by the
equally fictitious getTheSelector function).

Note: performSelector: and its companion methods return an id. If the method that’s performed
returns a different type, it should be cast to the proper type. (However, casting doesn’t work for all
types; the method should return a pointer or a type compatible with a pointer.)

The Target-Action Paradigm

In its treatment of user-interface controls, the Application Kit makes good use of the ability to vary
both the receiver and the message.

NSControl objects are graphical devices that can be used to give instructions to an application. Most
resemble real-world control devices such as buttons, switches, knobs, text fields, dials, menu items,
and the like. In software, these devices stand between the application and the user. They interpret
events coming from hardware devices like the keyboard and mouse and translate them into
application-specific instructions. For example, a button labeled “Find” would translate a mouse click
into an instruction for the application to start searching for something.

The Application Kit defines a template for creating control devices and defines a few “off-the-shelf”
devices of its own. For example, the NSButtonCell class defines an object that you can assign to an
NSMatrix instance and initialize with a size, a label, a picture, a font, and a keyboard alternative.
When the user clicks the button (or uses the keyboard alternative), the NSButtonCell object sends a
message instructing the application to do something. To do this, an NSButtonCell object must be

How Messaging Works 65
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

initialized not just with an image, a size, and a label, but with directions on what message to send
and who to send it to. Accordingly, an NSButtonCell instance can be initialized for an action message,
the method selector it should use in the message it sends, and a target, the object that should receive
the message.

[myButtonCell setAction:@selector(reapTheWind:)];
[myButtonCell setTarget:anObject];

The button cell sends the message using NSObject’s performSelector:withObject: method. All
action messages take a single argument, the id of the control device sending the message.

If Objective-C didn’t allow the message to be varied, all NSButtonCell objects would have to send
the same message; the name of the method would be frozen in the NSButtonCell source code. Instead
of simply implementing a mechanism for translating user actions into action messages, button cells
and other controls would have to constrain the content of the message. This would make it difficult
for any object to respond to more than one button cell. There would either have to be one target for
each button, or the target object would have to discover which button the message came from and
act accordingly. Each time you rearranged the user interface, you would also have to re-implement
the method that responds to the action message. This would be an unnecessary complication that
Objective-C happily avoids.

Avoiding Messaging Errors

If an object receives a message to perform a method that isn’t in its repertoire, an error results. It’s
the same sort of error as calling a nonexistent function. But because messaging occurs at runtime, the
error often isn’t evident until the program executes.

It’s relatively easy to avoid this error when the message selector is constant and the class of the
receiving object is known. As you write your programs, you can make sure that the receiver is able
to respond. If the receiver is statically typed, the compiler performs this test for you.

However, if the message selector or the class of the receiver varies, it may be necessary to postpone
this test until runtime. The respondsToSelector:method, defined in the NSObject class, determines
whether a receiver can respond to a message. It takes the method selector as an argument and returns
whether the receiver has access to a method matching the selector:

if ([anObject respondsToSelector:@selector(setOrigin::)])
[anObject setOrigin:0.0 :0.0];

else
fprintf(stderr, "%s can’t be placed\n",

[NSStringFromClass([anObject class]) UTF8String]);

The respondsToSelector: test is especially important when sending messages to objects that you
don’t have control over at compile time. For example, if you write code that sends a message to an
object represented by a variable that others can set, you should make sure the receiver implements a
method that can respond to the message.

66 How Messaging Works
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Note: An object can also arrange to have the messages it receives forwarded to other objects if it can’t
respond to them directly itself. In that case, it appears that the object can handle the message, even
though the object responds to the message indirectly by assigning it to another object. See
“Forwarding” (page 105) for more information.

Hidden Arguments

When the messaging function finds the procedure that implements a method, it calls the procedure
and passes it all the arguments in the message. It also passes the procedure two hidden arguments:

 ■ The receiving object

 ■ The selector for the method

These arguments give every method implementation explicit information about the two halves of the
message expression that invoked it. They’re said to be “hidden” because they aren’t declared in the
source code that defines the method. They’re inserted into the implementation when the code is
compiled.

Although these arguments aren’t explicitly declared, source code can still refer to them (just as it can
refer to the receiving object’s instance variables). A method refers to the receiving object as self, and
to its own selector as _cmd. In the example below, _cmd refers to the selector for the strange method
and self to the object that receives a strange message.

- strange
{

id target = getTheReceiver();
SEL method = getTheMethod();

if (target == self || method == _cmd)
return nil;

return [target performSelector:method];
}

self is the more useful of the two arguments. It is, in fact, the way the receiving object’s instance
variables are made available to the method definition.

Messages to self and super

Objective-C provides two terms that can be used within a method definition to refer to the object that
performs the method—self and super.

Suppose, for example, that you define a reposition method that needs to change the coordinates of
whatever object it acts on. It can invoke the setOrigin:: method to make the change. All it needs to
do is send a setOrigin:: message to the same object that the reposition message itself was sent
to. When you’re writing the reposition code, you can refer to that object as either self or super. The
reposition method could read either:

- reposition
{

...

How Messaging Works 67
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

[self setOrigin:someX :someY];
...

}

or:

- reposition
{

...
[super setOrigin:someX :someY];
...

}

Here, self and super both refer to the object receiving a reposition message, whatever object that
may happen to be. The two terms are quite different, however. self is one of the hidden arguments
that the messaging routine passes to every method; it’s a local variable that can be used freely within
a method implementation, just as the names of instance variables can be. super is a term that substitutes
for self only as the receiver in a message expression. As receivers, the two terms differ principally
in how they affect the messaging process:

 ■ self searches for the method implementation in the usual manner, starting in the dispatch table
of the receiving object’s class. In the example above, it would begin with the class of the object
receiving the reposition message.

 ■ super starts the search for the method implementation in a very different place. It begins in the
superclass of the class that defines the method where super appears. In the example above, it
would begin with the superclass of the class where reposition is defined.

Wherever super receives a message, the compiler substitutes another messaging routine for the
objc_msgSend function. The substitute routine looks directly to the superclass of the defining
class—that is, to the superclass of the class sending the message to super—rather than to the class of
the object receiving the message.

An Example

The difference between self and super becomes clear in a hierarchy of three classes. Suppose, for
example, that we create an object belonging to a class called Low. Low’s superclass is Mid; Mid’s
superclass is High. All three classes define a method called negotiate, which they use for a variety
of purposes. In addition, Mid defines an ambitious method called makeLastingPeace, which also
has need of the negotiate method. This is illustrated in Figure 3-6:

68 How Messaging Works
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Figure 3-6 High, Mid, Low

Mid

High

Low

superclass

– negotiate

superclass

– negotiate

superclass

– negotiate

– makeLastingPeace

We now send a message to our Low object to perform the makeLastingPeace method, and
makeLastingPeace, in turn, sends a negotiate message to the same Low object. If source code calls
this object self,

- makeLastingPeace
{

[self negotiate];
...

}

the messaging routine finds the version of negotiate defined in Low, self’s class. However, if Mid’s
source code calls this object super,

- makeLastingPeace
{

[super negotiate];
...

}

the messaging routine will find the version of negotiate defined in High. It ignores the receiving
object’s class (Low) and skips to the superclass of Mid, since Mid is where makeLastingPeace is
defined. Neither message finds Mid’s version of negotiate.

How Messaging Works 69
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

As this example illustrates, super provides a way to bypass a method that overrides another method.
Here it enabled makeLastingPeace to avoid the Mid version of negotiate that redefined the original
High version.

Not being able to reach Mid’s version of negotiatemay seem like a flaw, but, under the circumstances,
it’s right to avoid it:

 ■ The author of the Low class intentionally overrode Mid’s version of negotiate so that instances
of the Low class (and its subclasses) would invoke the redefined version of the method instead.
The designer of Low didn’t want Low objects to perform the inherited method.

 ■ In sending the message to super, the author of Mid’s makeLastingPeace method intentionally
skipped over Mid’s version of negotiate (and over any versions that might be defined in classes
like Low that inherit from Mid) to perform the version defined in the High class. Mid’s designer
wanted to use the High version of negotiate and no other.

Mid’s version of negotiate could still be used, but it would take a direct message to a Mid instance
to do it.

Using super

Messages to super allow method implementations to be distributed over more than one class. You
can override an existing method to modify or add to it, and still incorporate the original method in
the modification:

- negotiate
{

...
return [super negotiate];

}

For some tasks, each class in the inheritance hierarchy can implement a method that does part of the
job and passes the message on to super for the rest. The init method, which initializes a newly
allocated instance, is designed to work like this. Each init method has responsibility for initializing
the instance variables defined in its class. But before doing so, it sends an init message to super to
have the classes it inherits from initialize their instance variables. Each version of init follows this
procedure, so classes initialize their instance variables in the order of inheritance:

- (id)init
{

[super init];
...

}

It’s also possible to concentrate core functionality in one method defined in a superclass, and have
subclasses incorporate the method through messages to super. For example, every class method that
creates an instance must allocate storage for the new object and initialize its isa pointer to the class
structure. This is typically left to the alloc and allocWithZone: methods defined in the NSObject
class. If another class overrides these methods (a rare case), it can still get the basic functionality by
sending a message to super.

70 How Messaging Works
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Redefining self

super is simply a flag to the compiler telling it where to begin searching for the method to perform;
it’s used only as the receiver of a message. But self is a variable name that can be used in any number
of ways, even assigned a new value.

There’s a tendency to do just that in definitions of class methods. Class methods are often concerned
not with the class object, but with instances of the class. For example, many class methods combine
allocation and initialization of an instance, often setting up instance variable values at the same time.
In such a method, it might be tempting to send messages to the newly allocated instance and to call
the instance self, just as in an instance method. But that would be an error. self and super both
refer to the receiving object—the object that gets a message telling it to perform the method. Inside
an instance method, self refers to the instance; but inside a class method, self refers to the class
object. This is an example of what not to do:

+ (Rectangle *)rectangleOfColor:(NSColor *) color
{

self = [[Rectangle alloc] init]; // BAD
[self setColor:color];
return [self autorelease];

}

To avoid confusion, it’s usually better to use a variable other than self to refer to an instance inside
a class method:

+ (id)rectangleOfColor:(NSColor *)color
{

id newInstance = [[Rectangle alloc] init]; // GOOD
[newInstance setColor:color];
return [newInstance autorelease];

}

In fact, rather than sending the alloc message to the class in a class method, it’s often better to send
alloc to self. This way, if the class is subclassed, and the rectangleOfColor: message is received
by a subclass, the instance returned will be the same type as the subclass (for example, the array
method of NSArray is inherited by NSMutableArray).

+ (id)rectangleOfColor:(NSColor *)color
{

id newInstance = [[self alloc] init]; // EXCELLENT
[newInstance setColor:color];
return [newInstance autorelease];

}

See “Allocating, Initializing, and Deallocating Objects” (page 96) for more information about object
allocation.

Extending Classes

Class definitions are at the heart of Objective-C programming, but they’re not the only mechanism
for structuring object definitions in Objective-C. This section discusses two other ways of declaring
methods and associating them with a class:

Extending Classes 71
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

 ■ Categories can compartmentalize a class definition or extend an existing one.

 ■ Protocols declare methods that can be implemented by any class.

Categories—Adding Methods to Existing Classes

You can add methods to a class by declaring them in an interface file under a category name and
defining them in an implementation file under the same name. The category name indicates that the
methods are additions to a class declared elsewhere, not a new class. You cannot, however, use a
category to add additional instance variables to a class.

A category can be an alternative to a subclass. Rather than define a subclass to extend an existing
class, through a category you can add methods to the class directly. For example, you could add
categories to NSArray and other Cocoa classes. As in the case of a subclass, you don’t need source
code for the class you’re extending.

The methods the category adds become part of the class type. For example, methods added to the
NSArray class in a category are among the methods the compiler expects an NSArray instance to have
in its repertoire. Methods added to the NSArray class in a subclass are not included in the NSArray
type. (This matters only for statically typed objects, since static typing is the only way the compiler
can know an object’s class.)

Category methods can do anything that methods defined in the class proper can do. At runtime,
there’s no difference. The methods the category adds to the class are inherited by all the class’s
subclasses, just like other methods.

Adding to a Class

The declaration of a category interface looks very much like a class interface declaration—except the
category name is listed within parentheses after the class name and the superclass isn’t mentioned.
Unless its methods don’t access any instance variables of the class, the category must import the
interface file for the class it extends:

#import "ClassName.h"

@interface ClassName (CategoryName)
// method declarations
@end

The implementation, as usual, imports its own interface. Assuming that the interface file is named
after the category, a category implementation looks like this:

#import "CategoryName.h"

@implementation ClassName (CategoryName)
// method definitions
@end

Note that a category can’t declare additional instance variables for the class; it includes only methods.
However, all instance variables within the scope of the class are also within the scope of the category.
That includes all instance variables declared by the class, even ones declared @private.

72 Extending Classes
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

There’s no limit to the number of categories that you can add to a class, but each category name must
be different, and each should declare and define a different set of methods.

The methods added in a category can be used to extend the functionality of the class or override
methods the class inherits. A category can also override methods declared in the class interface.
However, it cannot reliably override methods declared in another category of the same class. A
category is not a substitute for a subclass. It’s best if categories don’t attempt to redefine methods that
are explicitly declared in the class’s @interface section. Also note that a class can’t define the same
method more than once.

When a category overrides an inherited method, the new version can, as usual, incorporate the
inherited version through a message to super. But there’s no way for a category method to incorporate
a method with the same name defined for the same class.

How Categories Are Used

Categories can be used to extend classes defined by other implementors—for example, you can add
methods to the classes defined in the Cocoa frameworks. The added methods are inherited by
subclasses and are indistinguishable at runtime from the original methods of the class.

Categories can also be used to distribute the implementation of a new class into separate source
files—for example, you could group the methods of a large class into several categories and put each
category in a different file. When used like this, categories can benefit the development process in a
number of ways:

 ■ They provide a simple way of grouping related methods. Similar methods defined in different
classes can be kept together in the same source file.

 ■ They simplify the management of a large class when several developers contribute to the class
definition.

 ■ They let you achieve some of the benefits of incremental compilation for a very large class.

 ■ They can help improve locality of reference for commonly used methods.

 ■ They enable you to configure a class differently for separate applications, without having to
maintain different versions of the same source code.

Categories are also used to declare informal protocols, as discussed under “Protocols—Declaring
Interfaces for Others to Implement” (page 74).

Categories of the Root Class

A category can add methods to any class, including the root class. Methods added to NSObject become
available to all classes that are linked to your code. While this can be useful at times, it can also be
quite dangerous. Although it may seem that the modifications the category makes are well understood
and of limited impact, inheritance gives them a wide scope. You may be making unintended changes
to unseen classes; you may not know all the consequences of what you’re doing. Moreover, others
who are unaware of your changes won’t understand what they’re doing.

In addition, there are two other considerations to keep in mind when implementing methods for the
root class:

 ■ Messages to super are invalid (there is no superclass).

Extending Classes 73
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

 ■ Class objects can perform instance methods defined in the root class.

Normally, class objects can perform only class methods. But instance methods defined in the root
class are a special case. They define an interface to the runtime system that all objects inherit. Class
objects are full-fledged objects and need to share the same interface.

This feature means that you need to take into account the possibility that an instance method you
define in a category of the NSObject class might be performed not only by instances but by class
objects as well. For example, within the body of the method, self might mean a class object as well
as an instance. See the NSObject class specification in the Foundation framework reference for more
information on class access to root instance methods.

Protocols—Declaring Interfaces for Others to Implement

Class and category interfaces declare methods that are associated with a particular class—mainly
methods that the class implements. Informal and formal protocols, on the other hand, declare methods
not associated with a class, but which any class, and perhaps many classes, might implement.

A protocol is simply a list of method declarations, unattached to a class definition. For example, these
methods that report user actions on the mouse could be gathered into a protocol:

- (void)mouseDown:(NSEvent *)theEvent;
- (void)mouseDragged:(NSEvent *)theEvent;
- (void)mouseUp:(NSEvent *)theEvent;

Any class that wanted to respond to mouse events could adopt the protocol and implement its methods.

Protocols free method declarations from dependency on the class hierarchy, so they can be used in
ways that classes and categories cannot. Protocols list methods that are (or may be) implemented
somewhere, but the identity of the class that implements them is not of interest. What is of interest
is whether or not a particular class conforms to the protocol—whether it has implementations of the
methods the protocol declares. Thus objects can be grouped into types not just on the basis of
similarities due to the fact that they inherit from the same class, but also on the basis of their similarity
in conforming to the same protocol. Classes in unrelated branches of the inheritance hierarchy might
be typed alike because they conform to the same protocol.

Protocols can play a significant role in object-oriented design, especially where a project is divided
among many implementors or it incorporates objects developed in other projects. Cocoa software
uses them heavily to support interprocess communication through Objective-C messages.

However, an Objective-C program doesn’t need to use protocols. Unlike class definitions and message
expressions, they’re optional. Some Cocoa frameworks use them; some don’t. It all depends on the
task at hand.

When to Use Protocols

Protocols are useful in at least three situations:

 ■ To declare methods that others are expected to implement

 ■ To declare the interface to an object while concealing its class

 ■ To capture similarities among classes that are not hierarchically related

74 Extending Classes
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

The following sections discuss these situations and the roles protocols can play.

Methods for Others to Implement

If you know the class of an object, you can look at its interface declaration (and the interface declarations
of the classes it inherits from) to find what messages it responds to. These declarations advertise the
messages it can receive. Protocols provide a way for it to also advertise the messages it sends.

Communication works both ways; objects send messages as well as receive them. For example, an
object might delegate responsibility for a certain operation to another object, or it may on occasion
simply need to ask another object for information. In some cases, an object might be willing to notify
other objects of its actions so that they can take whatever collateral measures might be required.

If you develop the class of the sender and the class of the receiver as part of the same project (or if
someone else has supplied you with the receiver and its interface file), this communication is easily
coordinated. The sender simply imports the interface file of the receiver. The imported file declares
the method selectors the sender uses in the messages it sends.

However, if you develop an object that sends messages to objects that aren’t yet defined—objects that
you’re leaving for others to implement—you won’t have the receiver’s interface file. You need another
way to declare the methods you use in messages but don’t implement. A protocol serves this purpose.
It informs the compiler about methods the class uses and also informs other implementors of the
methods they need to define to have their objects work with yours.

Suppose, for example, that you develop an object that asks for the assistance of another object by
sending it helpOut: and other messages. You provide an assistant instance variable to record the
outlet for these messages and define a companion method to set the instance variable. This method
lets other objects register themselves as potential recipients of your object’s messages:

- setAssistant:anObject
{

assistant = anObject;
}

Then, whenever a message is to be sent to the assistant, a check is made to be sure that the receiver
implements a method that can respond:

- (BOOL)doWork
{

...
if ([assistant respondsTo:@selector(helpOut:)]) {

[assistant helpOut:self];
return YES;

}
return NO;

}

Since, at the time you write this code, you can’t know what kind of object might register itself as the
assistant, you can only declare a protocol for the helpOut: method; you can’t import the interface
file of the class that implements it.

Extending Classes 75
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Declaring Interfaces for Anonymous Objects

A protocol can be used to declare the methods of an anonymous object, an object of unknown class.
An anonymous object may represent a service or handle a limited set of functions, especially where
only one object of its kind is needed. (Objects that play a fundamental role in defining an application’s
architecture and objects that you must initialize before using are not good candidates for anonymity.)

Objects are not anonymous to their developers, of course, but they are anonymous when the developer
supplies them to someone else. For example, consider the following situations:

 ■ Someone who supplies a framework or a suite of objects for others to use can include objects that
are not identified by a class name or an interface file. Lacking the name and class interface, users
have no way of creating instances of the class. Instead, the supplier must provide a ready-made
instance. Typically, a method in another class returns a usable object:

id formatter = [receiver formattingService];

The object returned by the method is an object without a class identity, at least not one the supplier
is willing to reveal. For it to be of any use at all, the supplier must be willing to identify at least
some of the messages that it can respond to. This is done by associating the object with a list of
methods declared in a protocol.

 ■ You can send Objective-C messages to remote objects—objects in other applications. (“Remote
Messaging” (page 109), discusses this possibility in more detail.)

Each application has its own structure, classes, and internal logic. But you don’t need to know
how another application works or what its components are to communicate with it. As an outsider,
all you need to know is what messages you can send (the protocol) and where to send them (the
receiver).

An application that publishes one of its objects as a potential receiver of remote messages must
also publish a protocol declaring the methods the object will use to respond to those messages.
It doesn’t have to disclose anything else about the object. The sending application doesn’t need
to know the class of the object or use the class in its own design. All it needs is the protocol.

Protocols make anonymous objects possible. Without a protocol, there would be no way to declare
an interface to an object without identifying its class.

Note: Even though the supplier of an anonymous object doesn’t reveal its class, the object itself reveals
it at runtime. A class message returns the anonymous object’s class. However, there’s usually little
point in discovering this extra information; the information in the protocol is sufficient.

Non-Hierarchical Similarities

If more than one class implements a set of methods, those classes are often grouped under an abstract
class that declares the methods they have in common. Each subclass may re-implement the methods
in its own way, but the inheritance hierarchy and the common declaration in the abstract class captures
the essential similarity between the subclasses.

However, sometimes it’s not possible to group common methods in an abstract class. Classes that are
unrelated in most respects might nevertheless need to implement some similar methods. This limited
similarity may not justify a hierarchical relationship. For example, many different kinds of classes
might implement methods to facilitate reference counting (this is just an example, since the Foundation
Framework already implements reference counting for you):

76 Extending Classes
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

- setRefCount:(int)count;
- (int)refCount;
- incrementCount;
- decrementCount;

These methods could be grouped into a protocol and the similarity between implementing classes
accounted for by noting that they all conform to the same protocol.

Objects can be typed by this similarity (the protocols they conform to), rather than by their class. For
example, an NSMatrix instance must communicate with the objects that represent its cells. The matrix
could require each of these objects to be a kind of NSCell (a type based on class) and rely on the fact
that all objects that inherit from the NSCell class have the methods needed to respond to NSMatrix
messages. Alternatively, the NSMatrix object could require objects representing cells to have methods
that can respond to a particular set of messages (a type based on protocol). In this case, the NSMatrix
object wouldn’t care what class a cell object belonged to, just that it implemented the methods.

Informal Protocols

The simplest way of declaring a protocol is to group the methods in a category declaration:

@interface NSObject (RefCounting)
- (int)refCount;
- incrementCount;
- decrementCount;
@end

Informal protocols are typically declared as categories of the NSObject class, since that broadly
associates the method names with any class that inherits from NSObject. Because all classes inherit
from the root class, the methods aren’t restricted to any part of the inheritance hierarchy. (It would
also be possible to declare an informal protocol as a category of another class to limit it to a certain
branch of the inheritance hierarchy, but there is little reason to do so.)

When used to declare a protocol, a category interface doesn’t have a corresponding implementation.
Instead, classes that implement the protocol declare the methods again in their own interface files
and define them along with other methods in their implementation files.

An informal protocol bends the rules of category declarations to list a group of methods but not
associate them with any particular class or implementation.

Being informal, protocols declared in categories don’t receive much language support. There’s no
type checking at compile time nor a check at runtime to see whether an object conforms to the protocol.
To get these benefits, you must use a formal protocol. An informal protocol is good for times when
implementing all the methods is optional, such as for a delegate.

Formal Protocols

The Objective-C language provides a way to formally declare a list of methods as a protocol. Formal
protocols are supported by the language and the runtime system. For example, the compiler can check
for types based on protocols, and objects can introspect at runtime to report whether or not they
conform to a protocol.

Formal protocols are declared with the @protocol directive:

@protocol ProtocolName
method declarations

Extending Classes 77
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

@end

For example, the reference-counting protocol could be declared like this:

@protocol ReferenceCounting
- (int)refCount;
- incrementCount;
- decrementCount;
@end

Unlike class names, protocol names don’t have global visibility. They live in their own namespace.

A class is said to adopt a formal protocol if it agrees to implement the methods the protocol declares.
Class declarations list the names of adopted protocols within angle brackets after the superclass name:

@interface ClassName : ItsSuperclass < protocol list >

Categories adopt protocols in much the same way:

@interface ClassName (CategoryName) < protocol list >

Names in the protocol list are separated by commas.

A class or category that adopts a protocol must import the header file where the protocol is declared.
The methods declared in the adopted protocol are not declared elsewhere in the class or category
interface.

It’s possible for a class to simply adopt protocols and declare no other methods. For example, the
following class declaration adopts the Formatting and Prettifying protocols, but declares no instance
variables or methods of its own:

@interface Formatter : NSObject < Formatting, Prettifying >
@end

A class or category that adopts a protocol is obligated to implement all the methods the protocol
declares. Otherwise, the compiler issues a warning. The Formatter class above would define all the
methods declared in the two protocols it adopts, in addition to any it might have declared itself.

Adopting a protocol is similar in some ways to declaring a superclass. Both assign methods to the
class. The superclass declaration assigns it inherited methods; the protocol assigns it methods declared
in the protocol list.

Protocol Objects

Just as classes are represented at runtime by class objects and methods by selector codes, formal
protocols are represented by a special data type—instances of the Protocol class. Source code that
deals with a protocol (other than to use it in a type specification) must refer to the Protocol object.

In many ways, protocols are similar to class definitions. They both declare methods, and at runtime
they’re both represented by objects—classes by class objects and protocols by Protocol objects. Like
class objects, Protocol objects are created automatically from the definitions and declarations found
in source code and are used by the runtime system. They’re not allocated and initialized in program
source code.

78 Extending Classes
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Source code can refer to a Protocol object using the @protocol() directive—the same directive that
declares a protocol, except that here it has a set of trailing parentheses. The parentheses enclose the
protocol name:

Protocol *counter = @protocol(ReferenceCounting);

This is the only way that source code can conjure up a Protocol object. Unlike a class name, a protocol
name doesn’t designate the object—except inside @protocol().

The compiler creates a Protocol object for each protocol declaration it encounters, but only if the
protocol is also:

 ■ Adopted by a class, or

 ■ Referred to somewhere in source code (using @protocol())

Protocols that are declared but not used (except for type checking as described below) aren’t
represented by Protocol objects at runtime.

Conforming to a Protocol

A class is said to conform to a formal protocol if it (or a superclass) implements the methods declared
in the protocol. An instance of a class is said to conform to the same set of protocols its class conforms
to.

Since a class must implement all the methods declared in the protocols it adopts, and those methods
are inherited by its subclasses, saying that a class or an instance conforms to a protocol is tantamount
to saying that it has in its repertoire all the methods the protocol declares.

It’s possible to check whether an object conforms to a protocol by sending it a conformsToProtocol:
message.

if ([receiver conformsToProtocol:@protocol(ReferenceCounting)])
[receiver incrementCount];

The conformsToProtocol: test is very much like the respondsTo: test for a single method, except
that it tests whether a protocol has been adopted (and presumably all the methods it declares
implemented) rather than just whether one particular method has been implemented. Because it
checks for a whole list of methods, conformsToProtocol: can be more efficient than respondsTo:.

The conformsToProtocol: test is also very much like the isKindOfClass: test, except that it tests
for a type based on a protocol rather than a type based on the inheritance hierarchy.

Type Checking

Type declarations for objects can be extended to include formal protocols. Protocols thus offer the
possibility of another level of type checking by the compiler, one that’s more abstract since it’s not
tied to particular implementations.

In a type declaration, protocol names are listed between angle brackets after the type name:

- (id <Formatting>)formattingService;
id <ReferenceCounting, AutoFreeing> anObject;

Extending Classes 79
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Just as static typing permits the compiler to test for a type based on the class hierarchy, this syntax
permits the compiler to test for a type based on conformance to a protocol.

For example, if Formatter is an abstract class, this declaration

Formatter *anObject;

groups all objects that inherit from Formatter into a type and permits the compiler to check assignments
against that type.

Similarly, this declaration,

id <Formatting> anObject;

groups all objects that conform to the Formatting protocol into a type, regardless of their positions
in the class hierarchy. The compiler can make sure only objects that conform to the protocol are
assigned to the type.

In each case, the type groups similar objects—either because they share a common inheritance, or
because they converge on a common set of methods.

The two types can be combined in a single declaration:

Formatter <Formatting> *anObject;

Protocols can’t be used to type class objects. Only instances can be statically typed to a protocol, just
as only instances can be statically typed to a class. (However, at runtime, both classes and instances
will respond to a conformsToProtocol: message.)

Protocols Within Protocols

One protocol can incorporate other protocols using the same syntax that classes use to adopt a protocol:

@protocol ProtocolName < protocol list >

All the protocols listed between angle brackets are considered part of the ProtocolName protocol. For
example, if the Paging protocol incorporates the Formatting protocol,

@protocol Paging < Formatting >

any object that conforms to the Paging protocol also conforms to Formatting. Type declarations

id <Paging> someObject;

and conformsToProtocol: messages

if ([anotherObject conformsToProtocol:@protocol(Paging)])
...

need to mention only the Paging protocol to test for conformance to Formatting as well.

When a class adopts a protocol, it must implement the methods the protocol declares, as mentioned
earlier. In addition, it must conform to any protocols the adopted protocol incorporates. If an
incorporated protocol incorporates still other protocols, the class must also conform to them. A class
can conform to an incorporated protocol by either:

 ■ Implementing the methods the protocol declares, or

80 Extending Classes
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

 ■ Inheriting from a class that adopts the protocol and implements the methods.

Suppose, for example, that the Pager class adopts the Paging protocol. If Pager is a subclass of
NSObject,

@interface Pager : NSObject < Paging >

it must implement all the Paging methods, including those declared in the incorporated Formatting
protocol. It adopts the Formatting protocol along with Paging.

On the other hand, if Pager is a subclass of Formatter (a class that independently adopts the Formatting
protocol),

@interface Pager : Formatter < Paging >

it must implement all the methods declared in the Paging protocol proper, but not those declared in
Formatting. Pager inherits conformance to the Formatting protocol from Formatter.

Note that a class can conform to a protocol without formally adopting it simply by implementing the
methods declared in the protocol.

Referring to Other Protocols

When working on complex applications, you occasionally find yourself writing code that looks like
this:

#import "B.h"

@protocol A
- foo:(id)anObject;
@end

where protocol B is declared like this:

#import "A.h"

@protocol B
- bar:(id <A>)anObject;
@end

In such a situation, circularity results and neither file will compile correctly. To break this recursive
cycle, you must use the @protocol directive to make a forward reference to the needed protocol
instead of importing the interface file where the protocol is defined. The following code excerpt
illustrates how you would do this:

@protocol B;

@protocol A
- foo:(id)anObject;
@end

Note that using the @protocol directive in this manner simply informs the compiler that “B” is a
protocol to be defined later. It doesn’t import the interface file where protocol B is defined.

Extending Classes 81
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Enabling Static Behaviors

This section explains how static typing works and discusses some other features of Objective-C,
including ways to temporarily overcome its inherent dynamism.

Objective-C objects are dynamic entities. As many decisions about them as possible are pushed from
compile time to runtime:

 ■ The memory for objects is dynamically allocated at runtime by class methods that create new
instances.

 ■ Objects are dynamically typed. In source code (at compile time), any object pointer can be of type
id no matter what the object’s class is. The exact class of an id variable (and therefore its particular
methods and data structure) isn’t determined until the program runs.

 ■ Messages and methods are dynamically bound, as described under “How Messaging Works” (page
62). A runtime procedure matches the method selector in the message to a method implementation
that “belongs to” the receiver.

These features give object-oriented programs a great deal of flexibility and power, but there’s a price
to pay. Messages are somewhat slower than function calls, for example, (though not much slower
due to the efficiency of the runtime system) and the compiler can’t check the exact types (classes) of
id variables.

To permit better compile-time type checking, and to make code more self-documenting, Objective-C
allows objects to be statically typed with a class name rather than generically typed as id. It also lets
you turn some of its object-oriented features off in order to shift operations from runtime back to
compile time.

Static Typing

If a pointer to a class name is used in place of id in an object declaration,

Rectangle *thisObject;

the compiler restricts the value of the declared variable to be either an instance of the class named in
the declaration or an instance of a class that inherits from the named class. In the example above,
thisObject can only be a Rectangle of some kind.

Statically typed objects have the same internal data structures as objects declared to be ids. The type
doesn’t affect the object; it affects only the amount of information given to the compiler about the
object and the amount of information available to those reading the source code.

Static typing also doesn’t affect how the object is treated at runtime. Statically typed objects are
dynamically allocated by the same class methods that create instances of type id. If Square is a subclass
of Rectangle, the following code would still produce an object with all the instance variables of a
Square, not just those of a Rectangle:

Rectangle *thisObject = [[Square alloc] init];

82 Enabling Static Behaviors
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Messages sent to statically typed objects are dynamically bound, just as objects typed id are. The
exact type of a statically typed receiver is still determined at runtime as part of the messaging process.
A display message sent to thisObject

[thisObject display];

performs the version of the method defined in the Square class, not the one in its Rectangle superclass.

By giving the compiler more information about an object, static typing opens up possibilities that are
absent for objects typed id:

 ■ In certain situations, it allows for compile-time type checking.

 ■ It can free objects from the restriction that identically named methods must have identical return
and argument types.

 ■ It permits you to use the structure pointer operator to directly access an object’s instance variables.

The first two topics are discussed in the sections that follow. The third is covered in “Defining a
Class” (page 54).

Type Checking

With the additional information provided by static typing, the compiler can deliver better type-checking
services in two situations:

 ■ When a message is sent to a statically typed receiver, the compiler can make sure the receiver can
respond. A warning is issued if the receiver doesn’t have access to the method named in the
message.

 ■ When a statically typed object is assigned to a statically typed variable, the compiler makes sure
the types are compatible. A warning is issued if they’re not.

An assignment can be made without warning, provided the class of the object being assigned is
identical to, or inherits from, the class of the variable receiving the assignment. The following example
illustrates this:

Shape *aShape;
Rectangle *aRect;

aRect = [[Rectangle alloc] init];
aShape = aRect;

Here aRect can be assigned to aShape because a Rectangle is a kind of Shape—the Rectangle class
inherits from Shape. However, if the roles of the two variables are reversed and aShape is assigned
to aRect, the compiler generates a warning; not every Shape is a Rectangle. (For reference, see Figure
3-2 (page 46), which shows the class hierarchy including Shape and Rectangle.)

There’s no check when the expression on either side of the assignment operator is an id. A statically
typed object can be freely assigned to an id, or an id to a statically typed object. Because methods
like alloc and init return ids, the compiler doesn’t ensure that a compatible object is returned to a
statically typed variable. The following code is error-prone, but is allowed nonetheless:

Rectangle *aRect;
aRect = [[Shape alloc] init];

Enabling Static Behaviors 83
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Return and Argument Types

In general, methods in different classes that have the same selector (the same name) must also share
the same return and argument types. This constraint is imposed by the compiler to allow dynamic
binding. Because the class of a message receiver (and therefore class-specific details about the method
it’s asked to perform), can’t be known at compile time, the compiler must treat all methods with the
same name alike. When it prepares information on method return and argument types for the runtime
system, it creates just one method description for each method selector.

However, when a message is sent to a statically typed object, the class of the receiver is known by the
compiler. The compiler has access to class-specific information about the methods. Therefore, the
message is freed from the restrictions on its return and argument types.

Static Typing to an Inherited Class

An instance can be statically typed to its own class or to any class that it inherits from. All instances,
for example, can be statically typed as NSObject.

However, the compiler understands the class of a statically typed object only from the class name in
the type designation, and it does its type checking accordingly. Typing an instance to an inherited
class can therefore result in discrepancies between what the compiler thinks would happen at runtime
and what actually happens.

For example, if you statically type a Rectangle instance as a Shape,

Shape *myRect = [[Rectangle alloc] init];

the compiler will treat it as a Shape. If you send the object a message to perform a Rectangle method,

BOOL solid = [myRect isFilled];

the compiler will complain. The isFilled method is defined in the Rectangle class, not in Shape.

However, if you send it a message to perform a method that the Shape class knows about,

[myRect display];

the compiler won’t complain, even though Rectangle overrides the method. At runtime, Rectangle’s
version of the method is performed.

Similarly, suppose that the Upper class declares a worry method that returns a double,

- (double)worry;

and the Middle subclass of Upper overrides the method and declares a new return type:

- (int)worry;

If an instance is statically typed to the Upper class, the compiler will think that its worry method
returns a double, and if an instance is typed to the Middle class, it will think that worry returns an
int. Errors will obviously result if a Middle instance is typed to the Upper class. The compiler will
inform the runtime system that a worry message sent to the object returns a double, but at runtime
it actually returns an int and generates an error.

84 Enabling Static Behaviors
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Static typing can free identically named methods from the restriction that they must have identical
return and argument types, but it can do so reliably only if the methods are declared in different
branches of the class hierarchy.

Getting a Method Address

The only way to circumvent dynamic binding is to get the address of a method and call it directly as
if it were a function. This might be appropriate on the rare occasions when a particular method will
be performed many times in succession and you want to avoid the overhead of messaging each time
the method is performed.

With a method defined in the NSObject class, methodForSelector:, you can ask for a pointer to the
procedure that implements a method, then use the pointer to call the procedure. The pointer that
methodForSelector: returns must be carefully cast to the proper function type. Both return and
argument types should be included in the cast.

The example below shows how the procedure that implements the setFilled: method might be
called:

void (*setter)(id, SEL, BOOL);
int i;

setter = (void (*)(id, SEL, BOOL))[target
methodForSelector:@selector(setFilled:)];

for (i = 0; i < 1000, i++)
setter(targetList[i], @selector(setFilled:), YES);

The first two arguments passed to the procedure are the receiving object (self) and the method
selector (_cmd). These arguments are hidden in method syntax but must be made explicit when the
method is called as a function.

Using methodForSelector: to circumvent dynamic binding saves most of the time required by
messaging. However, the savings will be significant only where a particular message is repeated
many times, as in the for loop shown above.

Note that methodForSelector: is provided by the Cocoa runtime system; it’s not a feature of the
Objective-C language itself.

Getting an Object Data Structure

A fundamental tenet of object-oriented programming is that the data structure of an object is private
to the object. Information stored there can be accessed only through messages sent to the object.
Although it is generally considered a poor programming practice, there is a way to strip an object
data structure of its “objectness” and treat it like any other C structure. This makes all the object’s
instance variables publicly available.

When given a class name as an argument, the @defs() directive produces the declaration list for an
instance of the class. This list is useful only in declaring structures, so @defs() can appear only in the
body of a structure declaration. This code, for example, declares a structure that’s identical to the
template for an instance of the Worker class:

struct workerDef {

Enabling Static Behaviors 85
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

@defs(Worker)
} *public;

Here public is declared as a pointer to a structure that’s essentially indistinguishable from a Worker
instance. With a little help from a type cast, a Worker id can be assigned to the pointer. The object’s
instance variables can then be accessed publicly through the pointer:

id aWorker;
aWorker = [[Worker alloc] init];

public = (struct workerDef *)aWorker;
public->boss = nil;

This technique of turning an object into a structure makes all its instance variables public, whether
they are declared @private, @protected, or @public.

Objects generally aren’t designed with the expectation that they be turned into C structures. You may
want to use @defs() for classes you define entirely yourself, but it should not be applied to classes
found in a framework or to classes you define that inherit from framework classes.

Exception Handling and Thread Synchronization

Objective-C provides support for exception handling and thread synchronization, which are explained
in “Handling Exceptions” (page 86) and “Synchronizing Thread Execution” (page 88). To turn on
support for these features, use the -fobjc-exceptions switch of the GNU Compiler Collection (GCC)
version 3.3 and later.

Note: Using either of these features in a program, renders the application runnable only in Mac OS
X v10.3 and later because runtime support for exception handling and synchronization is not present
in earlier versions of the software.

Handling Exceptions

The Objective-C language has an exception-handling syntax similar to that of Java and C++. Coupled
with the use of the NSException, NSError, or custom classes, you can add robust error-handling to
your programs.

The exception support revolves around four compiler directives: @try, @catch, @throw, and @finally.
Code that can potentially throw an exception is enclosed in a @try block. @catch()blocks contain
the exception-handling logic for exceptions thrown in a @tryblock. A @finallyblock contains code
that must be executed whether an exception is thrown or not. You use the @throwdirective to throw
an exception, which is essentially a pointer to an Objective-C object. You can use NSException objects
but are not limited to them.

The example below depicts a simple exception-handling algorithm:

Cup *cup = [[Cup alloc] init];

@try {
[cup fill];

86 Exception Handling and Thread Synchronization
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

}
@catch (NSException *exception) {

NSLog(@"main: Caught %@: %@", [exception name], [exception reason]);
}
@finally {

[cup release];
}

Throwing Exceptions

To throw an exception you must instantiate an object with the appropriate information, such as the
exception name and the reason it was thrown.

NSException *exception = [NSException exceptionWithName:@"HotTeaException"
reason:@"The tea is too hot" userInfo:nil];

@throw exception;

Inside a @catch() block, you can re-throw the caught exception using the @throw directive without
an argument. This can help make your code more readable.

You can subclass NSException to implement specialized types of exceptions, such as file-system
exceptions or communications exceptions.

Note: You are not limited to throwing NSException objects. You can throw any Objective-C object
as an exception object. The NSException class provides methods that help in exception processing,
but you can implement your own if you so desire.

Processing Exceptions

To catch an exception thrown in a @try block, use one or more @catch()blocks following the @try
block. The @catch() blocks should be ordered from most-specific to the least-specific. That way you
can tailor the processing of exceptions as groups, as shown in Listing 3-2.

Listing 3-2 An exception handler

@try {
...

}
// 1@catch (CustomException *ce) {

...
}

// 2@catch (NSException *ne) {
// Perform processing necessary at this level.
...

// Rethrow the exception so that it's handled at a higher level.
// 3@throw;

}
@catch (id ue) {

...
}

// 4@finally {
// Perform processing necessary whether an exception occurred or not.
...

Exception Handling and Thread Synchronization 87
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

}

The following list describes the numbered code-lines:

1. Catches the most specific exception type.

2. Catches a more general exception type.

3. Re-throws the exception caught.

To compartmentalize exception processing, you can nest exception handlers in a program. That
way if a method or function catches an exception that it cannot process, it can rethrow it to the
next exception handler.

4. Performs any clean-up processing that must always be performed, whether exceptions were
thrown or not.

Synchronizing Thread Execution

Objective-C supports multithreading in applications. This means that two threads can try to modify
the same object at the same time, a situation that can cause serious problems in a program. To protect
sections of code from being executed by more than one thread at a time, Objective-C provides the
@synchronized() directive.

The @synchronized()directive locks a section of code for use by a single thread. Other threads are
blocked until the thread exits the protected code; that is, when execution continues past the last
statement in the @synchronized() block.

The @synchronized() directive takes as its only argument any Objective-C object, including self.
This object is known as a mutual exclusion semaphore or mutex. It allows a thread to lock a section of
code to prevent its use by other threads. You should use separate semaphores to protect different
critical sections of a program. It’s safest to create all the mutual exclusion objects before the application
becomes multithreaded to avoid race conditions.

Listing 3-3 shows an example of code that uses self as the mutex to synchronize access to the instance
methods of the current object. You can take a similar approach to synchronize the class methods of
the associated class, using the Class object instead of self. In the latter case, of course, only one thread
at a time is allowed to execute a class method because there is only one class object that is shared by
all callers.

Listing 3-3 Locking a method using self

- (void)criticalMethod
{

@synchronized(self) {
// Critical code.
...

}
}

Listing 3-4 uses the current selector, _cmd, as the mutex. This kind of synchronization is beneficial
only when the method being synchronized has a unique name. This is because no other object or class
would be allowed to execute a different method with the same name until the current method ends.

88 Exception Handling and Thread Synchronization
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Listing 3-4 Locking a method using _cmd

- (void)criticalMethod
{

@synchronized(NSStringFromSelector(_cmd)) {
// Critical code.
...

}
}

Listing 3-5 shows a general approach. Before executing a critical process, the code obtains a semaphore
from the Account class and uses it to lock the critical section. The Account class could create the
semaphore in its initialize method.

Listing 3-5 Locking a method using a custom semaphore

Account *account = [Account accountFromString:[accountField stringValue]];

// Get the semaphore.
id accountSemaphore = [Account semaphore];

@synchronized(accountSemaphore) {
// Critical code.
...

}

The Objective-C synchronization feature supports recursive and reentrant code. A thread can use a
single semaphore several times in a recursive manner; other threads are blocked from using it until
the thread releases all the locks obtained with it; that is, every @synchronized() block is exited
normally or through an exception.

When code in an @synchronized() block throws an exception, the Objective-C runtime catches the
exception, releases the semaphore (so that the protected code can be executed by other threads), and
re-throws the exception to the next exception handler.

Using C++ With Objective-C

Apple’s Objective-C compiler allows you to freely mix C++ and Objective-C code in the same source
file. This Objective-C/C++ language hybrid is called Objective-C++. With it you can make use of
existing C++ libraries from your Objective-C applications. Note that XCode requires that file names
have a “.mm” extension for the Objective-C++ extensions to be enabled by the compiler.

Objective-C++ does not add C++ features to Objective-C classes, nor does it add Objective-C features
to C++ classes. For example, you cannot use Objective-C syntax to call a C++ object, you cannot add
constructors or destructors to an Objective-C object, and you cannot use the keywords this and self
interchangeably. The class hierarchies are separate; a C++ class cannot inherit from an Objective-C
class, and an Objective-C class cannot inherit from a C++ class. In addition, multi-language exception
handling is not supported. That is, an exception thrown in Objective-C code cannot be caught in C++
code and, conversely, an exception thrown in C++ code cannot be caught in Objective-C code. For
more information on exceptions in Objective-C, see “Exception Handling and Thread
Synchronization” (page 86).

The next section discusses what you can do with Objective-C++.

Using C++ With Objective-C 89
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Mixing Objective-C and C++ Language Features

In Objective-C++, you can call methods from either language in C++ code and in Objective-C methods.
Pointers to objects in either language are just pointers, and as such can be used anywhere. For example,
you can include pointers to Objective-C objects as data members of C++ classes, and you can include
pointers to C++ objects as instance variables of Objective-C classes. Listing 3-6 (page 90) illustrates
this.

Listing 3-6 Using C++ and Objective-C instances as instance variables

/* Hello.mm
* Compile with: g++ -x objective-c++ -framework Foundation Hello.mm -o hello
*/

#import <Foundation/Foundation.h>
class Hello {

private:
id _greeting_text; // holds an NSString

public:
Hello() {

_greeting_text = @"Hello, world!";
}
Hello(const char* greeting_text) {

_greeting_text = [NSString stringWithUTF8String:greeting_text];
}
void say_hello() {

printf("%s\n", [_greeting_text UTF8String]);
}

};

@interface Greeting : NSObject {
@private

Hello *_hello;
}
- (id)init;
- (void)dealloc;
- (void)sayGreeting;
- (void)sayGreeting:(Hello*)greeting;
@end

@implementation Greeting
- (id)init {

if (self = [super init]) {
_hello = new Hello();

}
return self;

}
- (void)dealloc {

delete _hello;
[super dealloc];

}
- (void)sayGreeting {

_hello->say_hello();
}
- (void)sayGreeting:(Hello*)greeting {

greeting->say_hello();
}

90 Using C++ With Objective-C
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

@end

int main() {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

Greeting *greeting = [[Greeting alloc] init];
[greeting sayGreeting]; // > Hello, world!

Hello *hello = new Hello("Bonjour, monde!");
[greeting sayGreeting:hello]; // > Bonjour, monde!

delete hello;
[greeting release];
[pool release];
return 0;

}

As you can declare C structs in Objective-C interfaces, you can also declare C++ classes in Objective-C
interfaces. As with C structs, C++ classes defined within an Objective-C interface are globally-scoped,
not nested within the Objective-C class. (This is consistent with the way in which standard C—though
not C++—promotes nested struct definitions to file scope.)

To allow you to conditionalize your code based on the language variant, the Objective-C++ compiler
defines both the __cplusplus and the __OBJC__ preprocessor constants, as specified by (respectively)
the C++ and Objective-C language standards.

As previously noted, Objective-C++ does not allow you to inherit C++ classes from Objective-C
objects, nor does it allow you to inherit Objective-C classes from C++ objects.

class Base { /* ... */ };
@interface ObjCClass: Base ... @end // ERROR!
class Derived: public ObjCClass ... // ERROR!

Unlike Objective-C, objects in C++ are statically typed, with runtime polymorphism available as an
exceptional case. The object models of the two languages are thus not directly compatible. More
fundamentally, the layout of Objective-C and C++ objects in memory is mutually incompatible,
meaning that it is generally impossible to create an object instance that would be valid from the
perspective of both languages. Hence, the two type hierarchies cannot be intermixed.

You can declare a C++ class within an Objective-C class declaration. The compiler treats such classes
as having been declared in the global namespace, as follows:

@interface Foo {
class Bar { ... } // OK
}
@end

Bar *barPtr; // OK

Objective-C allows C structures (whether declared inside of an Objective-C declaration or not) to be
used as instance variables.

@interface Foo {
struct CStruct { ... };
struct CStruct bigIvar; // OK

} ... @end

Using C++ With Objective-C 91
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

Objective-C++ similarly strives to allow C++ class instances to serve as instance variables. This is
possible as long as the C++ class in question (along with all of its superclasses) does not have any
virtual member functions defined. If any virtual member functions are present, the C++ class may
not serve as an Objective-C instance variable.

#import <Cocoa/Cocoa.h>

struct Class0 { void foo(); };
struct Class1 { virtual void foo(); };
struct Class2 { Class2(int i, int j); };

@interface Foo : NSObject {
Class0 class0; // OK
Class1 class1; // ERROR!
Class1 *ptr; // OK—call 'ptr = new Class1()' from Foo' init,

// 'delete ptr' from Foo's dealloc
Class2 class2; // WARNING - constructor not called!

...
@end

C++ requires each instance of a class containing virtual functions to contain a suitable virtual function
table pointer. However, the Objective-C runtime cannot initialize the virtual function table pointer,
because it is not familiar with the C++ object model. Similarly, the Objective-C runtime cannot dispatch
calls to C++ constructors or destructors for those objects. If a C++ class has any user-defined
constructors or destructors, they are not called. The compiler emits a warning in such cases.

Objective-C does not have a notion of nested namespaces. You cannot declare Objective-C classes
within C++ namespaces, nor can you declare namespaces within Objective-C classes.

Objective-C classes, protocols, and categories cannot be declared inside a C++ template, nor can a
C++ template be declared inside the scope of an Objective-C interface, protocol, or category.

However, Objective-C classes may serve as C++ template parameters. C++ template parameters can
also be used as receivers or parameters (though not as selectors) in Objective-C message expressions.

C++ Lexical Ambiguities and Conflicts

There are a few identifiers that are defined in the Objective-C header files that every Objective-C
program must include. These identifiers are id, Class, SEL, IMP, and BOOL.

Inside an Objective-C method, the compiler predeclares the identifiers self and super, similarly to
the keyword this in C++. However, unlike the C++ this keyword, self and super are
context-sensitive; they may be used as ordinary identifiers outside of Objective-C methods.

In the parameter list of methods within a protocol, there are five more context-sensitive keywords
(oneway, in, out, inout, and bycopy). These are not keywords in any other contexts.

From an Objective-C programmer's point of view, C++ adds quite a few new keywords. You can still
use C++ keywords as a part of an Objective-C selector, so the impact isn’t too severe, but you cannot
use them for naming Objective-C classes or instance variables. For example, even though class is a
C++ keyword, you can still use the NSObject method class:

[foo class]; // OK

92 Using C++ With Objective-C
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

However, because it is a keyword, you cannot use class as the name of a variable:

NSObject *class; // Error

In Objective-C, the names for classes and categories live in separate namespaces. That is, both
@interface foo and @interface(foo) can exist in the same source code. In Objective-C++, you can
also have a category whose name matches that of a C++ class or structure.

Protocol and template specifiers use the same syntax for different purposes:

id<someProtocolName> foo;
TemplateType<SomeTypeName> bar;

To avoid this ambiguity, the compiler doesn’t permit id to be used as a template name.

Finally, there is a lexical ambiguity in C++ when a label is followed by an expression that mentions
a global name, as in:

label: ::global_name = 3;

The space after the first colon is required. Objective-C++ adds a similar case, which also requires a
space:

receiver selector: ::global_c++_name;

Using C++ With Objective-C 93
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

94 Using C++ With Objective-C
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

The Language

The Objective-C language defers as many decisions as it can from compile time and link time to
runtime. Whenever possible, it does things dynamically. This means that the language requires not
just a compiler, but also a runtime system to execute the compiled code. The runtime system acts as
a kind of operating system for the Objective-C language; it’s what makes the language work.

The following sections look in particular at three areas where the NSObject class provides a framework
and defines conventions:

 ■ Allocating and initializing new instances of a class, and deallocating instances when they’re no
longer needed

 ■ Forwarding messages to another object

 ■ Dynamically loading new modules into a running program

Additional conventions of the NSObject class are described in the NSObject class specification in the
Foundation framework reference.

Other sections look at how you interact with the runtime at an abstract level; how you can use the
Distributed Objects system for sending messages between objects in different address spaces; and
how the compiler encodes the return and argument types for each method.

Interacting with the Runtime System

Objective-C programs interact with the runtime system at three distinct levels:

1. Through Objective-C source code.

For the most part, the runtime system works automatically and behind the scenes. You use it just
by writing and compiling Objective-C source code.

When you compile code containing Objective-C classes and methods, the compiler creates the
data structures and function calls that implement the dynamic characteristics of the language.
The data structures capture information found in class and category definitions and in protocol
declarations; they include the class and protocol objects discussed in “Extending Classes” (page
71), as well as method selectors, instance variable templates, and other information distilled from
source code. The principal runtime function is the one that sends messages, as described in “How
Messaging Works” (page 62). It’s invoked by source-code message expressions.

Interacting with the Runtime System 95
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

2. Through the methods defined in the NSObject class of the Foundation framework.

Most objects in Cocoa are subclasses of the NSObject class, so most objects inherit the methods
it defines. (The notable exception is the NSProxy class; see “Forwarding” (page 105) for more
information.)

Some of the NSObjectmethods simply query the runtime system for information. These methods
allow objects to perform introspection. Examples of such methods are the class method, which
asks an object to identify its class; isKindOfClass: and isMemberOfClass:, which test an object’s
position in the inheritance hierarchy; respondsToSelector:, which indicates whether an object
can accept a particular message; conformsToProtocol:, which indicates whether an object claims
to implement the methods defined in a specific protocol; and methodForSelector:, which
provides the address of a method’s implementation. Methods like these give an object the ability
to introspect about itself.

All these methods were mentioned in previous chapters and are described in detail in the NSObject
class specification in the Foundation framework reference.

3. Through direct calls to runtime functions.

The runtime system is a dynamic shared library with a public interface consisting of a set of
functions and data structures in the header files located within the directory /usr/include/objc.
Many of these functions allow you to use plain C to replicate what the compiler does when you
write Objective-C code. Others form the basis for functionality exported through the methods of
the NSObject class. These functions make it possible to develop other interfaces to the runtime
system and produce tools that augment the development environment; they’re not needed when
programming in Objective-C. However, a few of the runtime functions might on occasion be
useful when writing an Objective-C program. All of these functions are documented in Objective-C
Runtime Reference.

Because the NSObject class is at the root of the inheritance hierarchy of the Foundation framework,
the methods it defines are usually inherited by all classes. Its methods therefore establish behaviors
that are inherent to every instance and every class object. However, in a few cases, the NSObject class
merely defines a template for how something should be done; it doesn’t provide all the necessary
code itself.

For example, the NSObject class defines a description instance method that returns a string describing
the contents of the class. This is primarily used for debugging—the GDB print-object command
prints the string returned from this method. NSObject’s implementation of this method doesn’t know
what the class contains, so it returns a string with the name and address of the object. Subclasses of
NSObject can implement this method to return more details. For example, the Foundation class
NSArray returns a list of descriptions of the objects it contains.

Allocating, Initializing, and Deallocating Objects

This section describes how to allocate, initialize, and deallocate objects, and the fundamentals of the
methods you use for memory management in Cocoa. This section does not provide a complete
description of memory management—or more accurately, object ownership—in Cocoa; this subject
is discussed in Memory Management Programming Guide for Cocoa which you should consider as required
reading.

96 Allocating, Initializing, and Deallocating Objects
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

Allocating and Initializing Objects

It takes two steps to create an object using Objective-C. You must:

 ■ Dynamically allocate memory for the new object

 ■ Initialize the newly allocated memory to appropriate values

An object isn’t fully functional until both steps have been completed. Each step is accomplished by
a separate method but typically in a single line of code:

id anObject = [[Rectangle alloc] init];

Separating allocation from initialization gives you individual control over each step so that each can
be modified independently of the other. The following sections look first at allocation and then at
initialization, and discuss how they are controlled and modified.

In Objective-C, memory for new objects is allocated using class methods defined in the NSObject
class. NSObject defines two principal methods for this purpose, alloc and allocWithZone:.

+ (id)alloc;
+ (id)allocWithZone:(NSZone *)zone;

These methods allocate enough memory to hold all the instance variables for an object belonging to
the receiving class. They don’t need to be overridden and modified in subclasses.

The alloc and allocWithZone: methods initialize a newly allocated object’s isa instance variable
so that it points to the object’s class (the class object). All other instance variables are set to 0. Usually,
an object needs to be more specifically initialized before it can be safely used.

This initialization is the responsibility of class-specific instance methods that, by convention, begin
with the abbreviation “init”. If the method takes no arguments, the method name is just those four
letters, init. If it takes arguments, labels for the arguments follow the “init” prefix. For example, an
NSView object can be initialized with an initWithFrame: method.

Every class that declares instance variables must provide an init... method to initialize them. The
NSObject class declares the isa variable and defines an initmethod. However, since isa is initialized
when memory for an object is allocated, all NSObject’s init method does is return self. NSObject
declares the method mainly to establish the naming convention described earlier.

The Returned Object

An init... method normally initializes the instance variables of the receiver, then returns it. It’s the
responsibility of the method to return an object that can be used without error.

However, in some cases, this responsibility can mean returning a different object than the receiver.
For example, if a class keeps a list of named objects, it might provide an initWithName: method to
initialize new instances. If there can be no more than one object per name, initWithName: might
refuse to assign the same name to two objects. When asked to assign a new instance a name that’s
already being used by another object, it might free the newly allocated instance and return the other
object—thus ensuring the uniqueness of the name while at the same time providing what was asked
for, an instance with the requested name.

Allocating, Initializing, and Deallocating Objects 97
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

In a few cases, it might be impossible for an init... method to do what it’s asked to do. For example,
an initFromFile: method might get the data it needs from a file passed as an argument. If the file
name it’s passed doesn’t correspond to an actual file, it won’t be able to complete the initialization.
In such a case, the init...method could free the receiver and return nil, indicating that the requested
object can’t be created.

Because an init... method might return an object other than the newly allocated receiver, or even
return nil, it’s important that programs use the value returned by the initialization method, not just
that returned by alloc or allocWithZone:. The following code is very dangerous, since it ignores
the return of init.

id anObject = [SomeClass alloc];
[anObject init];
[anObject someOtherMessage];

Instead, to safely initialize an object, you should combine allocation and initialization messages in
one line of code.

id anObject = [[SomeClass alloc] init];
[anObject someOtherMessage];

If there’s a chance that the init... method might return nil, then you should check the return value
before proceeding:

id anObject = [[SomeClass alloc] init];
if (anObject)

[anObject someOtherMessage];
else

...

Arguments

An init... method must ensure that all of an object’s instance variables have reasonable values.
This doesn’t mean that it needs to provide an argument for each variable. It can set some to default
values or depend on the fact that (except for isa) all bits of memory allocated for a new object are set
to 0. For example, if a class requires its instances to have a name and a data source, it might provide
an initWithName:fromFile: method, but set nonessential instance variables to arbitrary values or
allow them to have the null values set by default. It could then rely on methods like setEnabled:,
setFriend:, and setDimensions: to modify default values after the initialization phase had been
completed.

Any init...method that takes arguments must be prepared to handle cases where an inappropriate
value is passed.

Coordinating Classes

Every class that declares instance variables must provide an init...method to initialize them (unless
the variables require no initialization). The init... methods the class defines initialize only those
variables declared in the class. Inherited instance variables are initialized by sending a message to
super to perform an initialization method defined somewhere farther up the inheritance hierarchy:

- initWithName:(char *)string
{

if (self = [super init]) {

98 Allocating, Initializing, and Deallocating Objects
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

name = (char *)NSZoneMalloc([self zone],
strlen(string) + 1);

strcpy(name, string);
}
return self;

}

The message to super chains together initialization methods in all inherited classes. Because it comes
first, it ensures that superclass variables are initialized before those declared in subclasses. For example,
a Rectangle object must be initialized as an NSObject, a Graphic, and a Shape before it’s initialized
as a Rectangle.

The connection between the initWithName:method illustrated above and the inherited initmethod
it incorporates is illustrated in Figure 4-1:

Figure 4-1 Incorporating an Inherited Initialization Method

Class B

Class A

– init

– initWithName:

A class must also make sure that all inherited initialization methods work. For example, if class A
defines an init method and its subclass B defines an initWithName: method, as shown in Figure
4-1, B must also make sure that an init message successfully initializes B instances. The easiest way
to do that is to replace the inherited init method with a version that invokes initWithName::

- init
{

return [self initWithName:"default"];
}

The initWithName: method would, in turn, invoke the inherited method, as shown earlier. Figure
4-2 includes B’s version of init:

Allocating, Initializing, and Deallocating Objects 99
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

Figure 4-2 Covering an Inherited Initialization Model

Class B

Class A

– init

– init

– initWithName:

Covering inherited initialization methods makes the class you define more portable to other
applications. If you leave an inherited method uncovered, someone else may use it to produce
incorrectly initialized instances of your class.

The Designated Initializer

In the example above, initWithName: would be the designated initializer for its class (class B). The
designated initializer is the method in each class that guarantees inherited instance variables are
initialized (by sending a message to super to perform an inherited method). It’s also the method that
does most of the work, and the one that other initialization methods in the same class invoke. It’s a
Cocoa convention that the designated initializer is always the method that allows the most freedom
to determine the character of a new instance (usually this is the one with the most arguments, but not
always).

It’s important to know the designated initializer when defining a subclass. For example, suppose we
define class C, a subclass of B, and implement an initWithName:fromFile: method. In addition to
this method, we have to make sure that the inherited init and initWithName: methods also work
for instances of C. This can be done just by covering B’s initWithName: with a version that invokes
initWithName:fromFile:.

- initWithName:(char *)string
{

return [self initWithName:string fromFile:NULL];
}

For an instance of the C class, the inherited init method invokes this new version of initWithName:
which invokes initWithName:fromFile:. The relationship between these methods is shown in Figure
4-3:

100 Allocating, Initializing, and Deallocating Objects
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

Figure 4-3 Covering the Designated Initializer

– initWithName:fromFile:

– initWithName:

Class B

– init

Class C

– initWithName:

This figure omits an important detail. The initWithName:fromFile: method, being the designated
initializer for the C class, sends a message to super to invoke an inherited initialization method. But
which of B’s methods should it invoke, init or initWithName:? It can’t invoke init, for two reasons:

 ■ Circularity would result (init invokes C’s initWithName:, which invokes
initWithName:fromFile:, which invokes init again).

 ■ It won’t be able to take advantage of the initialization code in B’s version of initWithName:.

Therefore, initWithName:fromFile: must invoke initWithName::

- initWithName:(char *)string fromFile:(char *)pathname
{

if (self = [super initWithName:string])
...

}

General Principle: The designated initializer in a class must, through a message to super, invoke the
designated initializer in a superclass.

Designated initializers are chained to each other through messages to super, while other initialization
methods are chained to designated initializers through messages to self.

Figure 4-4 shows how all the initialization methods in classes A, B, and C are linked. Messages to
self are shown on the left and messages to super are shown on the right.

Allocating, Initializing, and Deallocating Objects 101
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

Figure 4-4 Initialization Chain

– initWithName:fromFile:

– initWithName:

Class B

Class A

– init

– init

Class C

– initWithName:

Note that B’s version of init sends a message to self to invoke the initWithName:method. Therefore,
when the receiver is an instance of the B class, it invokes B’s version of initWithName:, and when
the receiver is an instance of the C class, it invokes C’s version.

Combining Allocation and Initialization

In Cocoa, some classes define creation methods that combine the two steps of allocating and initializing
to return new, initialized instances of the class. These methods typically take the form + className...
where className is the name of the class. For instance, NSString has the following methods (among
others):

+ (NSString *)stringWithCString:(const char *)bytes;
+ (NSString *)stringWithFormat:(NSString *)format, ...;

Similarly, NSArray defines the following class methods that combine allocation and initialization:

+ (id)array;
+ (id)arrayWithObject:(id)anObject;
+ (id)arrayWithObjects:(id)firstObj, ...;

102 Allocating, Initializing, and Deallocating Objects
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

Instances created with any of these methods are deallocated automatically (as described in “Marking
Objects for Later Release” (page 104)), so you don’t have to release them unless you have retained
them (as described in “Retaining Objects” (page 104)). Usually there are equivalent -init...methods
provided along with these conveniences.

Methods that combine allocation and initialization are particularly valuable if the allocation must
somehow be informed by the initialization. For example, if the data for the initialization is taken from
a file, and the file might contain enough data to initialize more than one object, it would be impossible
to know how many objects to allocate until the file is opened. In this case, you might implement a
listFromFile: method that takes the name of the file as an argument. It would open the file, see
how many objects to allocate, and create a List object large enough to hold all the new objects. It would
then allocate and initialize the objects from data in the file, put them in the List, and finally return the
List.

It also makes sense to combine allocation and initialization in a single method if you want to avoid
the step of blindly allocating memory for a new object that you might not use. As mentioned in “The
Returned Object” (page 97), an init... method might sometimes substitute another object for the
receiver. For example, when initWithName: is passed a name that’s already taken, it might free the
receiver and in its place return the object that was previously assigned the name. This means, of
course, that an object is allocated and freed immediately without ever being used.

If the code that determines whether the receiver should be initialized is placed inside the method that
does the allocation instead of inside init..., you can avoid the step of allocating a new instance
when one isn’t needed.

In the following example, the soloist method ensures that there’s no more than one instance of the
Soloist class. It allocates and initializes an instance only once:

+ soloist
{

static Soloist *instance = nil;

if (instance == nil)
{

instance = [[self alloc] init];
}
return instance;

}

Object Ownership

In an Objective-C program, objects are constantly creating and disposing of other objects. Much of
the time an object creates things for private use and can dispose of them as it needs. However, when
an object passes something to another object through a method invocation, the lines of ownership—and
responsibility for disposal—blur. Object ownership and memory management are discussed in greater
detail in Memory Management Programming Guide for Cocoa; the following three sections describe the
mechanism of memory management in Cocoa, but not the policy. You must read Memory Management
Programming Guide for Cocoa to fully understand the issues.

Allocating, Initializing, and Deallocating Objects 103
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

Basic Ownership

Cocoa uses a memory-management technique called reference counting (also known as refcounting),
in which each entity that claims ownership of an object increments the object’s reference count and
decrements the reference count when finished with the object. When the reference count reaches zero,
the object is deallocated (as will be explained in “Deallocation” (page 104)). This technique allows one
instance of an object to be safely shared among several other objects.

If you create a new object, you own it (note that there are precise definitions for what create means
here—again see Memory Management Programming Guide for Cocoa). The new object has a refcount of
1. It is your responsibility to relinquish ownership of the object when you have finished with it. You
can do this by sending it a release message, which decrements the refcount by 1.

[anObject release];

Marking Objects for Later Release

When you write a method that creates and returns a new object, that method is responsible for releasing
the object. However, it’s clearly not fruitful to dispose of an object before the recipient of the object
gets it. What is needed is a way to mark an object for release at a later time, so that it’s properly
disposed of after the recipient has had a chance to use it. Cocoa provides just such a mechanism.

[anObject autorelease];

The autoreleasemethod, defined by NSObject, marks the receiver for later release. By autoreleasing
an object—that is, by sending it an autorelease message—you cause the autoreleased object to be
sent a release message at some stage in the future by the current autorelease pool The mechanism
by which the release message is sent and the timing of the release message are discussed in greater
detail in Autorelease Pools.

Retaining Objects

There are times when you don’t want a received object to be disposed of; for example, you may need
to cache the object in an instance variable. In this case, only you know when the object is no longer
needed, so you need the power to ensure that the object is not disposed of while you are still using
it.

[anObject retain];

You do this with the retain method, which stays the effect of a pending autorelease (or preempts
a later release or autoreleasemessage; see “Deallocation” (page 104) for details on the autorelease
message). By retaining an object you ensure that it isn’t deallocated until you’re done with it:

Deallocation

The NSObject class defines a dealloc method that relinquishes the memory originally allocated for
an object. You must never invoke dealloc directly; you should instead invoke either the release
method or the autorelease method to decrement the method’s refcount. When the object’s refcount
reaches zero, the release method invokes dealloc. In some situations, you don’t release an object
at all.

104 Allocating, Initializing, and Deallocating Objects
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

The purpose of a deallocmessage is to deallocate all the memory occupied by the receiver. NSObject’s
version of the method deallocates the receiver’s instance variables, but doesn’t follow any variable
that points to other memory. If the receiver allocated any additional memory—to store a character
string or an array of structures, for example—that memory must also be deallocated (unless it’s shared
by other objects). If the receiver had claimed ownership of any other objects, it must also relinquish
ownership.

Every class that has its objects allocate additional memory or claim ownership of other objects (typically
using object instance variables) must have its own dealloc method. Each version of dealloc ends
with a message to super to perform an inherited version of the method, as illustrated in the following
example:

- dealloc {
[ownedObject release];
free(privateMemory);
vm_deallocate(task_self(), sharedMemory, memorySize);
[super dealloc];

}

By working its way up the inheritance hierarchy, every dealloc message eventually invokes
NSObject’s version of the method.

Forwarding

Sending a message to an object that does not handle that message is an error. However, before
announcing the error, the runtime system gives the receiving object a second chance to handle the
message. It sends the object a forwardInvocation: message with an NSInvocation object as its sole
argument—the NSInvocation object encapsulates the original message and the arguments that were
passed with it.

You can implement a forwardInvocation: method to give a default response to the message, or to
avoid the error in some other way. As its name implies, forwardInvocation: is commonly used to
forward the message to another object.

To see the scope and intent of forwarding, imagine the following scenarios: Suppose, first, that you’re
designing an object that can respond to a message called negotiate, and you want its response to
include the response of another kind of object. You could accomplish this easily by passing a negotiate
message to the other object somewhere in the body of the negotiate method you implement.

Take this a step further, and suppose that you want your object’s response to a negotiate message
to be exactly the response implemented in another class. One way to accomplish this would be to
make your class inherit the method from the other class. However, it might not be possible to arrange
things this way. There may be good reasons why your class and the class that implements negotiate
are in different branches of the inheritance hierarchy.

Even if your class can’t inherit the negotiate method, you can still “borrow” it by implementing a
version of the method that simply passes the message on to an instance of the other class:

- negotiate
{

if ([someOtherObject respondsTo:@selector(negotiate)])
return [someOtherObject negotiate];

return self;

Forwarding 105
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

}

This way of doing things could get a little cumbersome, especially if there were a number of messages
you wanted your object to pass on to the other object. You’d have to implement one method to cover
each method you wanted to borrow from the other class. Moreover, it would be impossible to handle
cases where you didn’t know, at the time you wrote the code, the full set of messages you might want
to forward. That set might depend on events at runtime, and it might change as new methods and
classes are implemented in the future.

The second chance offered by a forwardInvocation: message provides a less ad hoc solution to this
problem, and one that’s dynamic rather than static. It works like this: When an object can’t respond
to a message because it doesn’t have a method matching the selector in the message, the runtime
system informs the object by sending it a forwardInvocation: message. Every object inherits a
forwardInvocation: method from the NSObject class. However, NSObject’s version of the method
simply invokes doesNotRecognizeSelector:. By overriding NSObject’s version and implementing
your own, you can take advantage of the opportunity that the forwardInvocation:message provides
to forward messages to other objects.

To forward a message, all a forwardInvocation: method needs to do is:

 ■ Determine where the message should go, and

 ■ Send it there with its original arguments.

The message can be sent with the invokeWithTarget: method:

- (void)forwardInvocation:(NSInvocation *)anInvocation
{

if ([someOtherObject respondsToSelector:
[anInvocation selector]])

[anInvocation invokeWithTarget:someOtherObject];
else

[super forwardInvocation:anInvocation];
}

The return value of the message that’s forwarded is returned to the original sender. All types of return
values can be delivered to the sender, including ids, structures, and double-precision floating-point
numbers.

A forwardInvocation:method can act as a distribution center for unrecognized messages, parceling
them out to different receivers. Or it can be a transfer station, sending all messages to the same
destination. It can translate one message into another, or simply “swallow” some messages so there’s
no response and no error. A forwardInvocation: method can also consolidate several messages
into a single response. What forwardInvocation: does is up to the implementor. However, the
opportunity it provides for linking objects in a forwarding chain opens up possibilities for program
design.

Note: The forwardInvocation:method gets to handle messages only if they don’t invoke an existing
method in the nominal receiver. If, for example, you want your object to forward negotiatemessages
to another object, it can’t have a negotiate method of its own. If it does, the message will never reach
forwardInvocation:.

For more information on forwarding and invocations, see the NSInvocation class specification in the
Foundation framework reference.

106 Forwarding
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

Forwarding and Multiple Inheritance

Forwarding mimics inheritance, and can be used to lend some of the effects of multiple inheritance
to Objective-C programs. As shown in Figure 4-5 (page 107), an object that responds to a message by
forwarding it appears to borrow or “inherit” a method implementation defined in another class.

Figure 4-5 Forwarding

isa. . .

– forwardInvocation: – negotiate

negotiate isa. . .

DiplomatWarrior

In this illustration, an instance of the Warrior class forwards a negotiate message to an instance of
the Diplomat class. The Warrior will appear to negotiate like a Diplomat. It will seem to respond to
the negotiatemessage, and for all practical purposes it does respond (although it’s really a Diplomat
that’s doing the work).

The object that forwards a message thus “inherits” methods from two branches of the inheritance
hierarchy—its own branch and that of the object that responds to the message. In the example above,
it appears as if the Warrior class inherits from Diplomat as well as its own superclass.

Forwarding addresses most needs that lead programmers to value multiple inheritance. However,
there’s an important difference between the two: Multiple inheritance combines different capabilities
in a single object. It tends toward large, multifaceted objects. Forwarding, on the other hand, assigns
separate responsibilities to disparate objects. It decomposes problems into smaller objects, but associates
those objects in a way that’s transparent to the message sender.

Surrogate Objects

Forwarding not only mimics multiple inheritance, it also makes it possible to develop lightweight
objects that represent or “cover” more substantial objects. The surrogate stands in for the other object
and funnels messages to it.

Forwarding 107
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

The proxy discussed in “Remote Messaging” (page 109) is such a surrogate. A proxy takes care of the
administrative details of forwarding messages to a remote receiver, making sure argument values
are copied and retrieved across the connection, and so on. But it doesn’t attempt to do much else; it
doesn’t duplicate the functionality of the remote object but simply gives the remote object a local
address, a place where it can receive messages in another application.

Other kinds of surrogate objects are also possible. Suppose, for example, that you have an object that
manipulates a lot of data—perhaps it creates a complicated image or reads the contents of a file on
disk. Setting this object up could be time-consuming, so you prefer to do it lazily—when it’s really
needed or when system resources are temporarily idle. At the same time, you need at least a placeholder
for this object in order for the other objects in the application to function properly.

In this circumstance, you could initially create, not the full-fledged object, but a lightweight surrogate
for it. This object could do some things on its own, such as answer questions about the data, but
mostly it would just hold a place for the larger object and, when the time came, forward messages to
it. When the surrogate’s forwardInvocation: method first receives a message destined for the other
object, it would ensure that the object existed and would create it if it didn’t. All messages for the
larger object go through the surrogate, so, as far as the rest of the program is concerned, the surrogate
and the larger object would be the same.

Forwarding and Inheritance

Although forwarding mimics inheritance, the NSObject class never confuses the two. Methods like
respondsToSelector: and isKindOfClass: look only at the inheritance hierarchy, never at the
forwarding chain. If, for example, a Warrior object is asked whether it responds to a negotiate
message,

if ([aWarrior respondsToSelector:@selector(negotiate)])
...

the answer is NO, even though it can receive negotiate messages without error and respond to them,
in a sense, by forwarding them to a Diplomat. (See Figure 4-5 (page 107).)

In many cases, NO is the right answer. But it may not be. If you use forwarding to set up a surrogate
object or to extend the capabilities of a class, the forwarding mechanism should probably be as
transparent as inheritance. If you want your objects to act as if they truly inherited the behavior of
the objects they forward messages to, you’ll need to re-implement the respondsToSelector: and
isKindOfClass: methods to include your forwarding algorithm:

- (BOOL)respondsToSelector:(SEL)aSelector
{

if ([super respondsToSelector:aSelector])
return YES;

else {
/* Here, test whether the aSelector message can *
* be forwarded to another object and whether that *
* object can respond to it. Return YES if it can. */

}
return NO;

}

108 Forwarding
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

In addition to respondsToSelector: and isKindOfClass:, the instancesRespondToSelector:
method should also mirror the forwarding algorithm. If protocols are used, the conformsToProtocol:
method should likewise be added to the list. Similarly, if an object forwards any remote messages it
receives, it should have a version of methodSignatureForSelector: that can return accurate
descriptions of the methods that ultimately respond to the forwarded messages.

You might consider putting the forwarding algorithm somewhere in private code and have all these
methods, forwardInvocation: included, call it.

Note: This is an advanced technique, suitable only for situations where no other solution is possible.
It is not intended as a replacement for inheritance. If you must make use of this technique, make sure
you fully understand the behavior of the class doing the forwarding and the class you’re forwarding
to.

The methods mentioned in this section are described in the NSObject class specification in the
Foundation framework reference. For information on invokeWithTarget:, see the NSInvocation
class specification in the Foundation framework reference.

Dynamic Loading

An Objective-C program can load and link new classes and categories while it’s running. The new
code is incorporated into the program and treated identically to classes and categories loaded at the
start.

Dynamic loading can be used to do a lot of different things. For example, the various modules in the
System Preferences application are dynamically loaded.

In the Cocoa environment, dynamic loading is commonly used to allow applications to be customized.
Others can write modules that your program loads at runtime—much as Interface Builder loads
custom palettes and the Mac OS X System Preferences application loads custom preference modules.
The loadable modules extend what your application can do. They contribute to it in ways that you
permit but could not have anticipated or defined yourself. You provide the framework, but others
provide the code.

Although there is a runtime function that performs dynamic loading of Objective-C modules in
Mach-O files (objc_loadModules, defined in objc/objc-load.h), Cocoa’s NSBundle class provides
a significantly more convenient interface for dynamic loading—one that’s object-oriented and integrated
with related services. See the NSBundle class specification in the Foundation framework reference for
information on the NSBundle class and its use. See Mach-O File Format Reference for information on
Mach-O files.

Remote Messaging

Like most other programming languages, Objective-C was initially designed for programs that are
executed as a single process in a single address space.

Dynamic Loading 109
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

Nevertheless, the object-oriented model, where communication takes place between relatively
self-contained units through messages that are resolved at runtime, would seem well suited for
interprocess communication as well. It’s not hard to imagine Objective-C messages between objects
that reside in different address spaces (that is, in different tasks) or in different threads of execution
of the same task.

For example, in a typical server-client interaction, the client task might send its requests to a designated
object in the server, and the server might target specific client objects for the notifications and other
information it sends.

Or imagine an interactive application that needs to do a good deal of computation to carry out a user
command. It could simply display a dialog telling the user to wait while it was busy, or it could isolate
the processing work in a subordinate task, leaving the main part of the application free to accept user
input. Objects in the two tasks would communicate through Objective-C messages.

Similarly, several separate processes could cooperate on the editing of a single document. There could
be a different editing tool for each type of data in the document. One task might be in charge of
presenting a unified onscreen user interface and of sorting out which user instructions are the
responsibility of the various editing tools. Each cooperating task could be written in Objective-C, with
Objective-C messages being the vehicle of communication between the user interface and the tools
and between one tool and another.

Distributed Objects

Remote messaging in Objective-C requires a runtime system that can establish connections between
objects in different address spaces, recognize when a message is intended for an object in a remote
address space, and transfer data from one address space to another. It must also mediate between
the separate schedules of the two tasks; it has to hold messages until their remote receivers are free
to respond to them.

Cocoa includes a distributed objects architecture that is essentially this kind of extension to the
runtime system. Using distributed objects, you can send Objective-C messages to objects in other
tasks or have messages executed in other threads of the same task. (When remote messages are sent
between two threads of the same task, the threads are treated exactly like threads in different tasks.)
Note that Cocoa’s distributed objects system is built on top of the runtime system; it doesn’t alter the
fundamental behavior of your Cocoa objects.

To send a remote message, an application must first establish a connection with the remote receiver.
Establishing the connection gives the application a proxy for the remote object in its own address
space. It then communicates with the remote object through the proxy. The proxy assumes the identity
of the remote object; it has no identity of its own. The application is able to regard the proxy as if it
were the remote object; for most purposes, it is the remote object.

Remote messaging is illustrated in Figure 4-6 (page 111), where object A communicates with object B
through a proxy, and messages for B wait in a queue until B is ready to respond to them:

110 Remote Messaging
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

Figure 4-6 Remote Messages

BA
Proxy

for
B

The sender and receiver are in different tasks and are scheduled independently of each other. So
there’s no guarantee that the receiver is free to accept a message when the sender is ready to send it.
Therefore, arriving messages are placed in a queue and retrieved at the convenience of the receiving
application.

A proxy doesn’t act on behalf of the remote object or need access to its class. It isn’t a copy of the
object, but a lightweight substitute for it. In a sense, it’s transparent; it simply passes the messages it
receives on to the remote receiver and manages the interprocess communication. Its main function
is to provide a local address for an object that wouldn’t otherwise have one. A proxy isn’t fully
transparent, however. For instance, a proxy doesn’t allow you to directly set and get an object’s
instance variables.

A remote receiver is typically anonymous. Its class is hidden inside the remote application. The
sending application doesn’t need to know how that application is designed or what classes it uses. It
doesn’t need to use the same classes itself. All it needs to know is what messages the remote object
responds to.

Because of this, an object that’s designated to receive remote messages advertises its interface in a
formal protocol. Both the sending and the receiving application declare the protocol—they both
import the same protocol declaration. The receiving application declares it because the remote object
must conform to the protocol. The sending application declares it to inform the compiler about the
messages it sends and because it may use the conformsToProtocol: method and the @protocol()
directive to test the remote receiver. The sending application doesn’t have to implement any of the
methods in the protocol; it declares the protocol only because it initiates messages to the remote
receiver.

The distributed objects architecture, including the NSProxy and NSConnection classes, is documented
in the Foundation framework reference and Distributed Objects.

Language Support

Remote messaging raises not only a number of intriguing possibilities for program design, it also
raises some interesting issues for the Objective-C language. Most of the issues are related to the
efficiency of remote messaging and the degree of separation that the two tasks should maintain while
they’re communicating with each other.

So that programmers can give explicit instructions about the intent of a remote message, Objective-C
defines six type qualifiers that can be used when declaring methods inside a formal protocol:

oneway

in

Remote Messaging 111
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

out

inout

bycopy

byref

These modifiers are restricted to formal protocols; they can’t be used inside class and category
declarations. However, if a class or category adopts a protocol, its implementation of the protocol
methods can use the same modifiers that are used to declare the methods.

The following sections explain how these modifiers are used.

Synchronous and Asynchronous Messages

Consider first a method with just a simple return value:

- (BOOL)canDance;

When a canDance message is sent to a receiver in the same application, the method is invoked and
the return value provided directly to the sender. But when the receiver is in a remote application,
two underlying messages are required—one message to get the remote object to invoke the method,
and the other message to send back the result of the remote calculation. This is illustrated in the figure
below:

Figure 4-7 Round-Trip Message

initial message

return information

A
Proxy

for
B

B

Most remote messages are, at bottom, two-way (or “round trip”) remote procedure calls (RPCs) like
this one. The sending application waits for the receiving application to invoke the method, complete
its processing, and send back an indication that it has finished, along with any return information
requested. Waiting for the receiver to finish, even if no information is returned, has the advantage of
coordinating the two communicating applications, of keeping them both “in sync.” For this reason,
round-trip messages are often called synchronous. Synchronous messages are the default.

However, it’s not always necessary or a good idea to wait for a reply. Sometimes it’s sufficient simply
to dispatch the remote message and return, allowing the receiver to get to the task when it can. In the
meantime, the sender can go on to other things. Objective-C provides a return type modifier, oneway,
to indicate that a method is used only for asynchronous messages:

- (oneway void)waltzAtWill;

Although oneway is a type qualifier (like const) and can be used in combination with a specific type
name, such as oneway float or oneway id, the only such combination that makes any sense is oneway
void. An asynchronous message can’t have a valid return value.

112 Remote Messaging
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

Pointer Arguments

Next, consider methods that take pointer arguments. A pointer can be used to pass information to
the receiver by reference. When invoked, the method looks at what’s stored in the address it’s passed.

- setTune:(struct tune *)aSong
{

tune = *aSong;
...

}

The same sort of argument can also be used to return information by reference. The method uses the
pointer to find where it should place information requested in the message.

- getTune:(struct tune *)theSong
{

...
*theSong = tune;

}

The way the pointer is used makes a difference in how the remote message is carried out. In neither
case can the pointer simply be passed to the remote object unchanged; it points to a memory location
in the sender’s address space and would not be meaningful in the address space of the remote receiver.
The runtime system for remote messaging must make some adjustments behind the scenes.

If the argument is used to pass information by reference, the runtime system must dereference the
pointer, ship the value it points to over to the remote application, store the value in an address local
to that application, and pass that address to the remote receiver.

If, on the other hand, the pointer is used to return information by reference, the value it points to
doesn’t have to be sent to the other application. Instead, a value from the other application must be
sent back and written into the location indicated by the pointer.

In the first case, information is passed on the first leg of the round trip. In the second case, information
is returned on the second leg of the round trip. Because these cases result in very different actions on
the part of the runtime system for remote messaging, Objective-C provides type modifiers that can
clarify the programmer’s intention:

 ■ The type modifierin indicates that information is being passed in a message:

- setTune:(in struct tune *)aSong;

 ■ The modifier out indicates that an argument is being used to return information by reference:

- getTune:(out struct tune *)theSong;

 ■ A third modifier, inout, indicates that an argument is used both to provide information and to
get information back:

- adjustTune:(inout struct tune *)aSong;

The Cocoa distributed objects system takes inout to be the default modifier for all pointer arguments
except those declared const, for which in is the default. inout is the safest assumption but also the
most time-consuming since it requires passing information in both directions. The only modifier that
makes sense for arguments passed by value (non-pointers) is in. While in can be used with any kind
of argument, out and inout make sense only for pointers.

Remote Messaging 113
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

In C, pointers are sometimes used to represent composite values. For example, a string is represented
as a character pointer (char *). Although in notation and implementation there’s a level of indirection
here, in concept there’s not. Conceptually, a string is an entity in and of itself, not a pointer to something
else.

In cases like this, the distributed objects system automatically dereferences the pointer and passes
whatever it points to as if by value. Therefore, the out and inoutmodifiers make no sense with simple
character pointers. It takes an additional level of indirection in a remote message to pass or return a
string by reference:

- getTuneTitle:(out char **)theTitle;

The same is true of objects:

- adjustRectangle:(inout Rectangle **)theRect;

These conventions are enforced at runtime, not by the compiler.

Proxies and Copies

Finally, consider a method that takes an object as an argument:

- danceWith:(id)aPartner;

A danceWith: message passes an object id to the receiver. If the sender and the receiver are in the
same application, they would both be able to refer to the same aPartner object.

This is true even if the receiver is in a remote application, except that the receiver needs to refer to
the object through a proxy (since the object isn’t in its address space). The pointer that danceWith:
delivers to a remote receiver is actually a pointer to the proxy. Messages sent to the proxy would be
passed across the connection to the real object and any return information would be passed back to
the remote application.

There are times when proxies may be unnecessarily inefficient, when it’s better to send a copy of the
object to the remote process so that it can interact with it directly in its own address space. To give
programmers a way to indicate that this is intended, Objective-C provides a bycopy type modifier:

- danceWith:(bycopy id)aClone;

bycopy can also be used for return values:

- (bycopy)dancer;

It can similarly be used with out to indicate that an object returned by reference should be copied
rather than delivered in the form of a proxy:

- getDancer:(bycopy out id *)theDancer;

Note: When a copy of an object is passed to another application, it cannot be anonymous. The
application that receives the object must have the class of the object loaded in its address space.

bycopy makes so much sense for certain classes—classes that are intended to contain a collection of
other objects, for instance—that often these classes are written so that a copy is sent to a remote
receiver, instead of the usual reference. You can override this behavior with byref, however, thereby

114 Remote Messaging
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

specifying that objects passed to a method or objects returned from a method should be passed or
returned by reference. Since passing by reference is the default behavior for the vast majority of
Objective-C objects, you will rarely, if ever, make use of the byref keyword.

The only type that it makes sense for bycopy or byref to modify is an object, whether dynamically
typed id or statically typed by a class name.

Although bycopy and byref can’t be used inside class and category declarations, they can be used
within formal protocols. For instance, you could write a formal protocol foo as follows:

@Protocol foo
- (bycopy)array;
@end

A class or category can then adopt your protocol foo. This allows you to construct protocols so that
they provide “hints” as to how objects should be passed and returned by the methods described by
the protocol.

Type Encodings

To assist the runtime system, the compiler encodes the return and argument types for each method
in a character string and associates the string with the method selector. The coding scheme it uses is
also useful in other contexts and so is made publicly available with the @encode() compiler directive.
When given a type specification, @encode() returns a string encoding that type. The type can be a
basic type such as an int, a pointer, a tagged structure or union, or a class name—anything, in fact,
that can be used as an argument to the C sizeof() operator.

char *buf1 = @encode(int **);
char *buf2 = @encode(struct key);
char *buf3 = @encode(Rectangle);

The table below lists the type codes. Note that many of them overlap with the codes you use when
encoding an object for purposes of archiving or distribution. However, there are codes listed here
that you can’t use when writing a coder, and there are codes that you may want to use when writing
a coder that aren’t generated by @encode(). (See the NSCoder class specification in the Foundation
Framework reference for more information on encoding objects for archiving or distribution.)

Table 4-1 Objective-C type encodings

MeaningCode

A charc

An inti

A shorts

A longl

A long longq

An unsigned charC

Type Encodings 115
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

MeaningCode

An unsigned intI

An unsigned shortS

An unsigned longL

An unsigned long longQ

A floatf

A doubled

A C++ bool or a C99 _BoolB

A voidv

A character string (char *)*

An object (whether statically typed or typed id)@

A class object (Class)#

A method selector (SEL):

An array[array type]

A structure{name=type...}

A union(name=type...)

A bit field of num bitsbnum

A pointer to type^type

An unknown type (among other things, this code is used for function pointers)?

The type code for an array is enclosed within square brackets; the number of elements in the array is
specified immediately after the open bracket, before the array type. For example, an array of 12
pointers to floats would be encoded as:

[12^f]

Structures are specified within braces, and unions within parentheses. The structure tag is listed first,
followed by an equal sign and the codes for the fields of the structure listed in sequence. For example,
the structure

typedef struct example {
id anObject;
char *aString;
int anInt;

} Example;

would be encoded like this:

116 Type Encodings
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

{example=@*i}

The same encoding results whether the defined type name (Example) or the structure tag (example)
is passed to @encode(). The encoding for a structure pointer carries the same amount of information
about the structure’s fields:

^{example=@*i}

However, another level of indirection removes the internal type specification:

^^{example}

Objects are treated like structures. For example, passing the NSObject class name to @encode() yields
this encoding:

{NSObject=#}

The NSObject class declares just one instance variable, isa, of type Class.

Note that although the @encode()directive doesn’t return them, the runtime system uses the additional
encodings listed in Table 4-2 for type qualifiers when they’re used to declare methods in a protocol.

Table 4-2 Objective-C method encodings

MeaningCode

constr

inn

inoutN

outo

bycopyO

byrefR

onewayV

Type Encodings 117
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

118 Type Encodings
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

The Runtime System

Objective-C adds a small number of constructs to the C language and defines a handful of conventions
for effectively interacting with the runtime system. This appendix lists all the additions to the language
but doesn’t go into great detail. For more information, see “The Language” (page 39). For a more
formal presentation of Objective-C syntax, see “Grammar” (page 127).

Messages

Message expressions are enclosed in square brackets:

[receiver message]

The receiver can be:

 ■ A variable or expression that evaluates to an object (including the variable self)

 ■ A class name (indicating the class object)

 ■ super (indicating an alternative search for the method implementation)

The message is the name of a method plus any arguments passed to it.

Defined Types

The principal types used in Objective-C are defined in objc/objc.h. They are:

DefinitionType

An object (a pointer to its data structure).id

A class object (a pointer to the class data structure).Class

A selector, a compiler-assigned code that identifies a method name.SEL

A pointer to a method implementation that returns an id.IMP

Messages 119
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Language Summary

DefinitionType

A Boolean value, either YES or NO.BOOL

id can be used to type any kind of object, class, or instance. In addition, class names can be used as
type names to statically type instances of a class. A statically typed instance is declared to be a pointer
to its class or to any class it inherits from.

The objc.h header file also defines these useful terms:

DefinitionType

A null object pointer, (id)0.nil

A null class pointer, (Class)0.Nil

A boolean false value, (BOOL)0.NO

A boolean true value, (BOOL)1.YES

Preprocessor Directives

The preprocessor understands these special notations:

DefinitionNotation

Imports a header file. This directive is identical to #include, except that it doesn’t include
the same file more than once.

#import

Begins a comment that continues to the end of the line.//

Compiler Directives

Directives to the compiler begin with “@”. The following directives are used to declare and define
classes, categories, and protocols:

DefinitionDirective

Begins the declaration of a class or category interface.@interface

Begins the definition of a class or category.@implementation

Begins the declaration of a formal protocol.@protocol

Ends the declaration/definition of a class, category, or protocol.@end

120 Preprocessor Directives
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Language Summary

The following mutually exclusive directives specify the visibility of instance variables:

DefinitionDirective

Limits the scope of an instance variable to the class that declares it.@private

Limits instance variable scope to declaring and inheriting classes.@protected

Removes restrictions on the scope of instance variables.@public

The default is @protected.

These directives support exception handling:

DefinitionDirective

Defines a block within which exceptions can be thrown.@try

Throws an exception object.@throw

Catches an exception thrown within the preceding @try block.@catch()

Defines a block of code that is executed whether exceptions were thrown or not in a
preceding @try block.

@finally

In addition, there are directives for these particular purposes:

DefinitionDirective

Declares the names of classes defined elsewhere.@class

Returns the compiled selector that identifies method_name.@selector(method_name)

Returns the protocol_name protocol (an instance of the Protocol class).
(@protocol is also valid without (protocol_name) for forward
declarations.)

@protocol(protocol_name)

Yields a character string that encodes the type structure of type_spec.@encode(type_spec)

Yields the internal data structure of class_name instances@defs(class_name)

Defines a constant NSString object in the current module and
initializes the object with the specified 7-bit ASCII-encoded string.

@"string"

Defines a constant NSString object in the current module. The string
created is the result of concatenating the strings specified in the two
directives.

@"string1" @"string2" ...
@"stringN"

Defines a block of code that must be executed only by one thread
at a time.

@synchronized()

Compiler Directives 121
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Language Summary

Classes

A new class is declared with the @interface directive. The interface file for its superclass must be
imported:

#import "ItsSuperclass.h"

@interface ClassName : ItsSuperclass < protocol_list >
{

instance variable declarations
}
method declarations
@end

Everything but the compiler directives and class name is optional. If the colon and superclass name
are omitted, the class is declared to be a new root class. If any protocols are listed, the header files
where they’re declared must also be imported.

A file containing a class definition imports its own interface:

#import "ClassName.h"

@implementation ClassName
method definitions
@end

Categories

A category is declared in much the same way as a class. The interface file that declares the class must
be imported:

#import "ClassName.h"

@interface ClassName (CategoryName) < protocol list >
method declarations
@end

The protocol list and method declarations are optional. If any protocols are listed, the header files
where they’re declared must also be imported.

Like a class definition, a file containing a category definition imports its own interface:

#import "CategoryName.h"

@implementation ClassName (CategoryName)
method definitions
@end

122 Classes
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Language Summary

Formal Protocols

Formal protocols are declared using the @protocol directive:

@protocol ProtocolName < protocol list >
method declarations
@end

The list of incorporated protocols and the method declarations are optional. The protocol must import
the header files that declare any protocols it incorporates.

You can create a forward reference to a protocol using the @protocol directive in the following
manner:

@protocol ProtocolName;

Within source code, protocols are referred to using the similar @protocol() directive, where the
parentheses enclose the protocol name.

Protocol names listed within angle brackets (<...>) are used to do three different things:

 ■ In a protocol declaration, to incorporate other protocols (as shown earlier)

 ■ In a class or category declaration, to adopt the protocol (as shown in “Classes” (page 122) and
“Categories” (page 122))

 ■ In a type specification, to limit the type to objects that conform to the protocol

Within protocol declarations, these type qualifiers support remote messaging:

DefinitionType Qualifier

The method is for asynchronous messages and has no valid return type.oneway

The argument passes information to the remote receiver.in

The argument gets information returned by reference.out

The argument both passes information and gets information.inout

A copy of the object, not a proxy, should be passed or returned.bycopy

A reference to the object, not a copy, should be passed or returned.byref

Method Declarations

The following conventions are used in method declarations:

 ■ A “+” precedes declarations of class methods.

 ■ A “-” precedes declarations of instance methods.

Formal Protocols 123
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Language Summary

 ■ Argument and return types are declared using the C syntax for type casting.

 ■ Arguments are declared after colons (:), for example:

- (void)setWidth:(int)newWidth height:(int)newHeight

Typically, a label describing the argument precedes the colon—the following example is valid
but is considered bad style:

- (void)setWidthAndHeight:(int)newWidth :(int)newHeight

Both labels and colons are considered part of the method name.

 ■ The default return and argument type for methods is id, not int as it is for functions. (However,
the modifier unsigned when used without a following type always means unsigned int.)

Method Implementations

Each method implementation is passed two hidden arguments:

 ■ The receiving object (self).

 ■ The selector for the method (_cmd).

Within the implementation, both self and super refer to the receiving object. super replaces self
as the receiver of a message to indicate that only methods inherited by the implementation should
be performed in response to the message.

Methods with no other valid return typically return void.

Naming Conventions

The names of files that contain Objective-C source code have the .m extension. Files that declare class
and category interfaces or that declare protocols have the .h extension typical of header files.

Class, category, and protocol names generally begin with an uppercase letter; the names of methods
and instance variables typically begin with a lowercase letter. The names of variables that hold
instances usually also begin with lowercase letters.

In Objective-C, identical names that serve different purposes don’t clash. Within a class, names can
be freely assigned:

 ■ A class can declare methods with the same names as methods in other classes.

 ■ A class can declare instance variables with the same names as variables in other classes.

 ■ An instance method can have the same name as a class method.

 ■ A method can have the same name as an instance variable.

 ■ Method names beginning with “_”, a single underscore character, are reserved for use by Apple.

124 Method Implementations
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Language Summary

Likewise, protocols and categories of the same class have protected name spaces:

 ■ A protocol can have the same name as a class, a category, or anything else.

 ■ A category of one class can have the same name as a category of another class.

However, class names are in the same name space as global variables and defined types. A program
can’t have a global variable with the same name as a class.

Naming Conventions 125
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Language Summary

126 Naming Conventions
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Language Summary

This appendix presents a formal grammar for the Objective-C extensions to the C language—as the
Objective-C language is implemented for the Cocoa development environment. It adds to the grammar
for ANSI standard C found in Appendix A of The C Programming Language (second edition, 1988) by
Brian W. Kernighan and Dennis M. Ritchie, published by Prentice Hall, and should be read in
conjunction with that book.

The Objective-C extensions introduce some new symbols (such as class interface), but also make use
of symbols (such as function definition) that are explained in the standard C grammar. The symbols
mentioned but not explained here are listed below:

compound-statement
constant
declaration
declaration-list
enum-specifier
expression
function-definition
identifier
parameter-type-list
string
struct-declaration-list
struct-or-union
typedef-name
type-name

Of these, identifier and string are undefined terminal symbols. Objective-C adds no undefined terminal
symbols of its own.

Two notational conventions used here differ from those used in The C Programming Language:

 ■ Literal symbols are shown in code font.

 ■ Brackets enclose optional elements.

Otherwise, this appendix attempts to follow the conventions of The C Programming Language. Each
part of the grammar consists of a symbol and a colon in bold and a list of mutually-exclusive
possibilities for expanding the symbol. For example:

127
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Grammar

receiver:
expression
class-name
super

However, there is an exception: Even though they’re not mutually exclusive, the constituents of
classes, categories, protocols, and blocks are listed on separate lines to clearly show the ordering of
elements. For example:

protocol-declaration:
@protocol protocol-name
[protocol-reference-list]
[interface-declaration-list]
@end

This exception to the general rule is easily recognized since each list terminates with @end or the
symbol name ends with “-block”.

There are six entry points where the Objective-C language modifies the rules defined for standard C:

 ■ External declarations

 ■ Type specifiers

 ■ Type qualifiers

 ■ Primary expressions

 ■ Exceptions

 ■ Synchronization

This appendix is therefore divided into six sections corresponding to these points. Where a rule in
the standard C grammar is modified by an Objective-C extension, the entire rule is repeated in its
modified form.

External Declarations

external-declaration:
function-definition
declaration
class-interface
class-implementation
category-interface
category-implementation
protocol-declaration
protocol-declaration-list
class-declaration-list
class-interface:
@interfaceclass-name [: superclass-name]

128 External Declarations
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Grammar

[protocol-reference-list]
[instance-variables]
[interface-declaration-list]
@end

class-implementation:
@implementation class-name [: superclass-name]
[implementation-definition-list]
@end

category-interface:
@interface class-name (category-name)
[protocol-reference-list]
[interface-declaration-list]
@end

category-implementation:
@implementation class-name (category-name)
[implementation-definition-list]
@end

protocol-declaration:
@protocol protocol-name
[protocol-reference-list]
[interface-declaration-list]
@end

protocol-declaration-list:
@protocol protocol-list ;
class-declaration-list:
@class class-list ;
class-list:
class-name
class-list, class-name
protocol-reference-list:
< protocol-list >
protocol-list:
protocol-name
protocol-list, protocol-name
class-name:
identifier
superclass-name:
identifier
category-name:
identifier
protocol-name:
identifier
instance-variables:
{ instance-variable-declaration }

instance-variable-declaration:

External Declarations 129
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Grammar

visibility-specification
struct-declaration-list instance-variables
instance-variable-declaration visibility-specification
instance-variable-declaration struct-declaration-list instance-variables
visibility-specification:
@private

@protected

@public

interface-declaration-list:
declaration
method-declaration
interface-declaration-list declaration
interface-declaration-list method-declaration
method-declaration:
class-method-declaration
instance-method-declaration
class-method-declaration:
+ [method-type] method-selector;
instance-method-declaration:
– [method-type] method-selector;
implementation-definition-list:
function-definition
declaration
method-definition
implementation-definition-list function-definition
implementation-definition-list declaration
implementation-definition-list method-definition
method-definition:
class-method-definition
instance-method-definition
class-method-definition:
+ [method-type] method-selector [declaration-list] compound-statement
instance-method-definition:
– [method-type] method-selector [declaration-list] compound-statement
method-selector:
unary-selector
keyword-selector [, ...]
keyword-selector [, parameter-type-list]
unary-selector:
selector
keyword-selector:
keyword-declarator
keyword-selector keyword-declarator
keyword-declarator:
: [method-type] identifier

130 External Declarations
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Grammar

selector: [[method-type] method-type] identifier
selector:
identifier
method-type:
(type-name)

Type Specifiers

type-specifier:
void

char

short

int

long

float

double

signed

unsigned

id [protocol-reference-list]
class-name [protocol-reference-list]
struct-or-union-specifier
enum-specifier
typedef-name
struct-or-union-specifier:
struct-or-union [identifier] { struct-declaration-list }
struct-or-union [identifier] { @defs (class-name) }

struct-or-union identifier

Type Qualifiers

type-qualifier:
const

volatile

protocol-qualifier
protocol-qualifier:
in

out

inout

bycopy

byref

oneway

Type Specifiers 131
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Grammar

Primary Expressions

primary-expression:
identifier
constant
string
(expression)

self

message-expression
selector-expression
protocol-expression
encode-expression
message-expression:
[receiver message-selector]
receiver:
expression
class-name
super

message-selector:
selector
keyword-argument-list
keyword-argument-list:
keyword-argument
keyword-argument-list keyword-argument
keyword-argument:
selector : expression
: expression
selector-expression:
@selector (selector-name)
selector-name:
selector
keyword-name-list
keyword-name-list:
keyword-name
keyword-name-list keyword-name
keyword-name:
selector:
:

protocol-expression:
@protocol (protocol-name)
encode-expression:
@encode (type-name)

132 Primary Expressions
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Grammar

Exceptions

exception-declarator:
declarator
try-statement:
@trystatement
catch-statement:
@catch (exception-declarator)statement
finally-statement:
@finallystatement
throw-statement:
@throw (identifier)
try-block:
try-statement
catch-statement
[finally-statement]

Synchronization

synchronized-statement:
@synchronized (identifier) statement

Exceptions 133
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Grammar

134 Synchronization
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Grammar

This table describes the changes to The Objective-C Programming Language.

NotesDate

Corrected minor typographical errors.2007-03-06

Clarified the discussion of sending messages to nil.2007-02-08

Clarified the description of Code Listing 3-3.2006-12-05

Corrected formatting and specification errors in "Grammar."2006-11-07

Moved the discussion of memory management to "Memory Management
Programming Guide for Cocoa."

2006-05-23

Corrected minor typographical errors.2006-04-04

Corrected minor typographical errors.2006-02-07

Clarified use of the static specifier for global variables used by a class.2006-01-10

Clarified effect of sending messages to nil; noted use of ".mm" extension
to signal Objective-C++ to compiler.

2005-10-04

Corrected typo in language grammar specification and modified a code
example.

2005-04-08

Corrected the grammar for the protocol-declaration-list declaration in
“External Declarations” (page 128).

Clarified example in Listing 3-6 (page 90).

Removed function and data structure reference. Added exception and
synchronization grammar. Made technical corrections and minor editorial
changes.

2004-08-31

Moved function and data structure reference to Objective-C Runtime
Reference.

Added examples of thread synchronization approaches to “Synchronizing
Thread Execution” (page 88).

135
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

NotesDate

Clarified when the initialize method is called and provided a template
for its implementation in “Initializing a Class Object” (page 52).

Added exception and synchronization grammar to “Grammar” (page 127).

ReplacedconformsTo:withconformsToProtocol: throughout document.

Corrected typos in Listing 3-2 (page 87).2004-02-02

Added initialization code for methodLists in “Creating an Objective-C
class definition” for compatibility with Mac OS X versions 10.2 and 10.3.

Corrected definition of id.2003-09-16

Documented the Objective-C exception and synchronization support
available in Mac OS X version 10.3 and later in “Exception Handling and
Thread Synchronization” (page 86).

2003-08-14

Documented the language support for concatenating constant strings in
“Compiler Directives” (page 120).

Moved “Object Ownership” (page 103) before “Retaining Objects” (page
104).

Corrected the descriptions for the objc_ivar structure and the
objc_ivar_list structure.

Changed the font of function result in class_getInstanceMethod and
class_getClassMethod.

Corrected definition of the term conform in the glossary.

Corrected definition of method_getArgumentInfo.

Renamed from Inside Mac OS X: The Objective-C Programming Language to
The Objective-C Programming Language.

Documented the language support for declaring constant strings. Fixed
several typographical errors. Added an index.

2003-01-01

Mac OS X 10.1 introduces a compiler for Objective-C++, which allows C++
constructs to be called from Objective-C classes, and vice versa.

2002-05-01

Added runtime library reference material.

Fixed a bug in the Objective-C language grammar’s description of instance
variable declarations.

Updated grammar and section names throughout the book to reduce
ambiguities, passive voice, and archaic tone. Restructured some sections
to improve cohesiveness.

136
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

NotesDate

Renamed from Object Oriented Programming and the Objective-C Language
to Inside Mac OS X: The Objective-C Programming Language.

137
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

138
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

abstract class A class that’s defined solely so that
other classes can inherit from it. Programs don’t
use instances of an abstract class, only of its
subclasses.

abstract superclass Same as “abstract class”.

adopt In the Objective-C language, a class is said
to adopt a protocol if it declares that it implements
all the methods in the protocol. Protocols are
adopted by listing their names between angle
brackets in a class or category declaration.

anonymous object An object of unknown class.
The interface to an anonymous object is published
through a protocol declaration.

Application Kit A Cocoa framework that
implements an application's user interface. The
Application Kit provides a basic program
structure for applications that draw on the screen
and respond to events.

archiving The process of preserving a data
structure, especially an object, for later use. An
archived data structure is usually stored in a file,
but it can also be written to memory, copied to
the pasteboard, or sent to another application. In
Cocoa, archiving involves writing data to an
NSData object.

asynchronous message A remote message that
returns immediately, without waiting for the
application that receives the message to respond.
The sending application and the receiving
application act independently, and are therefore
not “in sync.” See also “synchronous message”.

category In the Objective-C language, a set of
method definitions that is segregated from the
rest of the class definition. Categories can be used
to split a class definition into parts or to add
methods to an existing class.

class In the Objective-C language, a prototype
for a particular kind of object. A class definition
declares instance variables and defines methods
for all members of the class. Objects that have the
same types of instance variables and have access
to the same methods belong to the same class. See
also “class object”.

class method In the Objective-C language, a
method that can operate on class objects rather
than instances of the class.

class object In the Objective-C language, an object
that represents a class and knows how to create
new instances of the class. Class objects are created
by the compiler, lack instance variables, and can’t
be statically typed, but otherwise behave like all
other objects. As the receiver in a message
expression, a class object is represented by the
class name.

Cocoa An advanced object-oriented development
platform on Mac OS X. Cocoa is a set of
frameworks with programming interfaces in both
Java and Objective-C.

compile time The time when source code is
compiled. Decisions made at compile time are
constrained by the amount and kind of
information encoded in source files.

conform In the Objective-C language, a class is
said to conform to a protocol if it (or a superclass)
implements the methods declared in the protocol.
An instance conforms to a protocol if its class does.

139
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

Glossary

Thus, an instance that conforms to a protocol can
perform any of the instance methods declared in
the protocol.

content view In the Application Kit, the NSView
object that’s associated with the content area of a
window—all the area in the window excluding
the title bar and border. All other views in the
window are arranged in a hierarchy beneath the
content view.

delegate An object that acts on behalf of another
object.

designated initializer The init... method that
has primary responsibility for initializing new
instances of a class. Each class defines or inherits
its own designated initializer. Through messages
to self, other init... methods in the same class
directly or indirectly invoke the designated
initializer, and the designated initializer, through
a message to super, invokes the designated
initializer of its superclass.

dispatch table Objective-C runtime table that
contains entries that associate method selectors
with the class-specific addresses of the methods
they identify.

distributed objects Architecture that facilitates
communication between objects in different
address spaces.

dynamic allocation Technique used in C-based
languages where the operating system provides
memory to a running application as it needs it,
instead of when it launches.

dynamic binding Binding a method to a
message—that is, finding the method
implementation to invoke in response to the
message—at runtime, rather than at compile time.

dynamic typing Discovering the class of an object
at runtime rather than at compile time.

encapsulation Programming technique that hides
the implementation of an operation from its users
behind an abstract interface. This allows the
implementation to be updated or changed without
impacting the users of the interface.

event The direct or indirect report of external
activity, especially user activity on the keyboard
and mouse.

factory Same as “class object”.

factory method Same as “class method”.

factory object Same as “class object”.

formal protocol In the Objective-C language, a
protocol that’s declared with the @protocol
directive. Classes can adopt formal protocols,
objects can respond at runtime when asked if they
conform to a formal protocol, and instances can
be typed by the formal protocols they conform to.

framework A way to package a logically-related
set of classes, protocols and functions together
with localized strings, on-line documentation, and
other pertinent files. Cocoa provides the
Foundation framework and the Application Kit
framework, among others. Frameworks are
sometimes referred to as “kits.”

gdb The standard Mac OS X debugging tool.

id In the Objective-C language, the general type
for any kind of object regardless of class. id is
defined as a pointer to an object data structure. It
can be used for both class objects and instances of
a class.

implementation Part of an Objective-C class
specification that defines its implementation. This
section defines both public methods as well as
private methods—methods that are not declared
in the class’s interface.

informal protocol In the Objective-C language,
a protocol declared as a category, usually as a
category of the NSObject class. The language gives
explicit support to formal protocols, but not to
informal ones.

inheritance In object-oriented programming, the
ability of a superclass to pass its characteristics
(methods and instance variables) on to its
subclasses.

inheritance hierarchy In object-oriented
programming, the hierarchy of classes that’s
defined by the arrangement of superclasses and

140
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

subclasses. Every class (except root classes such
as NSObject) has a superclass, and any class may
have an unlimited number of subclasses. Through
its superclass, each class inherits from those above
it in the hierarchy.

instance In the Objective-C language, an object
that belongs to (is a member of) a particular class.
Instances are created at runtime according to the
specification in the class definition.

instance method In the Objective-C language,
any method that can be used by an instance of a
class rather than by the class object.

instance variable In the Objective-C language,
any variable that’s part of the internal data
structure of an instance. Instance variables are
declared in a class definition and become part of
all objects that are members of or inherit from the
class.

interface Part of an Objective-C class specification
that declares its public interface, which include
its superclass name, instances variables, and
public-method prototypes.

Interface Builder A tool that lets you graphically
specify your application’s user interface. It sets
up the corresponding objects for you and makes
it easy for you to establish connections between
these objects and your own code where needed.

introspection The ability of an object to reveal
information about itself as an object—such as its
class and superclass, the messages it can respond
to, and the protocols it conforms to.

key window The window in the active
application that receives keyboard events and is
the focus of user activity.

link time The time when files compiled from
different source modules are linked into a single
program. Decisions made by the linker are
constrained by the compiled code and ultimately
by the information contained in source code.

localize To adapt an application to work under
various local conditions—especially to have it use
a language selected by the user. Localization
entails freeing application code from
language-specific and culture-specific references

and making it able to import localized resources
(such as character strings, images, and sounds).
For example, an application localized in Spanish
would display “Salir” in the application menu. In
Italian, it would be “Esci,” in German “Verlassen,”
and in English “Quit.”

main event loop The principal control loop for
applications that are driven by events. From the
time it’s launched until the moment it’s
terminated, an application gets one keyboard or
mouse event after another from the Window
Manager and responds to them, waiting between
events if the next event isn’t ready. In the
Application Kit, the NSApplication object runs
the main event loop.

menu A small window that displays a list of
commands. Only menus for the active application
are visible on-screen.

message In object-oriented programming, the
method selector (name) and accompanying
arguments that tell the receiving object in a
message expression what to do.

message expression In object-oriented
programming, an expression that sends a message
to an object. In the Objective-C language, message
expressions are enclosed within square brackets
and consist of a receiver followed by a message
(method selector and arguments).

method In object-oriented programming, a
procedure that can be executed by an object.

multiple inheritance In object-oriented
programming, the ability of a class to have more
than one superclass—to inherit from different
sources and thus combine separately-defined
behaviors in a single class. Objective-C doesn’t
support multiple inheritance.

mutex Also known as mutual exclusion
semaphore. Used to synchronize thread execution.

name space A logical subdivision of a program
within which all names must be unique. Symbols
in one name space won’t conflict with identically
named symbols in another name space. For
example, in Objective-C, the instance methods of
each class are in a separate name space, as are the
class methods and instance variables.

141
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

nil In the Objective-C language, an object idwith
a value of 0.

object A programming unit that groups together
a data structure (instance variables) and the
operations (methods) that can use or affect that
data. Objects are the principal building blocks of
object-oriented programs.

outlet An instance variable that points to another
object. Outlet instance variables are a way for an
object to keep track of the other objects to which
it may need to send messages.

polymorphism In object-oriented programming,
the ability of different objects to respond, each in
its own way, to the same message.

procedural programming language A language,
like C, that organizes a program as a set of
procedures that have definite beginnings and
ends.

protocol In the Objective-C language, the
declaration of a group of methods not associated
with any particular class. See also “formal
protocol” and “informal protocol”.

receiver In object-oriented programming, the
object that is sent a message.

reference counting Memory-management
technique in which each entity that claims
ownership of an object increments the object’s
reference count and later decrements it. When the
object’s reference count reaches zero, the object is
deallocated. This technique allows one instance
of an object to be safely shared among several
other objects.

remote message A message sent from one
application to an object in another application.

remote object An object in another application,
one that’s a potential receiver for a remote
message.

runtime The time after a program is launched
and while it’s running. Decisions made at runtime
can be influenced by choices the user makes.

selector In the Objective-C language, the name
of a method when it’s used in a source-code
message to an object, or the unique identifier that
replaces the name when the source code is
compiled. Compiled selectors are of type SEL.

static typing In the Objective-C language, giving
the compiler information about what kind of
object an instance is, by typing it as a pointer to a
class.

subclass In the Objective-C language, any class
that’s one step below another class in the
inheritance hierarchy. Occasionally used more
generally to mean any class that inherits from
another class, and sometimes also used as a verb
to mean the process of defining a subclass of
another class.

superclass In the Objective-C language, a class
that’s one step above another class in the
inheritance hierarchy; the class through which a
subclass inherits methods and instance variables.

surrogate An object that stands in for and
forwards messages to another object.

synchronous message A remote message that
doesn’t return until the receiving application
finishes responding to the message. Because the
application that sends the message waits for an
acknowledgment or return information from the
receiving application, the two applications are
kept “in sync.” See also “asynchronous message”.

142
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

Symbols

+ (plus sign) before method names 55
- (minus sign) before method names 55
// marker comment 120
@"" directive (string declaration) 121
_cmd 67, 85, 124
__cplusplus preprocessor constant 91
__OBJC__ preprocessor constant 91

A

abstract classes 47, 76
abstraction in program design 16, 23–25
access to methods 21
action messages 66
adaptation 45
adopting a protocol 78, 123
alloc method 50, 97
allocating memory 102
allocWithZone: method 97
anonymous objects 76
ANSI C 13
argument types

and dynamic binding 29, 84
and selectors 84
declaring 55
encoding 115
in declarations 124

arguments
during initialization 98
hidden 67, 124
in remote messages 113
specifying 41
type modifiers 113
variable 41

autorelease method 104

B

behaviors
abstracting 20
defined 15
encapsulating 16
in object model 18
inheriting 26, 108
modifying 26
of Cocoa objects 110
of NSObject class 96
overriding 114

BOOL data type 120
bycopy type qualifier 117, 123
byref type qualifier 117, 123

C

.c extension 39
C language support 9
C++ language support 89–93
@catch() directive 86, 87, 121
categories 72–74

See also subclasses
and informal protocols 77
declaration of 72–73
declaring 122
defining 122
implementation of 72–73
loading dynamically 109
naming conventions 125
of root classes 73
scope of variables 72
uses of 73, 77

Class data type 49, 119
@class directive 56, 121
class method 96
class methods

and selectors 64
and static variables 52
declaration of 55, 123

143
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

Index

defined 49
of root class 53
using self 71

class object
defined 44
initializing 52

class objects 49–53
and root class 53
and root instance methods 53, 74
and static typing 53
as receivers of messages 54
variables and 51

classes 20–23, 44–54
root. See root classes
abstract 47
and inheritance 25, 44, 46
and instances 44
and namespaces 125
declaring 55–57, 122, 124
defining 54–61, 122
designated initializer of 100
examples 39
extending 71
identifying 40
implementation of 54, 57
instance methods 49
interfaces 54
introspection 40, 48
loading dynamically 109
naming conventions 124
subclasses 44
superclass 44
uses of 53

comment marker (//) 120
compiler directives, summary of 120
conforming to protocols 74
conformsToProtocol: method 96, 111
const type qualifier 117
conventions of this book 10–11
customization with class objects 50–51

D

data members. See instance variables
data structures. See instance variables
data types defined by Objective-C 119
dealloc method 104
deallocating objects 104
@defs() directive 85, 121
designated initializer 100–102
development environment 9
directives, summary of 120–121

dispatch tables 62
dispatching messages 62
distributed objects 110
doesNotRecognizeSelector: method 106
dynamic binding 28–30, 43–44
dynamic loading 30, 109
dynamic typing 28, 40

E

encapsulation 23–24
@encode() directive 115, 121
encoding methods 115
@end directive 55, 57, 120
events 33
exceptions 86–88

catching 87
clean-up processing 88
compiler switch 86
exception handler 87
nesting exception handlers 88
NSException 86, 87
synchronization 89
system requirements 86
throwing 87, 88

extrinsic outlets 33

F

@finally directive 86, 88, 121
formal protocols 77, 123

See also protocols
forwarding messages 105–109
forwardInvocation: method 105
frameworks 34, 37
functions 16, 22

G

GNU Compiler Collection 39

H

.h extension 54, 124
hidden arguments 67, 124

144
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

I N D E X

I

id data type 119
and method declarations 124
and static typing 48, 82
as default method return type 55
of class objects 49
overview 40

IMP data type 119
@implementation directive 57, 120
implementation files 54, 57
implementation

and program design 15–18, 36
of classes 57–61, 122
of methods 58, 124

#import directive 56, 120
in type qualifier 117, 123
#include directive 56
#include directive See #import directive
informal protocols 77

See also protocols
information hiding 23
inheritance 25–27, 44–47

and forwarding 108
and reusing code 37
of instance variables 98
of interface files 56
uses of 26–27

init method 50, 97
initialize method 52
initializing objects 70, 102
inout type qualifier 117, 123
instance methods 49

and selectors 64
declaration of 123
declaring 55
naming conventions 124
syntax 55

instance variables
declaring 46, 55, 121
defined 18, 39
encapsulating 23
encapsulation 59
inheriting 46, 61
initializing 98
naming conventions 124
of the receiver 42
outlets 31–32
public access to 86, 121
referring to 58
releasing 105
scope of 39, 59–61, 121

instances of a class

allocating 97
creating 50
defined 21, 44
initializing 50, 97–103

instances of the class
See also objects

Interface Builder 30
@interface directive 55, 120, 122
interface files 56, 122
intrinsic outlets 33
introspection 40, 48
isa instance variable 40, 50, 63
isKindOfClass: method 48, 54, 96
isMemberOfClass: method 48, 96

L

late binding 29
<$endrange>Objective-C 13
<$startrange>Objective-C 13

M

.m extension 39, 54, 124
memory management 96
memory

allocating 97, 102
deallocating 104

message expressions 41, 119
message receivers 20, 119
messages 19–20, 62–66

See also methods
and selectors 43
and static typing 83
asynchronous 112
binding 83
defined 19, 41, 119
encoding 115
forwarding 105–109
remote 109
sending 41, 42
synchronous 112
syntax 119
varying at runtime 44, 65

messaging 19–20, 62–71
avoiding errors 66
to remote objects 109–115

metaclass object 50
method implementations 58, 124
methodForSelector: method 85, 96

145
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

I N D E X

methods 39
See also behaviors
See also messages
adding with categories 72
address of 85
and selectors 43, 64
and variable arguments 56
argument types 64–65
arguments 84, 98
calling super 98
class methods 49
declaring 55, 123
encoding 115
hidden arguments 124
implementing 58, 124
inheriting 46
instance methods 49
naming conventions 124
overriding 47
return types 64, 84
returning values 40, 41
selecting 43
specifying arguments 41
using instance variables 58

minus sign (-) before method names 55
.mm extension 39
modularity of code 21, 30
multiple inheritance 107

N

name spaces 125
naming conventions 124
Nil constant 120
nil constant 40, 120
NO constant 120
NSBundle 109
NSClassFromString function 54
NSException 86, 87
NSInvocation 105
NSObject 44, 45, 96
NSSelectorFromString function 64
NSStringFromSelector function 64

O

objc_loadModules function 109
objc_msgSend function 62, 63
objc_object structure 62
object 40

object identifiers 40
object-oriented programming 13
Objective-C 9
Objective-C++ 89
objects 18–19, 39–40, 44

See also class objects, Protocol objects
allocating memory for 97
and ownership 103
and polymorphism 24
anonymous 76
autoreleasing 104
converting to structures 85
creating 50
customizing 50
data structure of 85
defined 15
defining 20
designated initializer 100
dynamic typing 40, 82
examples 39
initializing 50, 70, 97, 102
initializing a class object 52
instance variables 42
introspection 48
method inheritance 46
Protocol 78
reference counting 104
releasing 104
remote 76
retaining 104
static typing 82
surrogate 107–108

oneway type qualifier 117, 123
out type qualifier 117, 123
outlet instance variables 31–32
outlets 31–33

See also instance variables
overloading 24

See also polymorphism
overriding methods 26, 47

P

parameters. See arguments
performSelector: method 65
performSelector:withObject: method 65
performSelector:withObject:withObject:method

65
plus sign (+) before method names 55
polymorphism

and dynamic typing 28
and protocols 27

146
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

I N D E X

defined 24–25, 43
precompiled headers 56
preprocessor directives, summary of 120
@private directive 59, 121
procedures. See methods
@protected directive 60, 121
@protocol directive 81, 111, 120, 121, 123
Protocol objects 78
protocols 74–81

adopting 78, 80, 123
conforming to 74, 79, 80
declaring 74, 123
formal 77–78
forward references to 81, 123
incorporating other protocols 80–81, 123
informal 77
naming conventions 125
type checking 79
uses of 72, 74–81

proxy objects 108, 110
@public directive 60, 121

R

receivers of messages
and class names 54
defined 20, 119
in messaging expression 41
in messaging function 62
instance variables of 42

reference counting 104
release method 104
remote messages 110
remote objects 76
remote procedure calls (RPC) 112
respondsToSelector: method 66, 96
retain method 104
retaining objects 104
return types

and messaging 64
and statically typed objects 84
declaration of 55
encoding 115

reusability of code 17, 22–23, 37
root classes

See also NSObject
and class interface declarations 55
and inheritance 44
categories of 73
declaration of 122

runtime system
functions 96

overview 95

S

SEL data type 64, 119
@selector() directive 64, 121
selectors 64

and hidden arguments 67
and messaging errors 66
defined 43
in messaging function 62

self 67, 68, 71, 85, 124
Smalltalk 9
specialization 45
static type checking 83
static typing 82–85

and instance variables 59
in interface files 57
introduced 48
to inherited classes 84

strings, declaring 121
structures. See instance variables
subclasses 25–26, 44

See also categories
super variable 68, 70, 124
superclasses

See also abstract classes
and inheritance 44
defined 25
importing 56

surrogate objects 108
synchronization 88–89

compiler switch 86
exceptions 89
mutexes 88
system requirements 86

@synchronized() directive 88, 121

T

target-action paradigm 65–66
targets 66
this keyword 92
@throw directive 86, 87, 88, 121
@try directive 86, 121
type checking

class types 82, 83
protocol types 79

type encoding 115–117
type introspection 48

147
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

I N D E X

types defined by Objective-C 119

U

unsigned int data type 124

V

variable arguments 56
void data type 124

Y

YES constant 120

148
2007-03-06 | © 2007 Apple Inc. All Rights Reserved.

I N D E X

	The Objective-C Programming Language
	Contents
	Figures, Tables, and Listings
	Introduction
	Why Objective-C?
	Object-Oriented Programming
	Interface and Implementation
	The Object Model
	The Messaging Metaphor
	Classes
	Modularity
	Reusability

	Mechanisms Of Abstraction
	Encapsulation
	Polymorphism

	Inheritance
	Class Hierarchies
	Subclass Definitions
	Uses of Inheritance

	Dynamism
	Dynamic Typing
	Dynamic Binding
	Dynamic Loading

	Structuring Programs
	Outlet Connections
	Extrinsic and Intrinsic Connections
	Activating the Object Network

	Aggregation and Decomposition
	Models and Frameworks

	Structuring the Programming Task
	Collaboration
	Organizing Object-Oriented Projects
	Designing on a Large Scale
	Separating the Interface from the Implementation
	Modularizing the Work
	Keeping the Interface Simple
	Making Decisions Dynamically
	Inheriting Generic Code
	Reusing Tested Code

	The Language
	Objects
	id
	Dynamic Typing

	Object Messaging
	Message Syntax
	The Receiver’s Instance Variables
	Polymorphism
	Dynamic Binding

	Classes
	Inheritance
	The NSObject Class
	Inheriting Instance Variables
	Inheriting Methods
	Overriding One Method With Another
	Abstract Classes

	Class Types
	Static Typing
	Type Introspection

	Class Objects
	Creating Instances
	Customization With Class Objects
	Variables and Class Objects
	Initializing a Class Object
	Methods of the Root Class

	Class Names in Source Code

	Defining a Class
	The Interface
	Importing the Interface
	Referring to Other Classes
	The Role of the Interface

	The Implementation
	Referring to Instance Variables
	The Scope of Instance Variables

	How Messaging Works
	Selectors
	Methods and Selectors
	Method Return and Argument Types
	Varying the Message at Runtime
	The Target-Action Paradigm
	Avoiding Messaging Errors

	Hidden Arguments
	Messages to self and super
	An Example
	Using super
	Redefining self

	Extending Classes
	Categories—Adding Methods to Existing Classes
	Adding to a Class
	How Categories Are Used
	Categories of the Root Class

	Protocols—Declaring Interfaces for Others to Implement
	When to Use Protocols
	Methods for Others to Implement
	Declaring Interfaces for Anonymous Objects
	Non-Hierarchical Similarities
	Informal Protocols
	Formal Protocols
	Protocol Objects
	Conforming to a Protocol
	Type Checking
	Protocols Within Protocols
	Referring to Other Protocols

	Enabling Static Behaviors
	Static Typing
	Type Checking
	Return and Argument Types
	Static Typing to an Inherited Class

	Getting a Method Address
	Getting an Object Data Structure

	Exception Handling and Thread Synchronization
	Handling Exceptions
	Throwing Exceptions
	Processing Exceptions

	Synchronizing Thread Execution

	Using C++ With Objective-C
	Mixing Objective-C and C++ Language Features
	C++ Lexical Ambiguities and Conflicts

	The Runtime System
	Interacting with the Runtime System
	Allocating, Initializing, and Deallocating Objects
	Allocating and Initializing Objects
	The Returned Object
	Arguments
	Coordinating Classes
	The Designated Initializer
	Combining Allocation and Initialization

	Object Ownership
	Basic Ownership
	Marking Objects for Later Release
	Retaining Objects

	Deallocation

	Forwarding
	Forwarding and Multiple Inheritance
	Surrogate Objects
	Forwarding and Inheritance

	Dynamic Loading
	Remote Messaging
	Distributed Objects
	Language Support
	Synchronous and Asynchronous Messages
	Pointer Arguments
	Proxies and Copies

	Type Encodings

	Appendix A: Language Summary
	Messages
	Defined Types
	Preprocessor Directives
	Compiler Directives
	Classes
	Categories
	Formal Protocols
	Method Declarations
	Method Implementations
	Naming Conventions

	Appendix B: Grammar
	External Declarations
	Type Specifiers
	Type Qualifiers
	Primary Expressions
	Exceptions
	Synchronization

	Revision History
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	Y

