
121

6
The Basics of Efficient SQL

In the previous chapter we examined the basic syntax of SQL in
Oracle Database. This chapter will attempt to detail the most
simplistic aspects of SQL code tuning. In other words, we are going
to discuss what in SQL statements is good for performance and what
is not. The approach to performance in this chapter will be based on
a purely SQL basis. We want to avoid the nitty-gritty and internal
processing occurring in Oracle Database at this stage. It is essential
to understand the basic facts about how to write well-performing
SQL code first, without considering specific details of Oracle
software.

The most important rule of thumb with SQL statements, and
particularly SELECT statements, those most subject to tuning, is
what is commonly known as the “KISS” rule “Keep It Simple Stupid!”
The simpler your SQL statements are the faster they will be. There
are two reasons for this. Firstly, simple SQL statements are much
more easily tuned and secondly, the Optimizer will function a lot bet-
ter when assessing less complex SQL code. The negative effect of this
is granularity but this negative effect depends on how the application
is coded. For instance, connecting to and disconnecting from the
database for every SQL code statement is extremely inefficient.

Part of the approach in this chapter is to present SQL perform-
ance examples without bombarding the reader with the details of too
much theory and reference material. Any reference items such as
explanations of producing query plans will be covered later on in this
book.

So what this chapter will cover is mostly a general type of SQL
code tuning. Thus the title of this chapter: “The Basics of Efficient
SQL.” Let’s start with a brief look at the SELECT statement.

6.1 The SELECT Statement

It is always faster to SELECT exact column names. Thus using the
Employees schema

SELECT division_id, name, city, state, country FROM division;

is faster than

SELECT * FROM division;

Also since there is a primary key index on the Division table

SELECT division_id FROM division;

will only read the index file and should completely ignore the table
itself. Since the index contains only a single column and the table
contains five columns, reading the index is faster because there is less
physical space to traverse.

In order to prove these points we need to use the EXPLAIN PLAN
command. Oracle Database’s EXPLAIN PLAN command allows a
quick peek into how the Oracle Database Optimizer will execute an
SQL statement, displaying a query plan devised by the Optimizer.

The EXPLAIN PLAN command creates entries in the PLAN_TABLE
for a SELECT statement. The resulting query plan for the SELECT
statement following is shown after it. Various versions of the query
used to retrieve rows from the PLAN_TABLE, a hierarchical query,
can be found in Appendix B. In order to use the EXPLAIN PLAN
command statistics must be generated. Both the EXPLAIN PLAN
command and statistics will be covered in detail in Chapter 9.

EXPLAIN PLAN SET statement_id='TEST' FOR SELECT * FROM
division;

Query Cost Rows Bytes

SELECT STATEMENT on 1 10 460
TABLE ACCESS FULL on DIVISION 1 10 460

One thing important to remember about the EXPLAIN PLAN
command is it produces a listed sequence of events, a query plan.
Examine the following query and its query plan. The “Pos” or positional
column gives a rough guide to the sequence of events that the Optimizer
will follow. In general, events will occur listed in the query plan from
bottom to top, where additional indenting denotes containment.

6.1 The SELECT Statement 122

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT di.name, de.name, prj.name,
SUM(prj.budget-prj.cost)

FROM division di JOIN department de USING(division_id)
JOIN project prj USING(department_id)

GROUP BY di.name, de.name, prj.name
HAVING SUM(prj.budget-prj.cost) > 0;

Query Pos Cost Rows Bytes

SELECT STATEMENT on 97 97 250 17500
FILTER on 1
SORT GROUP BY on 1 97 250 17500
HASH JOIN on 1 24 10000 700000
TABLE ACCESS FULL on DIVISION 1 1 10 170
HASH JOIN on 2 3 100 3600
TABLE ACCESS FULL on DEPARTMENT 1 1 100 1900
TABLE ACCESS FULL on PROJECT 2 13 10000 340000

Now let’s use the Accounts schema. The Accounts schema has
some very large tables. Large tables show differences between the
costs of data retrievals more easily. The GeneralLedger table con-
tains over 700,000 rows at this point in time.

In the next example, we explicitly retrieve all columns from the
table using column names, similar to using SELECT * FROM
GeneralLedger. Using the asterisk probably involves a small over-
head in re-interpretation into a list of all column names, but this is
internal to Oracle Database and unless there are a huge number of
these types of queries this is probably negligible.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT generalledger_id,coa#,dr,cr,dte FROM
generalledger;

The cost of retrieving 752,740 rows is 493 and the GeneralLedger
table is read in its entirety indicated by “TABLE ACCESS FULL”.

Query Cost Rows Bytes

SELECT STATEMENT on 493 752740 19571240
TABLE ACCESS FULL on GENERALLEDGER 493 752740 19571240

Now we will retrieve only the primary key column from the
GeneralLedger table.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT generalledger_id FROM generalledger;

123 6.1 The SELECT Statement

Chapter 6

For the same number of rows the cost is reduced to 217 since the
byte value is reduced by reading the index only, using a form of a full
index scan. This means that only the primary key index is being read,
not the table.

Query Cost Rows Bytes

SELECT STATEMENT on 217 752740 4516440
INDEX FAST FULL SCAN on XPKGENERALLEDGER 217 752740 4516440

Here is another example using an explicit column name but this
one has a greater difference in cost from that of the full table scan.
This is because the column retrieved uses an index, which is physi-
cally smaller than the index for the primary key. The index on the
COA# column is consistently 5 bytes in length for all rows. For the
primary key index only the first 9,999 rows have an index value of
less than 5 bytes in length.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT coa# FROM generalledger;

Query Cost Rows Bytes

SELECT STATEMENT on 5 752740 4516440
INDEX FAST FULL SCAN on XFK_GL_COA# 5 752740 4516440

Following are two interesting examples utilizing a composite index.
The structure of the index is built as the SEQ# column contained
within the CHEQUE_ID column (CHEQUE_ID + SEQ#) and not the
other way around. In older versions of Oracle Database this probably
would have been a problem. The Oracle9i Database Optimizer is now
much improved when matching poorly ordered SQL statement
columns to existing indexes. Both examples use the same index. The
order of columns is not necessarily a problem in Oracle9i Database.

Oracle Database 10g has Optimizer improvements such as less
of a need for SQL code statements to be case sensitive.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT cheque_id, seq# FROM cashbookline;

Query Cost Rows Bytes

SELECT STATEMENT on 65 188185 1505480
INDEX FAST FULL SCAN on XPKCASHBOOKLINE 65 188185 1505480

6.1 The SELECT Statement 124

10g

It can be seen that even with the columns selected in the reverse
order of the index, the index is still used.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT seq#,cheque_id FROM cashbookline;

Query Cost Rows Bytes

SELECT STATEMENT on 65 188185 1505480
INDEX FAST FULL SCAN on
XPKCASHBOOKLINE 65 188185 1505480

The GeneralLedger table has a large number of rows. Now let’s
examine the idiosyncrasies of very small tables. There are some dif-
ferences between the behavior of SQL when dealing with large and
small tables.

In the next example, the Stock table is small and thus the costs of
reading the table or the index are the same. The first query, doing the
full table scan, reads around 20 times more physical space but the
cost is the same. When tables are small the processing speed may not
be better when using indexes. Additionally when joining tables
the Optimizer may very well choose to full scan a small static table
rather than read both index and table. The Optimizer may select the
full table scan as being quicker. This is often the case with generic
static tables containing multiple types since they are typically read
more often.

EXPLAIN PLAN SET statement_id='TEST' FOR SELECT * FROM
stock;

Query Cost Rows Bytes

SELECT STATEMENT on 1 118 9322
TABLE ACCESS FULL on STOCK 1 118 9322

EXPLAIN PLAN SET statement_id='TEST' FOR SELECT stock_id
FROM stock;

Query Cost Rows Bytes

SELECT STATEMENT on 1 118 472
INDEX FULL SCAN on XPKSTOCK 1 118 472

So that is a brief look into how to tune simple SELECT state-
ments. Try to use explicit columns and try to read columns in index
orders if possible, even to the point of reading indexes and not
tables.

125 6.1 The SELECT Statement

Chapter 6

6.1.1 A Count of Rows in the Accounts Schema

I want to show a row count of all tables in the Accounts schema I
have in my database. If you remember we have already stated
that larger tables are more likely to require use of indexes and
smaller tables are not. Since the Accounts schema has both large
and small tables, SELECT statements and various clauses executed
against different tables will very much affect how those different
tables should be accessed in the interest of good performance.
Current row counts for all tables in the Accounts schema are shown
in Figure 6.1.

� Accounts schema row counts vary throughout this book since the
database is continually actively adding rows and occasionally
recovered to the initial state shown in Figure 6.1. Relative row
counts between tables remain constant.

6.1 The SELECT Statement 126

Figure 6.1
Row Counts
of Accounts

Schema Tables

6.1.2 Filtering with the WHERE Clause

Filtering the results of a SELECT statement with a WHERE clause
implies retrieving only a subset of rows from a larger set of rows.
The WHERE clause can be used to either include wanted rows,
exclude unwanted rows or both.

Once again using the Employees schema, in the following SQL
statement we filter rows to include only those rows we want,
retrieving only those rows with PROJECTTYPE values starting with
the letter “R”.

SELECT * FROM projecttype WHERE name LIKE 'R%';

Now we do the opposite and filter out rows we do not want. We
get everything with values not starting with the letter “R”.

SELECT * FROM projecttype WHERE name NOT LIKE 'R%';

How does the WHERE clause affect the performance of a SELECT
statement? If the sequence of expression comparisons in a WHERE
clause can match an index it should. The WHERE clause in the
SELECT statement above does not match an index and thus the
whole table will be read. Since the Employees schema ProjectType
table is small, having only 11 rows, this is unimportant. However, in
the case of the Accounts schema, where many of the tables have large
numbers of rows, avoiding full table scans, and forcing index read-
ing is important. Following is a single WHERE clause comparison
condition example SELECT statement. We will once again show the
cost of the query using the EXPLAIN PLAN command. This query
does an exact match on a very large table by applying an exact value
to find a single row. Note the unique index scan and the low cost of
the query.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM stockmovement WHERE stockmovement_id =
5000;

Query Cost Rows Bytes

SELECT STATEMENT on 3 1 24
TABLE ACCESS BY INDEX ROWID on
STOCKMOVEMENT 3 1 24
INDEX UNIQUE SCAN on
XPKSTOCKMOVEMENT 2 1

Now let’s compare the query above with an example which uses
another single column index but searches for many more rows than
a single row. This example consists of two queries. The first query
gives us the WHERE clause literal value for the second query. The
result of the first query is displayed here.

127 6.1 The SELECT Statement

Chapter 6

SQL> SELECT coa#, COUNT(coa#) “Rows” FROM generalledger
GROUP BY coa#;

COA# Rows

30001 310086
40003 66284
41000 173511
50001 169717
60001 33142

Now let’s look at a query plan for the second query with the
WHERE clause filter applied. The second query shown next finds all
the rows in one of the groups listed in the result shown above.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM generalledger WHERE coa# = 40003;

Query Cost Rows Bytes

SELECT STATEMENT on 493 150548 3914248
TABLE ACCESS FULL on GENERALLEDGER 493 150548 3914248

The query above has an interesting result because the table is fully
scanned. This is because the Optimizer considers it more efficient to
read the entire table rather than use the index on the COA# column
to find specific columns in the table. This is because the WHERE
clause will retrieve over 60,000 rows, just shy of 10% of the entire
GeneralLedger table. Over 10% is enough to trigger the Optimizer
to execute a full table scan.

In comparison to the above query the following two queries read
a very small table, the first with a unique index hit, and the second
with a full table scan as a result of the range comparison condition (<).
In the second query, if the table were much larger possibly the
Optimizer would have executed an index range scan and read the
index file. However, since the table is small the Optimizer considers
reading the entire table as being faster than reading the index to find
what could be more than a single row.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM category WHERE category_id = 1;

Query Cost Rows Bytes

SELECT STATEMENT on 1 1 12
TABLE ACCESS BY INDEX ROWID on CATEGORY 1 1 12
INDEX UNIQUE SCAN on XPKCATEGORY 1

6.1 The SELECT Statement 128

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM category WHERE category_id < 2;

The costs of both index use and the full table scan are the same
because the table is small.

Query Cost Rows Bytes

SELECT STATEMENT on 1 1 12
TABLE ACCESS FULL on CATEGORY 1 1 12

So far we have looked at WHERE clauses containing single com-
parison conditions. In tables where multiple column indexes exist
there are other factors to consider. The following two queries
produce exactly the same result. Note the unique index scan on the
primary key for both queries. As with the ordering of index columns
in the SELECT statement, in previous versions of Oracle it is possi-
ble that the same result would not have occurred for the second
query. This is because in the past the order of table column compar-
ison conditions absolutely had to match the order of columns in an
index. In the past the second query shown would probably have
resulted in a full table scan. The Optimizer is now more intelligent in
Oracle9i Database.

Oracle Database 10g has Optimizer improvements such as less
of a need for SQL code statements to be case sensitive.

We had a similar result previously in this chapter using the
CHEQUE_ID and SEQ# columns on the CashbookLine table. The
same applies to the WHERE clause.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM ordersline WHERE order_id = 3137 AND
seq# = 1;

Query Cost Rows Bytes

SELECT STATEMENT on 3 1 17
TABLE ACCESS BY INDEX ROWID on
ORDERSLINE 3 1 17
INDEX UNIQUE SCAN on XPKORDERSLINE 2 1

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM ordersline WHERE seq# = 1 AND
order_id= 3137;

129 6.1 The SELECT Statement

Chapter 6

10g

Query Cost Rows Bytes

SELECT STATEMENT on 3 1 17
TABLE ACCESS BY INDEX ROWID on
ORDERSLINE 3 1 17
INDEX UNIQUE SCAN on XPKORDERSLINE 2 1

Let’s now try a different variation. The next example query
should only use the second column in the composite index on the
STOCK_ID and SUPPLIER_ID columns on the StockSource table.
What must be done first is to find a StockSource row uniquely iden-
tified by both the STOCK_ID and SUPPLIER_ID columns. Let’s sim-
ply create a unique row. I have not used sequences in the INSERT
statements shown because I want to preserve the values of the
sequence objects.

� The names of the columns in the Stock table Stock.MIN and
Stock.MAX refer to minimum and maximum Stock item values
in the Stock table, not the MIN and MAX Oracle SQL functions.

INSERT INTO stock(stock_id, category_id, text, min, max)
VALUES((SELECT MAX(stock_id)+1 FROM
stock),1,'text',1,100);

INSERT INTO supplier(supplier_id, name, ticker)
VALUES((SELECT MAX(supplier_id)+1 FROM supplier)
,'name','TICKER');

INSERT INTO stocksource
VALUES((SELECT MAX(supplier_id) FROM supplier)
,(SELECT MAX(stock_id) FROM stock),100.00);

The INSERT statements created a single row in the StockSource
table with the primary key composite index uniquely identifying the
first column, the second column, and the combination of both. We can
find those unique values by finding the maximum values for them.

SELECT COUNT(stock_id), MAX(stock_id)
FROM stocksource
WHERE stock_id = (SELECT MAX(stock_id) FROM stocksource)
GROUP BY stock_id;

COUNT(STOCK_ID) MAX(STOCK_ID)

1 119

6.1 The SELECT Statement 130

SELECT COUNT(supplier_id), MAX(supplier_id)
FROM stocksource
WHERE supplier_id = (SELECT MAX(supplier_id) FROM supplier)
GROUP BY supplier_id;

COUNT(SUPPLIER_ID) MAX(SUPPLIER_ID)

1 3875

Now let’s attempt that unique index hit on the second column of
the composite index in the StockSource table, amongst other combi-
nations.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM stocksource WHERE supplier_id = 3875;

Something very interesting happens. The foreign key index on the
SUPPLIER_ID column is range scanned because the WHERE clause
is matched. The composite index is ignored.

Query Cost Rows Bytes

1. SELECT STATEMENT on 2 3 30
2. TABLE ACCESS BY INDEX ROWID on

STOCKSOURCE 2 3 30
3. INDEX RANGE SCAN on XFK_SS_SUPPLIER 1 3

The following query uses the STOCK_ID column, the first column
in the composite index. Once again, even though the STOCK_ID
column is the first column in the composite index the Optimizer
matches the WHERE clause against the nonunique foreign key index
on the STOCK_ID column. Again the result is a range scan.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM stocksource WHERE stock_id = 119;

Query Cost Rows Bytes

1. SELECT STATEMENT on 8 102 1020
2. TABLE ACCESS BY INDEX ROWID on

STOCKSOURCE 8 102 1020
3. INDEX RANGE SCAN on XFK_SS_STOCK 1 102

The next query executes a unique index hit on the composite
index because the WHERE clause exactly matches the index.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM stocksource
WHERE stock_id = 119 AND supplier_id = 3875;

131 6.1 The SELECT Statement

Chapter 6

Query Cost Rows Bytes

1. SELECT STATEMENT on 2 1 10
2. TABLE ACCESS BY INDEX ROWID on

STOCKSOURCE 2 1 10
3. INDEX UNIQUE SCAN on XPK_STOCKSOURCE 1 12084

Let’s clean up and delete the unique rows we created with the
INSERT statements above. My script executing queries (see
Appendix B) on the PLAN_TABLE contains a COMMIT command
and thus ROLLBACK will not work.

DELETE FROM StockSource WHERE supplier_id = 3875 and
stock_id = 119;

DELETE FROM supplier WHERE supplier_id = 3875;
DELETE FROM stock WHERE stock_id = 119;
COMMIT;

Now let’s do something slightly different. The purpose of creating
unique stock and supplier items in the StockSource table was to get
the best possibility of producing a unique index hit. If we were to
select from the StockSource table where more than a single row
existed we would once again not get unique index hits. Depending
on the number of rows found we could get index range scans or even
full table scans.

Firstly, find maximum and minimum counts for stocks duplicated
on the StockSource table.

SELECT * FROM(
SELECT supplier_id, COUNT(supplier_id) AS suppliers
FROM stocksource GROUP BY supplier_id ORDER BY
suppliers DESC)

WHERE ROWNUM = 1
UNION
SELECT * FROM(

SELECT supplier_id, COUNT(supplier_id) AS suppliers
FROM stocksource GROUP BY supplier_id ORDER BY
suppliers)

WHERE ROWNUM = 1;

There are nine suppliers with a SUPPLIER_ID column value of
2711 and one with SUPPLIER_ID column value 2.

SUPPLIER_ID SUPPLIERS

2 1
2711 9

6.1 The SELECT Statement 132

Both the next two queries perform index range scans. If one of the
queries retrieved enough rows, as in the COA# = '40003' previously
shown in this chapter, the Optimizer would force a read of the entire
table.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM stocksource WHERE supplier_id = 2;

Query Cost Rows Bytes

1. SELECT STATEMENT on 2 3 30
2. TABLE ACCESS BY INDEX ROWID on

STOCKSOURCE 2 3 30
3. INDEX RANGE SCAN on XFK_SS_SUPPLIER 1 3

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM stocksource WHERE supplier_id = 2711;

Query Cost Rows Bytes

1. SELECT STATEMENT on 2 3 30
2. TABLE ACCESS BY INDEX ROWID on

STOCKSOURCE 2 3 30
3. INDEX RANGE SCAN on XFK_SS_SUPPLIER 1 3

So try to always do two things with WHERE clauses. Firstly, try
to match comparison condition column sequences with existing index
column sequences, although it is not strictly necessary. Secondly,
always try to use unique, single-column indexes wherever possible.
A single-column unique index is much more likely to produce exact
hits. An exact hit is the fastest access method.

6.1.3 Sorting with the ORDER BY Clause

The ORDER BY clause sorts the results of a query. The ORDER BY
clause is always applied after all other clauses are applied, such as
the WHERE and GROUP BY clauses. Without an ORDER BY
clause in an SQL statement, rows will often be retrieved in the physi-
cal order in which they were added to the table. Rows are not always
appended to the end of a table as space can be reused. Therefore,
physical row order is often useless. Additionally the sequence and
content of columns in the SELECT statement, WHERE and GROUP BY
clauses can also somewhat determine returned sort order to a certain
extent.

133 6.1 The SELECT Statement

Chapter 6

In the following example we are sorting on the basis of the con-
tent of the primary key index. Since the entire table is being read
there is no use of the index. Note the sorting applied to rows
retrieved from the table as a result of re-sorting applied by the
ORDER BY clause.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT customer_id, name FROM customer ORDER BY
customer_id;

Query Cost Rows Bytes Sort

SELECT STATEMENT on 25 2694 67350
SORT ORDER BY on 25 2694 67350 205000
TABLE ACCESS FULL on CUSTOMER 9 2694 67350

In the next example the name column is removed from the SELECT
statement and thus the primary key index is used. Specifying the
CUSTOMER_ID column only in the SELECT statement forces use
of the index, not the ORDER BY clause. Additionally there is no
sorting because the index is already sorted in the required order.
In this case the ORDER BY clause is unnecessary since an identical
result would be obtained without it.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT customer_id FROM customer ORDER BY
customer_id;

Query Cost Rows Bytes Sort

SELECT STATEMENT on 6 2694 10776
INDEX FULL SCAN on XPKCUSTOMER 6 2694 10776

The next example re-sorts the result by name. Again the whole
table is read so no index is used. The results are the same as for the
query before the previous one. Again there is physical sorting of the
rows retrieved from the table.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT customer_id, name FROM customer ORDER BY name;

Query Cost Rows Bytes Sort

SELECT STATEMENT on 25 2694 67350
SORT ORDER BY on 25 2694 67350 205000
TABLE ACCESS FULL on CUSTOMER 9 2694 67350

6.1 The SELECT Statement 134

The ORDER BY clause will re-sort results.

Queries and sorts are now less case sensitive than in previous
versions of Oracle Database.

Overriding WHERE with ORDER BY

The following example is interesting because the primary key
composite index is used. Note that there is no sorting in the query
plan. It is unnecessary to sort since the index scanned is being read
in the order required by the ORDER BY clause. In this case the
Optimizer ignores the ORDER BY clause. The WHERE clause spec-
ifies ORDER_ID only, for which there is a nonunique foreign key
index. A nonunique index is appropriate to a range scan using the
< range operator as shown in the example. However, the primary key
composite index is used to search with, as specified in the ORDER
BY clause. Thus the ORDER BY clause effectively overrides the
specification of the WHERE clause. The ORDER BY clause is often
used to override any existing sorting parameters.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM ordersline WHERE order_id < 10
ORDER BY order_id, seq#;

Query Cost Rows Bytes

SELECT STATEMENT on 4 3 51
TABLE ACCESS BY INDEX ROWID on
ORDERSLINE 4 3 51
INDEX RANGE SCAN on XPKORDERSLINE 3 3

The second example excludes the overriding ORDER BY clause.
Note how the index specified in the WHERE clause is utilized for an
index range scan. Thus in the absence of the ORDER BY clause in
the previous example the Optimizer resorts to the index specified in
the WHERE clause.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM ordersline WHERE order_id < 10;

135 6.1 The SELECT Statement

Chapter 6

10g

Query Cost Rows Bytes

SELECT STATEMENT on 3 3 51
TABLE ACCESS BY INDEX ROWID on
ORDERSLINE 3 3 51
INDEX RANGE SCAN on XFK_ORDERLINE_ORDER 2 3

The next example retains the WHERE clause, containing the first
column in the primary key index. It also uses an ORDER BY clause con-
taining only the second column in the composite primary key. This query
has a higher cost than both the first and second queries shown before.
Why? The Optimizer is retrieving based on the WHERE clause and
then being overridden by the ORDER BY clause. What is happening is
that the ORDER BY is re-sorting the results of the WHERE clause.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM ordersline WHERE order_id < 10
ORDER BY seq#;

Query Cost Rows Bytes

SELECT STATEMENT on 5 3 51
SORT ORDER BY on 5 3 51
TABLE ACCESS BY INDEX ROWID on ORDERSLINE 3 3 51
INDEX RANGE SCAN on XFK_ORDERLINE_ORDER 2 3

In general, it is difficult to demonstrate the performance tuning
aspects of the ORDER BY clause. This is because re-sorting is exe-
cuted after everything else has completed. The ORDER BY clause
should not be allowed to conflict with the best Optimizer perform-
ance choices of previous clauses. An ORDER BY clause can be used
as a refinement of previous clauses rather than replacing those previ-
ous clauses. The WHERE clause will filter rows and the ORDER BY
re-sorts those filtered rows. The ORDER BY clause can sometimes
persuade the Optimizer to use a less efficient key.

In some older relational databases it was always inadvisable to
apply any sorting in the ORDER BY which was already sorted by the
WHERE clause. In Oracle Database this is not the case. The Oracle
Database Optimizer is now intelligent enough to often be able to
utilize the best index for searching. Leaving columns out of the
ORDER BY clause because they are already covered in the WHERE
clause is not necessarily a sound approach. Additionally various
other SELECT statement clauses execute sorting automatically.
The GROUP BY and DISTINCT clauses are two examples that

6.1 The SELECT Statement 136

do inherent sorting. Use inherent sorting if possible rather than
doubling up with an ORDER BY clause.

So the ORDER BY clause is always executed after the WHERE
clause. This does not mean that the Optimizer will choose either the
WHERE clause or the ORDER BY clause as the best performing
factor. Try not to override the WHERE clause with the ORDER BY
clause because the Optimizer may choose a less efficient method of
execution based on the ORDER BY clause.

6.1.4 Grouping Result Sets

The GROUP BY clause can perform some inherent sorting. As with
the SELECT statement, WHERE clause and ORDER BY clause,
matching of GROUP BY clause column sequences with index col-
umn sequences is relevant to SQL code performance.

The first example aggregates based on the non-unique foreign key
on the ORDER_ID column. The aggregate is executed on the
ORDER_ID column into unique values for that ORDER_ID. The
foreign key index is the best performing option.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT order_id, COUNT(order_id) FROM ordersline
GROUP BY order_id;

The foreign key index is already sorted in the required order. The
NOSORT content in the SORT GROUP BY NOSORT on clause
implies no sorting is required using the GROUP BY clause.

Query Cost Rows Bytes

SELECT STATEMENT on 26 172304 861520
SORT GROUP BY NOSORT on 26 172304 861520
INDEX FULL SCAN on
XFK_ORDERLINE_ORDER 26 540827 2704135

The next example uses both columns in the primary key index
and thus the composite index is a better option. However, since the
composite index is much larger in both size and rows the cost is
much higher.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT order_id, seq#, COUNT(order_id) FROM ordersline
GROUP BY order_id, seq#;

137 6.1 The SELECT Statement

Chapter 6

Query Cost Rows Bytes

SELECT STATEMENT on 1217 540827 4326616
SORT GROUP BY NOSORT on 1217 540827 4326616
INDEX FULL SCAN on XPKORDERSLINE 1217 540827 4326616

In the next case we reverse the order of the columns in the
GROUP BY sequence. As you can see there is no effect on cost since the
Optimizer manages to match against the primary key composite index.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT order_id, seq#, COUNT(order_id) FROM ordersline
GROUP BY seq#, order_id;

Query Cost Rows Bytes

SELECT STATEMENT on 1217 540827 4326616
SORT GROUP BY NOSORT on 1217 540827 4326616
INDEX FULL SCAN on XPKORDERSLINE 1217 540827 4326616

Sorting with the GROUP BY Clause

This example uses a non-indexed column to aggregate. Thus the
whole table is accessed. Note that NOSORT is no longer included in
the SORT GROUP BY clause in the query plan. The GROUP BY
clause is now performing sorting on the AMOUNT column.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT amount, COUNT(amount) FROM ordersline
GROUP BY amount;

Query Cost Rows Bytes Sort

SELECT STATEMENT on 4832 62371 374226
SORT GROUP BY on 4832 62371 374226 7283000
TABLE ACCESS FULL on
ORDERSLINE 261 540827 3244962

Let’s examine GROUP BY clause sorting a little further.
Sometimes it is possible to avoid sorting forced by the ORDER BY
clause by ordering column names in the GROUP BY clause. Rows
will be sorted based on the contents of the GROUP BY clause.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT amount, COUNT(amount) FROM ordersline
GROUP BY amount
ORDER BY amount;

In this case the ORDER BY clause is ignored.

6.1 The SELECT Statement 138

Query Cost Rows Bytes

1. SELECT STATEMENT on 6722 62371 374226
2. SORT GROUP BY on 6722 62371 374226
3. TABLE ACCESS FULL on ORDERSLINE 1023 540827 3244962

Inherent sorting in the GROUP BY clause can sometimes be used
to avoid extra sorting using an ORDER BY clause.

Using DISTINCT

DISTINCT retrieves the first value from a repeating group. When
there are multiple repeating groups DISTINCT will retrieve the first
row from each group. Therefore, DISTINCT will always require a
sort. DISTINCT can operate on a single or multiple columns. The
first example executes the sort in order to find the first value in each
group. The second example has the DISTINCT clause removed and
does not execute a sort. As a result the second example has a much
lower cost. DISTINCT will sort regardless.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT DISTINCT(stock_id) FROM stockmovement;

Query Cost Rows Bytes

SELECT STATEMENT on 704 118 472
SORT UNIQUE on 704 118 472
INDEX FAST FULL SCAN on XFK_SM_STOCK 4 570175 2280700

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT stock_id FROM stockmovement;

Query Cost Rows Bytes

SELECT STATEMENT on 4 570175 2280700
INDEX FAST FULL SCAN on
XFK_SM_STOCK 4 570175 2280700

As far as performance tuning is concerned DISTINCT will always
require a sort. Sorting slows performance.

The HAVING Clause

Using the COUNT function as shown in the first two examples there
is little difference in performance. The slight difference is due to the

139 6.1 The SELECT Statement

Chapter 6

application of the filter on the HAVING clause, allowing return of
fewer rows. The mere act of using the HAVING clause to return
fewer rows helps performance.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT customer_id, COUNT(order_id) FROM orders
GROUP BY customer_id;

Query Cost Rows Bytes

SELECT STATEMENT on 298 2693 5386
SORT GROUP BY on 298 2693 5386
TABLE ACCESS FULL on ORDERS 112 172304 344608

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT customer_id, COUNT(order_id) FROM orders
GROUP BY customer_id
HAVING customer_id < 10;

Query Cost Rows Bytes

SELECT STATEMENT on 296 10 20
FILTER on
SORT GROUP BY on 296 10 20
TABLE ACCESS FULL on ORDERS 112 172304 344608

However, the next two examples using the SUM function as
opposed to COUNT have a much bigger difference in cost. This is
because the COUNT function is faster, especially when counting on
indexes or using the COUNT(*) function with the asterisk option.
The COUNT function will be demonstrated in detail later in this
chapter. There is a lot of processing that the SUM function does
which the COUNT function does not.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT customer_id, SUM(order_id) FROM orders
GROUP BY customer_id;

Query Cost Rows Bytes Sort

SELECT STATEMENT on 1383 2693 18851
SORT GROUP BY on 1383 2693 18851 2827000
TABLE ACCESS FULL on
ORDERS 112 172304 1206128

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT customer_id, SUM(order_id) FROM orders
GROUP BY customer_id
HAVING customer_id < 10;

6.1 The SELECT Statement 140

Query Cost Rows Bytes Sort

SELECT STATEMENT on 366 10 70
FILTER on
SORT GROUP BY on 366 10 70
TABLE ACCESS FULL on ORDERS 112 172304 1206128

The Spreadsheet Clause

The spreadsheet clause extends the HAVING clause and allows
display of data into multiple dimensions allowing calculations
between rows much like a spreadsheet program can provide. The
spreadsheet clause provides additional OLAP type functionality and
is more applicable to data warehousing as opposed to Internet OLTP
databases. However, using the spreadsheet clause can in some cases
possibly reduce the number of tables in mutable joins and remove
the need for set operators such as UNION, INTERSECT, and MINUS
to merge multiple queries together.

The HAVING clause filter can help performance because it filters,
allowing the return and processing of fewer rows. The HAVING
clause filtering shown in the query plans above shows that HAVING
clause filtering is always executed after the GROUP BY sorting
process.

ROLLUP, CUBE, and GROUPING SETS

The ROLLUP, CUBE, and GROUPING SETS clauses can be
used to create breaks and subtotals for groups. The GROUPING
SETS clause can be used to restrict the results of ROLLUP and
CUBE clauses. Before the advent of ROLLUP and CUBE, pro-
ducing the same types of results would involve extremely complex
SQL statements, probably with the use of temporary tables or
perhaps use of PL/SQL as well. ROLLUP, CUBE, and GROUPING
SETS are more applicable to reporting and data warehouse
functionality.

The spreadsheet clause extension to the HAVING clause is
similar in function.

141 6.1 The SELECT Statement

Chapter 6

10g

10g

The following examples simply show the use of the ROLLUP,
CUBE, and GROUPING SETS clauses.

SELECT type, subtype, SUM(balance+ytd)FROM coa
GROUP BY type, subtype;

SELECT type, subtype, SUM(balance+ytd)FROM coa
GROUP BY ROLLUP (type, subtype);

SELECT type, subtype, SUM(balance+ytd)FROM coa
GROUP BY CUBE (type, subtype);

SELECT type, subtype, SUM(balance+ytd)FROM coa
GROUP BY GROUPING SETS ((type, subtype), (type),
(subtype));

In general, the GROUP BY clause can perform some sorting if it
matches indexing. Filtering aggregate results with the HAVING
clause can help to increase performance by filtering aggregated
results of the GROUP BY clause.

6.1.5 The FOR UPDATE Clause

The FOR UPDATE clause is a nice feature of SQL since it allows
locking of selected rows during a transaction. There are rare circum-
stances where rows selected should be locked since there are depend-
ent following changes in a single transaction, requiring selected data
to remain the same during the course of that transaction.

SELECT …
FOR UPDATE OF [[schema.]table.]column [, …]]
[NOWAIT | WAIT n]

Note the two WAIT and NOWAIT options in the preceding
syntax. When a lock is encountered NOWAIT forces an abort. The
WAIT option will force a wait for a number of seconds. The default
simply waits until a row is available.

It should be obvious that with respect to tuning and concurrent
multiuser capability of applications the FOR UPDATE clause should
be avoided if possible. Perhaps the data model could be too granular
thus necessitating the need to lock rows in various tables during the
course of a transaction across multiple tables. Using the FOR
UPDATE clause is not good for the efficiency of SQL code in general
due to potential locks and possible resulting waits for and by other
concurrently executing transactions.

6.1 The SELECT Statement 142

6.2 Using Functions

The most relevant thing to say about functions is that they should
not be used where you expect an SQL statement to use an index.
There are function-based indexes of course. A function-based index
contains the resulting value of an expression. An index search
against that function-based index will search the index for the value
of the expression.

Let’s take a quick look at a few specific functions.

6.2.1 The COUNT Function

For older versions of Oracle Database the COUNT function has
been recommended as performing better when used in different
ways. Prior to Oracle9i Database the COUNT(*) function using the
asterisk was the fastest form because the asterisk option was specif-
ically tuned to avoid any sorting. Let’s take a look at each of four
different methods and show that they are all the same using both the
EXPLAIN PLAN command and time testing. We will use the
GeneralLedger table in the Accounts schema since it has the largest
number of rows.

Notice how all the query plans for all the four following COUNT
function options are identical. Additionally there is no sorting on
anything but the resulting single row produced by the COUNT
function, the sort on the aggregate.

Using the asterisk:

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT COUNT(*) FROM generalledger;

Query Cost Rows

1. SELECT STATEMENT on 382 1
2. SORT AGGREGATE on 1
3. INDEX FAST FULL SCAN on

XPK_GENERALLEDGER 382 752825

Forcing the use of a unique index:

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT COUNT(generalledger_id) FROM
generalledger;

143 6.2 Using Functions

Chapter 6

Query Cost Rows

1. SELECT STATEMENT on 382 1
2. SORT AGGREGATE on 1
3. INDEX FAST FULL SCAN on XPK_GENERALLEDGER 382 752825

Using a constant value:

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT COUNT(1) FROM generalledger;

Query Cost Rows

1. SELECT STATEMENT on 382 1
2. SORT AGGREGATE on 1
3. INDEX FAST FULL SCAN on XPK_GENERALLEDGER 382 752825

Using a nonindexed column:

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT COUNT(dr) FROM generalledger;

Query Cost Rows

1. SELECT STATEMENT on 382 1
2. SORT AGGREGATE on 1
3. INDEX FAST FULL SCAN on 382 752825

XPK_GENERALLEDGER

Now with time testing, below I have simply executed the four
COUNT function options with SET TIMING set to ON in
SQL*Plus. Executing these four SQL statements twice will assure
that all data is loaded into memory and that consistent results are
obtained.

SQL> SELECT COUNT(*) FROM generalledger;

COUNT(*)

752741

Elapsed: 00:00:01.01

SQL> SELECT COUNT(generalledger_id) FROM generalledger;

COUNT(GENERALLEDGER_ID)

752741

Elapsed: 00:00:01.01

SQL> SELECT COUNT(1) FROM generalledger;

6.2 Using Functions 144

COUNT(1)

752741

Elapsed: 00:00:01.01

SQL> SELECT COUNT(dr) FROM generalledger;

COUNT(DR)

752741

Elapsed: 00:00:01.01

As you can see from the time tests above, the COUNT function
will perform the same no matter which method is used. In the latest
version of Oracle Database different forms of the COUNT function
will perform identically. No form of the COUNT function is better
tuned than any other. All forms of the COUNT function perform the
same; using an asterisk, a constant or a column, regardless of column
indexing, the primary key index is always used.

6.2.2 The DECODE Function

DECODE can be used to replace composite SQL statements using
a set operator such as UNION. The Accounts Stock table has a
QTYONHAND column. This column denotes how many items of a
particular stock item are currently in stock. Negative QTYONHAND
values indicate that items have been ordered by customers but not
yet received from suppliers.

The first example below uses four full reads of the Stock table and
concatenates the results together using UNION set operators.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT stock_id||' Out of Stock' FROM stock WHERE
qtyonhand <=0

UNION
SELECT stock_id||' Under Stocked' FROM stock

WHERE qtyonhand BETWEEN 1 AND min-1
UNION
SELECT stock_id||' Stocked' FROM stock

WHERE qtyonhand BETWEEN min AND max
UNION
SELECT stock_id||' Over Stocked' FROM stock

WHERE qtyonhand > max;

145 6.2 Using Functions

Chapter 6

Query Pos Cost Rows Bytes

SELECT STATEMENT on 12 12 123 1543
SORT UNIQUE on 1 12 123 1543
UNION-ALL on 1
TABLE ACCESS FULL on STOCK 1 1 4 32
TABLE ACCESS FULL on STOCK 2 1 1 11
TABLE ACCESS FULL on STOCK 3 1 28 420
TABLE ACCESS FULL on STOCK 4 1 90 1080

This second example replaces the UNION set operators and the
four full table scan reads with a single full table scan using nested
DECODE functions. DECODE can be used to improve performance.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT stock_id||' '||
DECODE(SIGN(qtyonhand)

,-1,'Out of Stock',0,'Out of Stock'
,1,DECODE(SIGN(qtyonhand-min)

,-1,'Under Stocked',0,'Stocked'
,1,DECODE(sign(qtyonhand-max)

,-1,'Stocked',0,'Stocked'
,1,'Over Stocked'

)
)

) FROM stock;

Query Pos Cost Rows Bytes

SELECT STATEMENT on 1 1 118 1770
TABLE ACCESS FULL on STOCK 1 1 118 1770

Using the DECODE function as a replacement for multiple query
set operators is good for performance but should only be used in
extreme cases such as the UNION clause joined SQL statements
shown previously.

6.2.3 Datatype Conversions

Datatype conversions are a problem and will conflict with existing
indexes unless function-based indexes are available and can be
created. Generally, if a function is executed in a WHERE clause, or
anywhere else that can utilize an index, a full table scan is likely. This
leads to inefficiency. There is some capability in Oracle SQL for
implicit datatype conversion but often use of functions in SQL

6.2 Using Functions 146

statements will cause the Optimizer to miss the use of indexes and
perform poorly.

The most obvious datatype conversion concerns dates. Date fields
in all the databases I have used are stored internally as a Julian number.
A Julian number or date is an integer value from a database-specific
date measured in seconds. When retrieving a date value in a tool
such as SQL*Plus there is usually a default date format. The internal
date value is converted to that default format. The conversion is
implicit, automatic, and transparent.

SELECT SYSDATE, TO_CHAR(SYSDATE,'J') “Julian” FROM DUAL;

SYSDATE Julian

03-MAR-03 2452702

Now for the sake of demonstration I will create an index on the
GeneralLedger DTE column.

CREATE INDEX ak_gl_dte ON GENERALLEDGER(DTE);

Now obviously it is difficult to demonstrate an index hit with a key
such as this because the date is a datestamp as well as a simple date.
A simple date format such as MM/DD/YYYY excludes a timestamp.
Simple dates and datestamps (timestamps) are almost impossible to
match. Thus I will use SYSDATE in order to avoid a check against a
simple formatted date. Both the GeneralLedger DTE column and
SYSDATE are timestamps since the date column in the table was
created using SYSDATE-generated values. We are only trying to show
Optimizer query plans without finding rows.

The first example hits the new index I created and has a very
low cost.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM generalledger WHERE dte = SYSDATE;

Query Cost Rows Bytes

SELECT STATEMENT on 2 593 15418
TABLE ACCESS BY INDEX ROWID on
GENERALLEDGER 2 593 15418
INDEX RANGE SCAN on AK_GL_DTE 1 593

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM generalledger
WHERE TO_CHAR(dte, 'YYYY/MM/DD') = '2002/08/21';

147 6.2 Using Functions

Chapter 6

This second example does not hit the index because the
TO_CHAR datatype conversion is completely inconsistent with the
datatype of the index. As a result the cost is much higher.

Query Cost Rows Bytes

SELECT STATEMENT on 493 7527 195702
TABLE ACCESS FULL on GENERALLEDGER 493 7527 195702

Another factor to consider with datatype conversions is making
sure that datatype conversions are not placed onto columns. Convert
literal values not part of the database if possible. In order to demon-
strate this I am going to add a zip code column to my Supplier table,
create an index on that zip code column and regenerate statistics for
the Supplier table. I do not need to add values to the zip code col-
umn to prove my point.

ALTER TABLE supplier ADD(zip NUMBER(5));
CREATE INDEX ak_sp_zip ON supplier(zip);
ANALYZE TABLE supplier COMPUTE STATISTICS;

Now we can show two examples. The first uses an index because
there is no datatype conversion on the column in the table and the sec-
ond reads the entire table because the conversion is on the column.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM supplier WHERE zip = TO_NUMBER('94002');

Query Cost Rows Bytes

SELECT STATEMENT on 1 1 142
TABLE ACCESS BY INDEX ROWID on SUPPLIER 1 1 142
INDEX RANGE SCAN on AK_SP_ZIP 1 1

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM supplier WHERE TO_CHAR(zip) = '94002';

Query Cost Rows Bytes

SELECT STATEMENT on 13 1 142
TABLE ACCESS FULL on SUPPLIER 13 1 142

Oracle SQL does not generally allow implicit type conversions but
there is some capacity for automatic conversion of strings to integers,
if a string contains an integer value. Using implicit type conversions
is a very bad programming practice and is not recommended. A pro-
grammer should never rely on another tool to do their job for them.
Explicit coding is less likely to meet with potential errors in the future.

6.2 Using Functions 148

It is better to be precise since the computer will always be precise and
do exactly as you tell it to do. Implicit type conversion is included in
Oracle SQL for ease of programming. Ease of program coding is a
top-down application to database design approach, totally contra-
dictory to database tuning. Using a database from the point of view
of how the application can most easily be coded is not favorable to
eventual production performance. Do not use implicit type conversions.
As can be seen in the following examples implicit type conversions
do not appear to make any difference to Optimizer costs.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM supplier WHERE supplier_id = 3801;

Query Cost Rows Bytes

1. SELECT STATEMENT on 2 1 142
2. TABLE ACCESS BY INDEX ROWID on SUPPLIER 2 1 142
3. INDEX UNIQUE SCAN on XPK_SUPPLIER 1 3874

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM supplier WHERE supplier_id = '3801';

Query Cost Rows Bytes

1. SELECT STATEMENT on 2 1 142
2. TABLE ACCESS BY INDEX ROWID on SUPPLIER 2 1 142
3. INDEX UNIQUE SCAN on XPK_SUPPLIER 1 3874

In short, try to avoid using any type of data conversion function
in any part of an SQL statement which could potentially match an
index, especially if you are trying to assist performance by matching
appropriate indexes.

6.2.4 Using Functions in Queries

Now let’s expand on the use of functions by examining their use in
all of the clauses of a SELECT statement.

Functions in the SELECT Statement

Firstly, let’s put a datatype conversion into a SELECT statement,
which uses an index. As we can see in the two examples below, use
of the index is not affected by the datatype conversion placed into
the SELECT statement.

149 6.2 Using Functions

Chapter 6

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT customer_id FROM customer;

Query Cost Rows Bytes

SELECT STATEMENT on 1 2694 10776
INDEX FAST FULL SCAN on XPKCUSTOMER 1 2694 10776

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT TO_CHAR(customer_id) FROM customer;

Query Cost Rows Bytes

SELECT STATEMENT on 1 2694 10776
INDEX FAST FULL SCAN on XPKCUSTOMER 1 2694 10776

Functions in the WHERE Clause

Now let’s examine the WHERE clause. In the two examples below
the only difference is in the type of index scan utilized. Traditionally
the unique index hit produces an exact match and it should be faster.
A later chapter will examine the difference between these two types
of index reads.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT customer_id FROM customer WHERE
customer_id = 100;

Query Cost Rows Bytes

SELECT STATEMENT on 1 1 4
INDEX UNIQUE SCAN on XPKCUSTOMER 1 1 4

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT customer_id FROM customer
WHERE TO_CHAR(customer_id) = '100';

Query Cost Rows Bytes

SELECT STATEMENT on 1 1 4
INDEX FAST FULL SCAN on XPKCUSTOMER 1 1 4

Functions in the ORDER BY Clause

The ORDER BY clause can utilize indexing well, as already seen in this
chapter, as long as WHERE clause index matching is not compromised.
Let’s keep it simple. Looking at the following two examples it should

6.2 Using Functions 150

suffice to say that it might be a bad idea to include functions in
ORDER BY clauses. An index is not used in the second query and
consequently the cost is much higher.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM generalledger ORDER BY coa#;

Query Cost Rows Bytes Sort

SELECT STATEMENT on 826 752740 19571240
TABLE ACCESS BY INDEX ROWID on GL 826 752740 19571240
INDEX FULL SCAN on XFK_GL_COA# 26 752740

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM generalledger ORDER BY TO_CHAR(coa#);

Query Cost Rows Bytes Sort

SELECT STATEMENT on 19070 752740 19571240
SORT ORDER BY on 19070 752740 19571240 60474000
TABLE ACCESS FULL on
GENERALLEDGER 493 752740 19571240

Here is an interesting twist to using the same datatype conversion
in the above two examples but with the conversion in the SELECT
statement and setting the ORDER BY clause to sort by position
rather than using the TO_CHAR(COA#) datatype conversion. The
reason why this example is lower in cost than the second example is
because the conversion is done on selection and ORDER BY re-
sorting is executed after data retrieval. In other words, in this exam-
ple the ORDER BY clause does not affect the data access method.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT TO_CHAR(coa#), dte, dr cr FROM generalledger
ORDER BY 1;

Query Cost Rows Bytes Sort

SELECT STATEMENT on 12937 752740 13549320
SORT ORDER BY on 12937 752740 13549320 42394000
TABLE ACCESS FULL on
GENERALLEDGER 493 752740 13549320

Functions in the GROUP BY Clause

Using functions in GROUP BY clauses will slow performance as
shown in the following two examples.

151 6.2 Using Functions

Chapter 6

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT order_id, COUNT(order_id) FROM ordersline
GROUP BY order_id;

Query Cost Rows Bytes

SELECT STATEMENT on 26 172304 861520
SORT GROUP BY NOSORT on 26 172304 861520
INDEX FULL SCAN on
XFK_ORDERLINE_ORDER 26 540827 2704135

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT TO_CHAR(order_id), COUNT(order_id) FROM
ordersline

GROUP BY TO_CHAR(order_id);

Query Cost Rows Bytes Sort

SELECT STATEMENT on 3708 172304 861520
SORT GROUP BY on 3708 172304 861520 8610000
INDEX FAST FULL SCAN on
XFK_ORDERLINE_ORDER 4 540827 2704135

When using functions in SQL statements it is best to keep the
functions away from any columns involving index matching.

6.3 Pseudocolumns

There are some ways in which pseudocolumns can be used to
increase performance.

6.3.1 Sequences

A sequence is often used to create unique integer identifiers as pri-
mary keys for tables. A sequence is a distinct database object and is
accessed as sequence.NEXTVAL and sequence.CURRVAL. Using the
Accounts schema Supplier table we can show how a sequence is an
efficient method in this case.

EXPLAIN PLAN SET statement_id='TEST' FOR
INSERT INTO supplier (supplier_id, name, ticker)
VALUES(supplier_seq.NEXTVAL,'A new supplier', 'TICK');

Query Cost Rows Bytes

INSERT STATEMENT on 1 11 176
SEQUENCE on SUPPLIER_SEQ

6.3 Pseudocolumns 152

EXPLAIN PLAN SET statement_id='TEST' FOR
INSERT INTO supplier (supplier_id, name, ticker)
VALUES((SELECT MAX(supplier_id)+1
FROM supplier), 'A new supplier', 'TICK');

Query Cost Rows Bytes

INSERT STATEMENT on 1 11 176

The query plan above is the same. There is a problem with it.
Notice that a subquery is used to find the next SUPPLIER_ID value.
This subquery is not evident in the query plan. Let’s do a query plan
for the subquery as well.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT MAX(supplier_id)+1 FROM supplier;

Query Cost Rows Bytes

1. SELECT STATEMENT on 2 1 3
2. SORT AGGREGATE on 1 3
3. INDEX FULL SCAN (MIN/MAX)

on XPK_SUPPLIER 2 3874 11622

We can see that the subquery will cause extra work. Since the
query plan seems to have difficulty with subqueries it is difficult to
tell the exact cost of using the subquery. Use sequences for unique
integer identifiers; they are centralized, more controllable, more eas-
ily maintained, and perform better than other methods of counting.

6.3.2 ROWID Pointers

A ROWID is a logically unique database pointer to a row in a table.
When a row is found using an index the index is searched. After the
row is found in the index the ROWID is extracted from the index
and used to find the exact logical location of the row in its respective
table. Accessing rows using the ROWID pseudocolumn is probably
the fastest row access method in Oracle Database since it is a direct
pointer to a unique address. The downside about ROWID pointers is
that they do not necessarily point at the same rows in perpetuity because
they are relative to datafile, tablespace, block, and row. These values
can change. Never store a ROWID in a table column as a pointer to
other tables or rows if data or structure will be changing in the data-
base. If ROWID pointers can be used for data access they can be
blindingly fast but are not recommended by Oracle Corporation.

153 6.3 Pseudocolumns

Chapter 6

6.3.3 ROWNUM

A ROWNUM is a row number or a sequential counter representing
the order in which a row is returned from a query. ROWNUM can
be used to restrict the number of rows returned. There are numerous
interesting ways in which ROWNUM can be used. For instance, the
following example allows creation of a table from another, including
all constraints but excluding any rows. This is a useful and fast
method of making an empty copy of a very large table.

CREATE TABLE tmp AS SELECT * FROM generalledger WHERE
ROWNUM < 1;

One point to note is as in the following example. A ROWNUM
restriction is applied in the WHERE clause. Since the ORDER BY
clause occurs after the WHERE clause the ROWNUM restriction is
not applied to the sorted output. The solution to this problem is the
second example.

SELECT * FROM customer WHERE ROWNUM < 25 ORDER BY
name;

SELECT * FROM (SELECT * FROM customer ORDER BY name) WHERE
ROWNUM < 25;

6.4 Comparison Conditions

Different comparison conditions can have sometimes vastly different
effects on the performance of SQL statements. Let’s examine each
in turn with various options and recommendations for potential
improvement. The comparison conditions are listed here.

• Equi, anti, and range

• expr { [!]= | > | < | <= | >= } expr
• expr [NOT] BETWEEN expr AND expr

• LIKE pattern matching

• expr [NOT] LIKE expr

• Set membership

• expr [NOT] IN expr
• expr [NOT] EXISTS expr

6.4 Comparison Conditions 154

IN is now called an IN rather than a set membership condition
in order to limit confusion with object collection MEMBER
conditions.

• Groups

• expr [= | != | > | < | >= | <=] [ANY | SOME | ALL] expr

6.4.1 Equi, Anti, and Range

Using an equals sign (equi) is the fastest comparison condition
if a unique index exists. Any type of anti comparison such as
!= or NOT is looking for what is not in a table and thus must
read the entire table; sometimes full index scans can be used. Range
comparisons scan indexes for ranges of rows. Let’s look at some
examples.

This example does a unique index hit; using the equals sign an
exact hit single row is found.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM generalledger WHERE generalledger_id =
100;

Query Cost Rows Bytes

SELECT STATEMENT on 3 1 26
TABLE ACCESS BY INDEX ROWID on
GENERALLEDGER 3 1 26
INDEX UNIQUE SCAN on XPKGENERALLEDGER 2 1

The anti (!=) comparison finds everything but the single row
specified and thus must read the entire table.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM generalledger WHERE generalledger_id !=
100;

Query Pos Cost Rows Bytes

SELECT STATEMENT on 493 493 752739 19571214
TABLE ACCESS FULL on GENERAL 1 493 752739 19571214

In the next case using the range (<) comparison searches a range
of index values rather than a single unique index value.

155 6.4 Comparison Conditions

Chapter 6

10g

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM generalledger WHERE generalledger_id < 10;

Query Cost Rows Bytes

SELECT STATEMENT on 4 1 26
TABLE ACCESS BY INDEX ROWID on
GENERALLEDGE 4 1 26
INDEX RANGE SCAN on XPKGENERALLEDGER 3 1

In the next example the whole table is read rather than using an
index range scan because most of the table will be read and thus the
Optimizer considers reading the table as being faster.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM generalledger WHERE generalledger_id >=
100;

Query Pos Cost Rows Bytes

SELECT STATEMENT on 493 493 752740 19571240
TABLE ACCESS FULL on GENERAL 1 493 752740 19571240

Here the BETWEEN comparison causes a range scan on an index
because the range of rows is small enough to not warrant a full
table scan.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM generalledger
WHERE generalledger_id BETWEEN 100 AND 200;

Query Cost Rows Bytes

SELECT STATEMENT on 4 1 26
TABLE ACCESS BY INDEX ROWID on
GENERALLEDGE 4 1 26
INDEX RANGE SCAN on XPKGENERALLEDGER 3 1

6.4.2 LIKE Pattern Matching

The approach in the query plan used by the Optimizer will depend
on how many rows are retrieved and how the pattern match is
constructed.

This query finds one row.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM supplier WHERE name like '24/7 Real
Media, Inc.';

6.4 Comparison Conditions 156

Query Cost Rows Bytes

SELECT STATEMENT on 2 1 142
TABLE ACCESS BY INDEX ROWID on SUPPLIER 2 1 142
INDEX UNIQUE SCAN on AK_SUPPLIER_NAME 1 1

This query also retrieves a single row but there is a wildcard
pattern match and thus a full table scan is the result.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM supplier WHERE name LIKE '21st%';

Query Cost Rows Bytes

SELECT STATEMENT on 13 491 69722
TABLE ACCESS FULL on SUPPLIER 13 491 69722

The next query finds almost 3,000 rows and thus a full scan of
the table results regardless of the exactness of the pattern match.

� A pattern match using a % full wildcard pattern matching
character anywhere in the pattern matching string will usually
produce a full table scan.

SQL> SELECT COUNT(*) FROM supplier WHERE name LIKE '%a%';

COUNT(*)

2926

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM supplier WHERE name LIKE '%a%';

Query Cost Rows Bytes

SELECT STATEMENT on 13 194 27548
TABLE ACCESS FULL on SUPPLIER 13 194 27548

In general, since LIKE will match patterns which are in no way
related to indexes, LIKE will usually read an entire table.

6.4.3 Set Membership

IN should be used to test against literal values and EXISTS is often
used to create a correlation between a calling query and a subquery.
IN is best used as a pre-constructed set of literal values. IN will
cause a subquery to be executed in its entirety before passing the

157 6.4 Comparison Conditions

Chapter 6

result back to the calling query. EXISTS will stop once a result is
found.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM coa WHERE type IN ('A','L','I','E');

Query Cost Rows Bytes

SELECT STATEMENT on 1 38 950
TABLE ACCESS FULL on COA 1 38 950

There are two advantages to using EXISTS over using IN. The
first advantage is the ability to pass values from a calling query to a
subquery, never the other way around, creating a correlated query.
The correlation allows EXISTS the use of indexes between calling
query and subquery, particularly in the subquery. The second advan-
tage of EXISTS is, unlike IN, which completes a subquery regardless,
EXISTS will halt searching when a value is found. Thus the subquery
can be partially executed, reading fewer rows.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM coa WHERE EXISTS

(SELECT type FROM type WHERE type = coa.type);

Query Cost Rows Bytes

SELECT STATEMENT on 1 55 1485
NESTED LOOPS SEMI on 1 55 1485
TABLE ACCESS FULL on COA 1 55 1375
INDEX UNIQUE SCAN on XPKTYPE 6 12

Now let’s compare the use of IN versus the use of EXISTS. The
next two examples both use indexes and have the same result.
The reason why IN is the same cost as EXISTS is because the query
contained within the IN subquery matches an index based on the
single column it selects.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT stock_id FROM stock s WHERE EXISTS
(SELECT stock_id FROM stockmovement WHERE stock_id =
s.stock_id);

Query Cost Rows Bytes

SELECT STATEMENT on 119 118 944
NESTED LOOPS SEMI on 119 118 944
INDEX FULL SCAN on XPKSTOCK 1 118 472
INDEX RANGE SCAN on XFK_SM_STOCK 1 570175 2280700

6.4 Comparison Conditions 158

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT stock_id FROM stock WHERE stock_id IN
(SELECT stock_id FROM stockmovement);

Query Cost Rows Bytes

SELECT STATEMENT on 119 118 944
NESTED LOOPS SEMI on 119 118 944
INDEX FULL SCAN on XPKSTOCK 1 118 472
INDEX RANGE SCAN on XFK_SM_STOCK 1 570175 2280700

Now let’s do some different queries to show a very distinct dif-
ference between IN and EXISTS. Note how the first example is much
lower in cost than the second. This is because the second option
cannot match indexes and executes two full table scans.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM stockmovement sm WHERE EXISTS
(SELECT * FROM stockmovement

WHERE stockmovement_id = sm.stockmovement_id);

Query Cost Rows Bytes Sort

SELECT STATEMENT on 8593 570175 16535075
MERGE JOIN SEMI on 8593 570175 16535075
TABLE ACCESS BY INDEX
ROWID on SM 3401 570175 13684200
INDEX FULL SCAN on
XPKSTOCKMOVEMENT 1071 570175

SORT UNIQUE on 5192 570175 2850875 13755000
INDEX FAST FULL SCAN on
XPKSTMOVE 163 570175 2850875

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM stockmovement sm WHERE qty IN

(SELECT qty FROM stockmovement);

Query Cost Rows Bytes Sort

SELECT STATEMENT on 16353 570175 15964900
MERGE JOIN SEMI on 16353 570175 15964900
SORT JOIN on 11979 570175 13684200 45802000
TABLE ACCESS FULL on
STOCKMOVEMENT 355 570175 13684200

SORT UNIQUE on 4374 570175 2280700 13755000
TABLE ACCESS FULL on
STOCKMOVEMENT 355 570175 2280700

Now let’s go yet another step further and restrict the calling query
to a single row result. What this will do is ensure that EXISTS

159 6.4 Comparison Conditions

Chapter 6

has the best possible chance of passing a single row identifier into
the subquery, thus ensuring a unique index hit in the subquery. The
StockMovement table has been joined to itself to facilitate the
demonstration of the difference between using EXISTS and IN. Note
how the IN subquery executes a full table scan and the EXISTS
subquery does not.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM stockmovement sm
WHERE EXISTS(

SELECT qty FROM stockmovement
WHERE stockmovement_id = sm.stockmovement_id)

AND stockmovement_id = 10;

Query Cost Rows Bytes

1. SELECT STATEMENT on 2 1 29
2. NESTED LOOPS SEMI on 2 1 29
3. TABLE ACCESS BY INDEX ROWID on

STOCKMOVEMENT 2 1 24
4. INDEX UNIQUE SCAN on

XPK_STOCKMOVEMENT 1 570175
3. INDEX UNIQUE SCAN on

XPK_STOCKMOVEMENT 1 5

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM stockmovement sm
WHERE qty IN (SELECT qty FROM
stockmovement)

AND stockmovement_id = 10;

Query Cost Rows Bytes

1. SELECT STATEMENT on 563 1 28
2. NESTED LOOPS SEMI on 563 1 28
3. TABLE ACCESS BY INDEX ROWID on

STOCKMOVEMENT 2 1 24
4. INDEX UNIQUE SCAN on

XPK_STOCKMOVEMENT 1 570175
3. TABLE ACCESS FULL on

STOCKMOVEMENT 561 570175 2280700

The benefit of using EXISTS rather than IN for a subquery
comparison is that EXISTS can potentially find much fewer rows
than IN. IN is best used with literal values and EXISTS is best
used as applying a fast access correlation between a calling and a
subquery.

6.4 Comparison Conditions 160

6.4.4 Groups

ANY, SOME, and ALL comparisons are generally not very conducive
to SQL tuning. In some respects they are best not used.

6.5 Joins

A join is a combination of rows extracted from two or more tables.
Joins can be very specific, for instance an intersection between two
tables, or they can be less specific such as an outer join. An outer join
is a join returning an intersection plus rows from either or both
tables, not in the other table.

This discussion on tuning joins is divided into three sections: join
syntax formats, efficient joins, and inefficient joins. Since this book
is about tuning it seems sensible to divide joins between efficient
joins and inefficient joins.

Firstly, let’s take a look at the two different available join syntax
formats in Oracle SQL.

6.5.1 Join Formats

There are two different syntax formats available for SQL join
queries. The first is Oracle Corporation’s proprietary format and the
second is the ANSI standard format. Let’s test the two formats to see
if either format can be tuned to the best performance.

The Oracle SQL proprietary format places join specifications into
the WHERE clause of an SQL query. The only syntactical addition
to the standard SELECT statement syntax is the use of the (+) or
outer join operator. We will deal with tuning outer joins later in this
chapter. Following is an example of an Oracle SQL proprietary join
formatted query with its query plan, using the Employees schema.
All tables are fully scanned because there is joining but no filtering.
The Optimizer forces full table reads on all tables because it is the
fastest access method to read all the data.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT di.name, de.name, prj.name
FROM division di, department de, project prj

161 6.5 Joins

Chapter 6

WHERE di.division_id = de.division_id
AND de.department_id = prj.department_id;

Query Cost Rows Bytes

SELECT STATEMENT on 23 10000 640000
HASH JOIN on 23 10000 640000
HASH JOIN on 3 100 3600
TABLE ACCESS FULL on DIVISION 1 10 170
TABLE ACCESS FULL on DEPARTMENT 1 100 1900

TABLE ACCESS FULL on PROJECT 13 10000 280000

The next example shows the same query except using the ANSI
standard join format. Notice how the query plan is identical.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT di.name, de.name, prj.name
FROM division di JOIN department de
USING(division_id)

JOIN project prj USING (department_id);

Query Cost Rows Bytes

SELECT STATEMENT on 23 10000 640000
HASH JOIN on 23 10000 640000
HASH JOIN on 3 100 3600
TABLE ACCESS FULL on DIVISION 1 10 170
TABLE ACCESS FULL on DEPARTMENT 1 100 1900

TABLE ACCESS FULL on PROJECT 13 10000 280000

What is the objective of showing the two queries above, including
their query plan details? The task of this book is performance tuning.
Is either of the two of Oracle SQL proprietary or ANSI join formats
inherently faster? Let’s try to prove it either way. Once again the
Oracle SQL proprietary format is shown below but with a filter added,
finding only a single row in the join.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT di.name, de.name, prj.name
FROM division di, department de, project prj
WHERE di.division_id = 5
AND di.division_id = de.division_id
AND de.department_id = prj.department_id;

Query Cost Rows Bytes

SELECT STATEMENT on 4 143 9152
TABLE ACCESS BY INDEX ROWID on PROJECT 2 10000 280000
NESTED LOOPS on 4 143 9152

6.5 Joins 162

NESTED LOOPS on 2 1 36
TABLE ACCESS BY INDEX ROWID on DIVISION 1 1 17
INDEX UNIQUE SCAN on XPKDIVISION 1

TABLE ACCESS FULL on DEPARTMENT 1 10 190
INDEX RANGE SCAN on XFKPROJECT_DEPARTMENT 1 10000

Next is the ANSI standard equivalent of the previous join, including
the filter. Two of the most important aspects of tuning SQL join queries
are the ability to apply filtering prior to joining tables and specifying
the table with the largest filter applied as being the first table in the
FROM clause, especially for very large tables. The question is this:
Does the ANSI format allow for tuning of joins down to these levels
of detail? Is the ANSI format a faster and more tunable option?

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT di.name, de.name, prj.name
FROM division di JOIN department de

ON(di.division_id = de.division_id)
JOIN project prj ON(de.department_id =
prj.department_id)

WHERE di.division_id = 5;

In the previous join query filtering is visibly applied after the
specification of the join. Also note that with the addition of filtering
the ON clause rather than the USING clause is required. In the
following query plan note that the Optimizer has not changed its
plan of execution between the Oracle SQL proprietary and ANSI
join formats. There is no difference in performance between Oracle
SQL proprietary and ANSI standard join formats.

Query Cost Rows Bytes

SELECT STATEMENT on 4 143 9152
TABLE ACCESS BY INDEX ROWID on PROJECT 2 10000 280000
NESTED LOOPS on 4 143 9152
NESTED LOOPS on 2 1 36
TABLE ACCESS BY INDEX ROWID on DIVISION 1 1 17
INDEX UNIQUE SCAN on XPKDIVISION 1

TABLE ACCESS FULL on DEPARTMENT 1 10 190
INDEX RANGE SCAN on XFKPROJECT_DEPARTMENT 1 10000

A more visibly tunable join could be demonstrated by retrieving
a single row from the largest rather than the smallest table. Here is
the Oracle SQL proprietary format.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT di.name, de.name, prj.name

163 6.5 Joins

Chapter 6

FROM project prj, department de, division di
WHERE prj.project_id = 50
AND de.department_id = prj.department_id
AND di.division_id = de.division_id;

Notice in the following query plan that the cost is the same but
the number of rows and bytes read are substantially reduced; only a
single row is retrieved. Since the Project table is being reduced in size
more than any other table it appears first in the FROM clause. The
same applies to the Department table being larger than the Division
table.

Query Cost Rows Bytes

SELECT STATEMENT on 4 1 67
NESTED LOOPS on 4 1 67
NESTED LOOPS on 3 1 50
TABLE ACCESS BY INDEX ROWID on PROJECT 2 1 31
INDEX UNIQUE SCAN on XPKPROJECT 1 1

TABLE ACCESS BY INDEX ROWID on
DEPARTMENT 1 100 1900
INDEX UNIQUE SCAN on XPKDEPARTMENT 100

TABLE ACCESS BY INDEX ROWID on DIVISION 1 10 170
INDEX UNIQUE SCAN on XPKDIVISION 10

Now let’s do the same query but with the ANSI join format. From
the following query plan we can once again see that use of either the
Oracle SQL proprietary or ANSI join format does not appear to
make any difference to performance and capacity for tuning.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT di.name, de.name, prj.name
FROM project prj JOIN department de

ON(prj.department_id = de.department_id)
JOIN division di ON(de.division_id =
di.division_id)

WHERE prj.project_id = 50;

Query Cost Rows Bytes

SELECT STATEMENT on 4 1 67
NESTED LOOPS on 4 1 67
NESTED LOOPS on 3 1 50
TABLE ACCESS BY INDEX ROWID on PROJECT 2 1 31
INDEX UNIQUE SCAN on XPKPROJECT 1 1

TABLE ACCESS BY INDEX ROWID on
DEPARTMENT 1 100 1900

6.5 Joins 164

INDEX UNIQUE SCAN on XPKDEPARTMENT 100
TABLE ACCESS BY INDEX ROWID on DIVISION 1 10 170
INDEX UNIQUE SCAN on XPKDIVISION 10

Let’s take this further and do some time testing. We will use the
Accounts schema since the Employees schema does not have much
data. We want to retrieve more rows to give a better chance of
getting a time difference, thus we will not filter on the largest table
first. As can be seen from the following results the timing is identical.
Perhaps changing the join orders could make subtle differences but
there is no reason why the ANSI join format should be considered
less tunable.

SQL>SELECT COUNT(*) FROM (
2 SELECT t.text, st.text, coa.text, gl.dr, gl.cr
3 FROM type t , subtype st, coa, generalledger gl
4 WHERE t.type = 'A'
5 AND coa.type = t. type
6 AND coa.subtype = st.subtype
7 AND gl.coa# = coa.coa#);

COUNT(*)

239848

Elapsed: 00:00:04.06

SQL>SELECT COUNT(*) FROM (
2 SELECT t.text, st.text, coa.text, gl.dr, gl.cr
3 FROM type t JOIN coa ON(t.type = coa.type)
4 JOIN subtype st ON(st.subtype = coa.subtype)
5 JOIN generalledger gl ON(gl.coa# = coa.coa#)
6 WHERE t.type = 'A');

COUNT(*)

239848

Elapsed: 00:00:04.06

6.5.2 Efficient Joins

What is an efficient join? An efficient join is a join SQL query which
can be tuned to an acceptable level of performance. Certain types
of join queries are inherently easily tuned and thus can give good
performance. In general, a join is efficient when it can use indexes on

165 6.5 Joins

Chapter 6

large tables or is reading only very small tables. Moreover, any type
of join will be inefficient if coded improperly.

Intersections

An inner or natural join is an intersection between two tables. In Set
parlance an intersection contains all elements occurring in both of the
sets, or common to both sets. An intersection is efficient when index
columns are matched together in join clauses. Obviously intersection
matching not using indexed columns will be inefficient. In that case
you may want to create alternate indexes. On the other hand, when
a table is very small the Optimizer may conclude that reading the
whole table is faster than reading an associated index plus the table.
How the Optimizer makes a decision such as this will be discussed
in later chapters since this subject matter delves into indexing and
physical file block structure in Oracle Database datafiles.

In the example below both of the Type and COA tables are so
small that the Optimizer does not bother with the indexes and sim-
ply reads both of the tables fully.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT t.text, coa.text FROM type t JOIN coa
USING(type);

Query Cost Rows Bytes

SELECT STATEMENT on 3 55 1430
HASH JOIN on 3 55 1430
TABLE ACCESS FULL on TYPE 1 6 54
TABLE ACCESS FULL on COA 1 55 935

With the next example the Optimizer has done something a little
odd by using a unique index on the Subtype table. The Subtype table
has only four rows and is extremely small.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT t.text, coa.text FROM type t JOIN coa
USING(type)

JOIN subtype st USING(subtype);

Query Cost Rows Bytes

SELECT STATEMENT on 3 55 1650
NESTED LOOPS on 3 55 1650

6.5 Joins 166

HASH JOIN on 3 55 1540
TABLE ACCESS FULL on TYPE 1 6 54

TABLE ACCESS FULL on COA 1 55 1045
INDEX UNIQUE SCAN on XPKSUBTYPE 4 8

Once again in the following example the Optimizer has chosen
to read the index for the very small Subtype table. However, the
GeneralLedger table has its index read because it is very large and
the Optimizer considers that more efficient. The reason for this is
that the GeneralLedger table does have an index on the COA#
column and thus the index is range scanned.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT t.text, coa.text
FROM type t JOIN coa USING(type)

JOIN subtype st USING(subtype)
JOIN generalledger gl ON(gl.coa# =
coa.coa#);

Query Cost Rows Bytes

SELECT STATEMENT on 58 752740 31615080
NESTED LOOPS on 58 752740 31615080
NESTED LOOPS on 3 55 1980
HASH JOIN on 3 55 1870
TABLE ACCESS FULL on TYPE 1 6 54
TABLE ACCESS FULL on COA 1 55 1375

INDEX UNIQUE SCAN on XPKSUBTYPE 4 8
INDEX RANGE SCAN on XFK_GL_COA# 1 752740 4516440

The most efficient type of inner join will generally be one retriev-
ing very specific rows such as that in the next example. Most SQL is
more efficient when retrieving very specific, small numbers of rows.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT t.text, st.text, coa.text, gl.dr, gl.cr
FROM generalledger gl JOIN coa ON(gl.coa# = coa.coa#)

JOIN type t ON(t.type = coa.type)
JOIN subtype st ON(st.subtype =
coa.subtype)

WHERE gl.generalledger_id = 100;

Note how all tables in the query plan are accessed using unique
index hits.

Query Pos Cost Rows Bytes

SELECT STATEMENT on 6 6 1 64
NESTED LOOPS on 1 6 1 64

167 6.5 Joins

Chapter 6

NESTED LOOPS on 1 5 1 55
NESTED LOOPS on 1 4 1 45
TABLE ACCESS BY INDEX ROWID on GENE 1 3 1 20
INDEX UNIQUE SCAN on XPKGENERALLED 1 2 1

TABLE ACCESS BY INDEX ROWID on COA 2 1 55 1375
INDEX UNIQUE SCAN on XPKCOA 1 55

TABLE ACCESS BY INDEX ROWID on SUBTY 2 1 4 40
INDEX UNIQUE SCAN on XPKSUBTYPE 1 4

TABLE ACCESS BY INDEX ROWID on TYPE 2 1 6 54
INDEX UNIQUE SCAN on XPKTYPE 1 6

Self Joins

A self join joins a table to itself. Sometimes self-joining tables can be
handled with hierarchical queries. Otherwise a self join is applied to
a table containing columns within each row which link to each other.
The Employee table in the Employees schema is such a table. Since
both the MANAGER_ID and EMPLOYEE_ID columns are indexed
it would be fairly efficient to join the tables using those two columns.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT manager.name, employee.name
FROM employee manager, employee employee
WHERE employee.manager_id = manager.employee_id;

In the query plan the Employee table is fully scanned twice
because all the data is read and the Optimizer considers this faster
because the Employee table is small.

Query Cost Rows Bytes

SELECT STATEMENT on 3 110 2970
HASH JOIN on 3 110 2970
TABLE ACCESS FULL on EMPLOYEE 1 111 1554
TABLE ACCESS FULL on EMPLOYEE 1 111 1443

Equi-Joins and Range Joins

An equi-join uses the equals sign (=) and a range join uses range
operators (<, >, <=, >=) and the BETWEEN operator. In general, the
= operator will execute an exact row hit on an index and thus use
unique index hits. The range operators will usually require the
Optimizer to execute index range scans. BTree (binary tree) indexes,

6.5 Joins 168

the most commonly used indexes in Oracle Database, are highly
amenable to range scans. A BTree index is little like a limited depth
tree and is optimized for both unique hits and range scans.

Going back into the Accounts schema, this first query uses two
unique index hits. The filter helps that happen.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT coa.*, gl.*
FROM generalledger gl JOIN coa ON(gl.coa# = coa.coa#)
WHERE generalledger_id = 10;

Query Cost Rows Bytes

SELECT STATEMENT on 4 1 51
NESTED LOOPS on 4 1 51
TABLE ACCESS BY INDEX ROWID on
GENERALLEDG 3 1 26
INDEX UNIQUE SCAN on XPKGENERALLEDGER 2 1

TABLE ACCESS BY INDEX ROWID on COA 1 55 1375
INDEX UNIQUE SCAN on XPKCOA 55

This second query uses a range index scan on the GeneralLedger
table as a result of the range operator in the filter. Do you notice that
the join clause inside the ON clause is where the range join operator
is placed? Well there isn’t really much point in joining ON (gl.coa#
>= coa.coa#). I do not think I have ever seen an SQL join joining
using a range operator. The result would be a very unusual type of
outer join perhaps. Thus there is no need for a query plan.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT coa.*, gl.*
FROM generalledger gl JOIN coa ON(gl.coa# >= coa.coa#)
WHERE generalledger_id = 10;

� A Cartesian product is generally useless in a relational database,
so is a range join.

6.5.3 Inefficient Joins

What is an inefficient join? An inefficient join is an SQL query joining
tables which is difficult to tune or cannot be tuned to an acceptable
level of performance. Certain types of join queries are inherently

169 6.5 Joins

Chapter 6

both poor performers and difficult if not impossible to tune.
Inefficient joins are best avoided.

Cartesian Products

The ANSI join format calls a Cartesian product a Cross Join.
A Cross Join is only tunable as far as columns selected match indexes
such that rows are retrieved from indexes and not tables.

The following second query has a lower cost than the first because
the selected columns match indexes on both tables. I have left the
Rows and Bytes columns in the query plans as overflowed numbers
replaced with a string of # characters. This is done to stress the
pointlessness of using a Cartesian product in a relational database.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM coa, generalledger;

Query Cost Rows Bytes

SELECT STATEMENT on 27116 ####### #########
MERGE JOIN CARTESIAN on 27116 ####### #########
TABLE ACCESS FULL on COA 1 55 1375
BUFFER SORT on 27115 752740 19571240
TABLE ACCESS FULL on
GENERALLEDGER 493 752740 19571240

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT coa.coa#, gl.generalledger_id FROM coa,
generalledger gl;

Query Cost Rows Bytes

SELECT STATEMENT on 11936 ####### #########
MERGE JOIN CARTESIAN on 11936 ####### #########
INDEX FULL SCAN on XPKCOA 1 55 330
BUFFER SORT on 11935 752740 4516440
INDEX FAST FULL SCAN on
XPKGENERALLEDGER 217 752740 4516440

Outer Joins

Tuning an outer join requires the same approach to tuning as with
an inner join. The only point to note is that if applications require a

6.5 Joins 170

large quantity of outer joins there is probably potential for data
model tuning. The data model could be too granular. Outer joins are
probably more applicable to reporting and data warehouse type
applications.

An outer join is not always inefficient. The performance and to a
certain extent the indication of a need for data model tuning depends
on the ratio of rows retrieved from the intersection to rows retrieved
outside the intersection. The more rows retrieved from the intersec-
tion the better.

My question is this: Why are outer joins needed? Examine the
data model first.

Anti-Joins

An anti-join is always a problem. An anti-join simply does the opposite
of a requirement. The result is that the Optimizer must search for
everything not meeting a condition. An anti-join will generally
always produce a full table scan as seen in the first example following.
The second example uses one index because indexed columns are
being retrieved from one of the tables. Again the Rows and Bytes
columns are left as overflowing showing the possibly folly of using
anti-joins.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT t.text, coa# FROM type t, coa WHERE
t.type != coa.type;

Query Cost Rows Bytes

SELECT STATEMENT on 7 275 4675
NESTED LOOPS on 7 275 4675
TABLE ACCESS FULL on TYPE 1 6 54
TABLE ACCESS FULL on COA 1 55 440

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT coa.coa#, gl.generalledger_id FROM coa,
generalledger gl

WHERE coa.coa# != gl.coa#;

Query Pos Cost Rows Bytes

SELECT STATEMENT on 27116 27116 ####### #########
NESTED LOOPS on 1 27116 ####### #########

171 6.5 Joins

Chapter 6

INDEX FULL SCAN on XPKCOA 1 1 55 330
TABLE ACCESS FULL on
GENERALLEDGER 2 493 752740 9032880

Mutable and Complex Joins

A mutable join is a join of more than two tables. A complex join is
a mutable join with added filtering. We have already examined a
complex mutable join in the section on intersection joins and various
other parts of this chapter.

6.5.4 How to Tune a Join

So how can a join be tuned? There are a number of factors to
consider.

• Use equality first.

• Use range operators only where equality does not apply.

• Avoid use of negatives in the form of != or NOT.

• Avoid LIKE pattern matching.

• Try to retrieve specific rows and in small numbers.

• Filter from large tables first to reduce rows joined. Retrieve tables
in order from the most highly filtered table downwards; prefer-
ably the largest table has the most filtering applied.

� The most highly filtered table is the table having the smallest
percentage of its rows retrieved, preferably the largest table.

• Use indexes wherever possible except for very small tables.

• Let the Optimizer do its job.

6.6 Using Subqueries for Efficiency

Tuning subqueries is a highly complex topic. Quite often subqueries
can be used to partially replace subset parts of very large mutable
joins, with possible enormous performance improvements.

6.6 Using Subqueries for Efficiency 172

6.6.1 Correlated versus Noncorrelated Subqueries

A correlated subquery allows a correlation between a calling query
and a subquery. A value for each row in the calling query is passed
into the subquery to be used as a constraint by the subquery. A
noncorrelated or regular subquery does not contain a correlation
between calling query and subquery and thus the subquery is executed
in its entirety, independently of the calling query, for each row in the
calling query. Tuning correlated subqueries is easier because values
in subqueries can be precisely searched for in relation to each row of
the calling query.

A correlated subquery will access a specified row or set of rows for
each row in the calling query. Depending on circumstances a correlated
subquery is not always faster than a noncorrelated subquery. Use of
indexes or small tables inside a subquery, even for noncorrelated
subqueries, does not necessarily make a subquery perform poorly.

6.6.2 IN versus EXISTS

We have already seen substantial use of IN and EXISTS in the section
on comparison conditions. We know already that IN is best used for
small tables or lists of literal values. EXISTS is best used to code
queries in a correlated fashion, establishing a link between a calling
query and a subquery. To reiterate it is important to remember that
using EXISTS is not always faster than using IN.

6.6.3 Nested Subqueries

Subqueries can be nested where a subquery can call another subquery.
The following example using the Employees schema shows a query
calling a subquery, which in turn calls another subquery.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM division WHERE division_id IN

(SELECT division_id FROM department WHERE
department_id IN

(SELECT department_id FROM project));

Notice in the query plan how the largest table is scanned using an
INDEX FAST FULL SCAN. The Optimizer is intelligent enough to

173 6.6 Using Subqueries for Efficiency

Chapter 6

analyze this nested query and discern that the Project table is much
larger than both of the other two tables. The other two tables are so
small that the only viable option is a full table scan.

Query Cost Rows Bytes

SELECT STATEMENT on 14 10 590
HASH JOIN SEMI on 14 10 590
TABLE ACCESS FULL on DIVISION 1 10 460
VIEW on VW_NSO_1 8 10000 130000
HASH JOIN on 8 10000 60000
TABLE ACCESS FULL on DEPARTMENT 1 100 400
INDEX FAST FULL SCAN on
XFKPROJECT_DEPT 4 10000 20000

Nested subqueries can be difficult to tune but can often be a viable
and sometimes highly effective tool for the tuning of mutable com-
plex joins, with three and sometimes many more tables in a single
join. There is a point when there are so many tables in a join that the
Optimizer can become less effective.

6.6.4 Replacing Joins with Subqueries

For very large complex mutable joins it is often possible to replace
joins or parts of joins with subqueries. Very large joins can benefit
the most because they are difficult to decipher and tune. Some very
large joins are even beyond the intelligence of the Optimizer to assess
in the best possible way. Two ways in which subqueries can replace
joins in complex mutable joins are as follows:

• A table in the join not returning a column in the primary calling
query can be removed from the join and checked using a subquery.

• FROM clauses can contain nested subqueries to break up joins
much in the way that PL/SQL would use nested looping cursors.

Certain aspects of SQL coding placed in subqueries can cause
problems:

• An ORDER BY clause is always applied to a final result and
should not be included in subqueries if possible.

• DISTINCT will always cause a sort and is not always necessary.
Perhaps a parent table could be used where a unique value is
present.

6.6 Using Subqueries for Efficiency 174

• When testing against subqueries retrieve, filter, and aggregate on
indexes not tables. Indexes usually offer better performance.

• Do not be too concerned about full table scans on very small
static tables.

� Instances where joins can be replaced with subqueries often involve
databases with heavy outer join requirements. Excessive use of
SQL outer joins is possibly indicative of an over-granular data
model structure. However, it could also indicate orphaned child
table rows or the opposite: redundant static data. Cleaning out
redundant or orphaned rows can sometimes help performance
immensely by negating the need for outer joins.

Remove Tables Without Returned Columns
Using EXISTS

Going back to the Accounts schema once again look at the following
complex mutable join. We are joining four tables and selecting a col-
umn from only one of the tables. EXISTS comparisons can be placed
into the WHERE clause to force index access, removing three tables
from the join.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT c.name
FROM customer c JOIN orders o USING(customer_id)

JOIN ordersline ol USING(order_id)
JOIN transactions t USING(customer_id)

JOIN transactionsline tl
USING(transaction_id)

WHERE c.balance > 0;

Its query plan is a little scary. There are three full table scans and
two full index scans. The objective is to remove full table scans and
change as many index scans as possible into unique index scans.

Query Cost Rows Bytes

SELECT STATEMENT on ###### ####### #########
MERGE JOIN on ###### ####### #########
SORT JOIN on ###### ####### #########
MERGE JOIN on 4988 ####### #########

175 6.6 Using Subqueries for Efficiency

Chapter 6

SORT JOIN on 3209 100136 3805168
HASH JOIN on 762 100136 3805168
TABLE ACCESS FULL on
CUSTOMER 9 2690 69940

MERGE JOIN on 316 100237 1202844
INDEX FULL SCAN on
XFK_ORDERLINE_ORDER 26 540827 2704135

SORT JOIN on 290 31935 223545
TABLE ACCESS FULL on
ORDERS 112 31935 223545

SORT JOIN on 1780 188185 1317295
TABLE ACCESS FULL on
TRANSACTIONS 187 188185 1317295

SORT JOIN on 5033 570175 2850875
INDEX FAST FULL SCAN on
XFK_TRANSLINE_TRANS 4 570175 2850875

Only the Customer.NAME column is selected. This query is an
extreme case but we can actually remove every table from the join
except the Customer table. Let’s show this in two stages. Firstly,
I will remove the transaction tables from the join.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT c.name
FROM customer c JOIN orders o ON(c.customer_id =
o.customer_id)

JOIN ordersline ol USING(order_id)
WHERE c.balance > 0
AND EXISTS(

SELECT t.transaction_id FROM transactions t
WHERE t.customer_id = c.customer_id
AND EXISTS(

SELECT transaction_id FROM
transactionsline

WHERE transaction_id = t.transaction_id
)

);

We have now reduced the full table scans to two, have a single full
index scan and most importantly index range scans on both of the
transaction tables.

Query Cost Rows Bytes

SELECT STATEMENT on 359 5007 190266
FILTER on
HASH JOIN on 359 5007 190266
TABLE ACCESS FULL on CUSTOMER 9 135 3510

6.6 Using Subqueries for Efficiency 176

MERGE JOIN on 316 100237 1202844
INDEX FULL SCAN on
XFK_ORDERLINE_ORDER 26 540827 2704135

SORT JOIN on 290 31935 223545
TABLE ACCESS FULL on ORDERS 112 31935 223545

NESTED LOOPS on 72 212 2544
TABLE ACCESS BY INDEX ROWID on
TRANSACTIONS 2 70 490
INDEX RANGE SCAN on
XFX_TRANS_CUSTOMER 1 70

INDEX RANGE SCAN on
XFK_TRANSLINE_TRANS 1 570175 2850875

Now let’s get completely ridiculous and remove every table from
the join but the Customer table.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT c.name FROM customer c
WHERE c.balance > 0
AND EXISTS(

SELECT o.order_id FROM orders o
WHERE o.customer_id = c.customer_id
AND EXISTS(

SELECT order_id FROM ordersline
WHERE order_id = o.order_id

)
)
AND EXISTS(

SELECT t.transaction_id FROM transactions t
WHERE t.customer_id = c.customer_id
AND EXISTS(

SELECT transaction_id FROM
transactionsline

WHERE transaction_id = t.transaction_id
)

);

This is about the best that can be done with this query, now no
longer a join. This final result has full table access on the Customer
table only, along with four index range scans. We could possibly
improve the query further by decreasing the number of Customer
rows retrieved using filtering.

Query Cost Rows Bytes

SELECT STATEMENT on 9 7 182
FILTER on
TABLE ACCESS FULL on CUSTOMER 9 7 182

177 6.6 Using Subqueries for Efficiency

Chapter 6

NESTED LOOPS on 66 201 2412
TABLE ACCESS BY INDEX ROWID on
ORDERS 2 64 448
INDEX RANGE SCAN on
XFK_ORDERS_CUSTOMER 1 64

INDEX RANGE SCAN on
XFK_ORDERLINE_ORDER 1 540827 2704135

NESTED LOOPS on 72 212 2544
TABLE ACCESS BY INDEX ROWID on
TRANSACTIONS 2 70 490
INDEX RANGE SCAN on
XFX_TRANS_CUSTOMER 1 70

INDEX RANGE SCAN on
XFK_TRANSLINE_TRANS 1 570175 2850875

FROM Clause Subquery Nesting

Now what we want to do is to retrieve columns from different
tables. Columns cannot be retrieved from an EXISTS comparison in
the WHERE clause. We have to use another method. Nested sub-
queries in the FROM clause allow retrieval of columns.

In this example I am adding extra filtering to the TransactionsLine
table; at over 500,000 rows it is the largest table in the query. Since
the TransactionsLine table is larger than the Customer table it is
filtered first.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT c.name, tl.amount FROM customer c
JOIN orders o USING(customer_id)
JOIN ordersline ol USING(order_id)
JOIN transactions t USING(customer_id)
JOIN transactionsline tl USING(transaction_id)

WHERE tl.amount > 3170
AND c.balance > 0;

We start with three full table scans, one index range scan and a
unique index hit.

Query Cost Rows Bytes

SELECT STATEMENT on 1860 605 33880
NESTED LOOPS on 1860 605 33880
HASH JOIN on 1667 193 9843
TABLE ACCESS FULL on ORDERS 112 31935 223545
MERGE JOIN CARTESIAN on 436 43804 1927376

6.6 Using Subqueries for Efficiency 178

NESTED LOOPS on 292 16 288
TABLE ACCESS FULL on
TRANSACTIONSLINE 276 16 176

TABLE ACCESS BY INDEX ROWID on
TRANSACTIO 1 188185 1317295
INDEX UNIQUE SCAN on
XPKTRANSACTIONS 188185

BUFFER SORT on 435 2690 69940
TABLE ACCESS FULL on CUSTOMER 9 2690 69940

INDEX RANGE SCAN on
XFK_ORDERLINE_ORDER 1 540827 2704135

Firstly, some appropriate simple tuning can be done. Since the
TransactionsLine table is the largest table with the smallest relative
filtered result, it should be selected from first.

� The first table to be processed should be the largest table with the
largest relative row reduction filter. In other words, the biggest
table with the lowest number of rows retrieved from it. This applies
to both the FROM clause and the WHERE clause. Always reduce
rows to be joined first.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT c.name, tl.amount FROM transactionsline tl
JOIN transactions t USING(transaction_id)
JOIN customer c USING(customer_id)
JOIN orders o USING(customer_id)
JOIN ordersline ol ON(ol.order_id = o.order_id)

WHERE tl.amount > 3170
AND c.balance > 0;

Appropriate simple tuning yields one full table scan, two index
range scans, and two unique index hits.

Query Cost Rows Bytes

SELECT STATEMENT on 1381 3267 182952
NESTED LOOPS on 1381 3267 182952
NESTED LOOPS on 340 1041 53091
NESTED LOOPS on 308 16 704
NESTED LOOPS on 292 16 288
TABLE ACCESS FULL on
TRANSACTIONSLINE 276 16 176

TABLE ACCESS BY INDEX ROWID
on TRANSACTIO 1 33142 231994

179 6.6 Using Subqueries for Efficiency

Chapter 6

INDEX UNIQUE SCAN on
XPKTRANSACTIONS 33142

TABLE ACCESS BY INDEX ROWID on
CUSTOMER 1 2690 69940
INDEX UNIQUE SCAN on
XPKCUSTOMER 2690

TABLE ACCESS BY INDEX ROWID on
ORDERS 2 172304 1206128
INDEX RANGE SCAN on
XFK_ORDERS_CUSTOMER 1 172304

INDEX RANGE SCAN on
XFK_ORDERLINE_ORDER 1 540827 2704135

Now let’s use the FROM clause to create nested subqueries.
The trick is to put the largest table with the most severe filter at the
deepest nested level, forcing it to execute first. Thus we start with the
TransactionsLine table.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT c.name, b.amount
FROM customer c,
(

SELECT t.customer_id, a.amount
FROM transactions t,(

SELECT transaction_id, amount FROM
transactionsline

WHERE amount > 3170
) a
WHERE t.transaction_id = a.transaction_id

) b, orders o, ordersline ol
WHERE c.balance > 0
AND c.customer_id = b.customer_id
AND o.customer_id = c.customer_id
AND ol.order_id = o.order_id;

The cost is reduced further with the same combination of scans
because fewer rows are being joined.

Query Cost Rows Bytes

SELECT STATEMENT on 533 605 33880
NESTED LOOPS on 533 605 33880
NESTED LOOPS on 340 193 9843
NESTED LOOPS on 308 16 704
NESTED LOOPS on 292 16 288
TABLE ACCESS FULL on
TRANSACTIONSLINE 276 16 176

6.6 Using Subqueries for Efficiency 180

TABLE ACCESS BY INDEX ROWID
on TRANSACTIO 1 33142 231994
INDEX UNIQUE SCAN on
XPKTRANSACTIONS 33142

TABLE ACCESS BY INDEX ROWID
on CUSTOMER 1 2690 69940
INDEX UNIQUE SCAN on
XPKCUSTOMER 2690

TABLE ACCESS BY INDEX ROWID on
ORDERS 2 31935 223545
INDEX RANGE SCAN on
XFK_ORDERS_CUSTOMER 1 31935

INDEX RANGE SCAN on
XFK_ORDERLINE_ORDER 1 540827 2704135

Now let’s combine WHERE clause comparison subqueries and
FROM clause embedded subqueries.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT c.name, b.amount
FROM customer c,
(

SELECT t.customer_id, a.amount
FROM transactions t,(

SELECT transaction_id, amount FROM
transactionsline

WHERE amount > 3170
) a
WHERE t.transaction_id = a.transaction_id

) b
WHERE c.balance > 0
AND EXISTS(

SELECT o.order_id FROM orders o
WHERE o.customer_id = c.customer_id
AND EXISTS(

SELECT order_id FROM ordersline
WHERE order_id = o.order_id

)
);

Using EXISTS makes the query just that little bit faster with lower
cost since the number of tables joined is reduced.

Query Cost Rows Bytes

SELECT STATEMENT on 420 2190 91980
FILTER on
NESTED LOOPS on 420 2190 91980

181 6.6 Using Subqueries for Efficiency

Chapter 6

MERGE JOIN CARTESIAN on 420 2190 81030
TABLE ACCESS FULL on
TRANSACTIONSLINE 276 16 176

BUFFER SORT on 144 135 3510
TABLE ACCESS FULL on CUSTOMER 9 135 3510

INDEX UNIQUE SCAN on
XPKTRANSACTIONS 188185 940925

NESTED LOOPS on 66 201 2412
TABLE ACCESS BY INDEX ROWID on
ORDERS 2 64 448
INDEX RANGE SCAN on
XFK_ORDERS_CUSTOMER 1 64

INDEX RANGE SCAN on
XFK_ORDERLINE_ORDER 1 540827 2704135

6.7 Using Synonyms

A synonym is, as its name implies, another name for a known object.
Synonyms are typically used to reference tables between schemas.
Public synonyms make tables contained within schemas available to
all schemas. Apart from the obvious security issues there can be
potential performance problems when over-using synonyms in highly
concurrent environments. It may not necessarily be effective to divide
functionality between different schemas only to allow users global or
semi-global access to all of the underlying schemas. Simplicity in
development using objects like synonyms often leads to complexity
and performance problems in production. Additionally too many
metadata objects can cause problems with the shared pool.

6.8 Using Views

Views are application- and security-friendly. Views can also be used
to reduce complexity, particularly in development. In general, views
are not conducive to good performance. A view is a logical overlay on
top of one or more tables. A view is created using an SQL statement.
A view does not contain data itself. The biggest problem with a view is
that whenever it is queried its defining SQL statement is re-executed.
It is common in applications for a developer to query a view and add
additional filtering. The potential results are views containing large
queries where programmers will then execute small row number

6.8 Using Views 182

retrievals from the view. Thus two queries are executed, commonly
with the view query selecting all the rows in the underlying table
or join.

Let’s try to prove that views are inherently slower than direct
table queries. Firstly, I create a view on my largest Accounts schema
table.

CREATE VIEW glv AS SELECT * FROM generalledger;

Now let’s do some query plans. I have four queries and query plans
listed. The first two retrieve a large number of rows from the view and
then the table. It is apparent that the query plans are identical in cost.

Selecting from the view:

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM glv WHERE coa# = '40003';

Query Cost Rows Bytes

SELECT STATEMENT on 165 150548 3914248
TABLE ACCESS BY INDEX ROWID on
GENERALLEDGE 165 150548 3914248
INDEX RANGE SCAN on XFK_GL_COA# 5 150548

Selecting from the table:

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM generalledger WHERE coa# = '40003';

Query Cost Rows Bytes

SELECT STATEMENT on 165 150548 3914248
TABLE ACCESS BY INDEX ROWID on
GENERALLEDGE 165 150548 3914248
INDEX RANGE SCAN on XFK_GL_COA# 5 150548

Now let’s filter and return much fewer rows. Once again the
query plans are the same.

Selecting from the view:

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM glv WHERE generalledger_id = 500000;

Query Cost Rows Bytes

SELECT STATEMENT on 3 1 26
TABLE ACCESS BY INDEX ROWID on
GENERALLEDGE 3 1 26
INDEX UNIQUE SCAN on XPKGENERALLEDGER 2 1

183 6.8 Using Views

Chapter 6

Selecting from the table:

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM generalledger WHERE generalledger_id =
500000;

Query Cost Rows Bytes

SELECT STATEMENT on 3 1 26
TABLE ACCESS BY INDEX ROWID on
GENERALLEDGE 3 1 26
INDEX UNIQUE SCAN on XPKGENERALLEDGER 2 1

So let’s now try some time tests. The COUNT function is used as
a wrapper and each query is executed twice to ensure there is no con-
flict between reading from disk and memory.

SELECT COUNT(*) FROM(SELECT * FROM glv WHERE coa# = '40003');
SELECT COUNT(*) FROM(SELECT * FROM generalledger WHERE
coa# = '40003');

SELECT COUNT(*) FROM(SELECT * FROM glv
WHERE generalledger_id = 500000);

SELECT COUNT(*) FROM(SELECT * FROM generalledger
WHERE generalledger_id = 500000);

In the first two instances retrieving from the view is faster than
reading from the table.

SQL> SELECT COUNT(*) FROM(SELECT * FROM glv WHERE
coa# = '40003');

COUNT(*)

66287

Elapsed: 00:00:04.04

SQL> SELECT COUNT(*) FROM(SELECT * FROM generalledger WHERE
coa# = '40003');

COUNT(*)

66287

Elapsed: 00:00:04.09

SQL> SELECT COUNT(*) FROM(SELECT * FROM glv WHERE
generalledger_id = 500000);

COUNT(*)

1

6.8 Using Views 184

Elapsed: 00:00:00.00

SQL> SELECT COUNT(*) FROM(SELECT * FROM generalledger WHERE
generalledger_id = 500000);

COUNT(*)

1

Elapsed: 00:00:00.00

For a single table and a view on that table there is no difference
in query plan or execution time.

Now let’s go and re-create our view and re-create it with a join
rather than just a single table. This code drops and re-creates the
view I created previously.

DROP VIEW glv;
CREATE VIEW glv AS

SELECT gl.generalledger_id, coa.coa#, t.text AS type,
st.text AS subtype, coa.text as coa, gl.dr,
gl.cr, gl.dte

FROM type t JOIN coa USING(type)
JOIN subtype st USING(subtype)

JOIN generalledger gl ON(gl.coa# =
coa.coa#);

When retrieving a large percentage of rows in the following two
queries the cost in the query plan is much better when retrieving
using the tables join rather than the view.

Selecting from the view:

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM glv WHERE coa# = '40003';

Query Cost Rows Bytes

SELECT STATEMENT on 168 30110 2107700
NESTED LOOPS on 168 30110 2107700
NESTED LOOPS on 3 1 44
NESTED LOOPS on 2 1 34
TABLE ACCESS BY INDEX ROWID on COA 1 1 25
INDEX UNIQUE SCAN on XPKCOA 1

TABLE ACCESS BY INDEX ROWID on
TYPE 1 6 54
INDEX UNIQUE SCAN on XPKTYPE 6

TABLE ACCESS BY INDEX ROWID on
SUBTYPE 1 4 40

185 6.8 Using Views

Chapter 6

INDEX UNIQUE SCAN on XPKSUBTYPE 4
TABLE ACCESS BY INDEX ROWID on
GENERALLEDG 165 150548 3914248
INDEX RANGE SCAN on XFK_GL_COA# 5 150548

Selecting from the table join:

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT gl.generalledger_id, coa.coa#, t.text AS type,

st.text AS subtype, coa.text as coa, gl.dr,
gl.cr, gl.dte

FROM type t JOIN coa USING(type)
JOIN subtype st USING(subtype)

JOIN generalledger gl ON(gl.coa# =
coa.coa#)

WHERE gl.coa# = '40003';

Query Cost Rows Bytes

SELECT STATEMENT on 5 30110 2107700
NESTED LOOPS on 5 30110 2107700
NESTED LOOPS on 3 1 44
NESTED LOOPS on 2 1 34
TABLE ACCESS BY INDEX ROWID
on COA 1 1 25
INDEX UNIQUE SCAN on XPKCOA 1

TABLE ACCESS BY INDEX ROWID on
TYPE 1 6 54
INDEX UNIQUE SCAN on XPKTYPE 6

TABLE ACCESS BY INDEX ROWID on
SUBTYPE 1 4 40
INDEX UNIQUE SCAN on XPKSUBTYPE 4

TABLE ACCESS BY INDEX ROWID on
GENERALLEDG 2 150548 3914248
INDEX RANGE SCAN on XFK_GL_COA# 1 150548

Let’s try some timing tests. The first timing test retrieves a large
set of rows from the view.

SQL> SELECT COUNT(*) FROM(SELECT * FROM glv WHERE coa# =
'40003');

COUNT(*)

66287

Elapsed: 00:00:04.02

The second timing test retrieves the same large set of rows from
the table join and is obviously much faster.

6.8 Using Views 186

SQL> SELECT COUNT(*) FROM(
2 SELECT gl.generalledger_id, coa.coa#, t.text AS type,

st.text AS subtype, coa.text as coa, gl.dr, gl.cr,
gl.dte

3 FROM type t JOIN coa USING(type)
4 JOIN subtype st USING(subtype)
5 JOIN generalledger gl ON(gl.coa# = coa.coa#)
6 WHERE gl.coa# = '40003');

COUNT(*)

66287

Elapsed: 00:00:00.07

Comparing times to retrieve a single row, there is no difference
between the view and the retrieval from the join. In a highly active
concurrent environment this would probably not be the case.

SQL> SELECT COUNT(*) FROM(SELECT * FROM glv WHERE
generalledger_id = 500000);

COUNT(*)

1

Elapsed: 00:00:00.00

SQL> SELECT COUNT(*) FROM (SELECT gl.generalledger_id,
coa.coa#, t.text

AS type, st.text AS subtype, coa.text as coa, gl.dr, gl.cr,
gl.dte

2 FROM generalledger gl JOIN coa ON(gl.coa# = coa.coa#)
3 JOIN type t USING(type)
4 JOIN subtype st USING(subtype)
5 WHERE generalledger_id = 500000);

COUNT(*)

1

Elapsed: 00:00:00.00

Views can now have constraints, including primary and foreign
key constraints. These may help performance of data retrieval from
views. However, assuming that views are created for coding devel-
opment simplicity and not security, adding complexity to a view
would negate the simplification issue.

The exception to views re-executing every time they are queried
is a Materialized View. A Materialized View is a separate database

187 6.8 Using Views

Chapter 6

object in Oracle Database and stores the results of a query. Thus
when a Materialized View is queried, data is extracted from the view
and not the underlying objects in the query. Materialized Views are
read only and intended for use in data warehousing and replication.

Views are not performance friendly! For the sake of performance
do not use views. Some applications are built with multiple layers of
views. This type of application design is often application convenient
and can produce disappointing results with respect to database
performance. There is simply too much metadata in the shared pool.
A brute force method of resolving selection of rows from multiple
layered sets of views is to use a form of the FROM clause in the
SELECT statement with the ONLY clause included as shown in the
following syntax. The ONLY clause will not retrieve rows from
subset views.

SELECT … FROM ONLY (query) …

6.9 Temporary Tables

In years past in traditional relational databases temporary tables
were created as shell structures to contain temporarily generated
data, usually for the purposes of reporting. Oracle Database has the
ability to create tables containing temporary rows. Rows created in
temporary table objects are created locally to a session, somewhat
managed by the database. It is more efficient to use Oracle Database
temporary table objects in some circumstances. Creating traditional
temporary tables, filling them, emptying them, and storing or delet-
ing their rows is unlikely to perform better than Oracle Database
temporary table objects.

6.10 Resorting to PL/SQL

PL/SQL is an acronym for Programming Language for SQL. From a
purely programming perspective PL/SQL is really SQL with program-
ming logic wrapper controls, amongst numerous other bells and
whistles. PL/SQL is a very primitive programming language at best.
Beware of writing entire applications using PL/SQL. SQL is designed
to retrieve sets of data from larger sets and is not procedural, sequential,

6.10 Resorting to PL/SQL 188

or object-like in nature. Programming languages are required to be
one of those or a combination thereof. PL/SQL has its place as a rela-
tional database access language and not as a programming language.
Additionally PL/SQL is interpretive which means it is slow!

PL/SQL objects are now stored in compiled form in binary
object variables or BLOB objects. This helps PL/SQL procedure
execution performance.

Does PL/SQL allow for faster performance? The short answer is no.
The long answer is as follows. PL/SQL allows much greater control
over SQL coding than simple SQL does. However, modern Oracle
SQL is much more sophisticated than it was years ago and some of
the aspects of PL/SQL used in the past allowing better performance
in PL/SQL than SQL are effectively redundant, particularly with
retrieval of data.

There are a number of reasons for resorting to PL/SQL:

• PL/SQL will not provide better performance but will allow a break-
down of complexity. Breaking down complexity can allow easier
tuning of SQL statements through better control of cursors.

• An obvious benefit of PL/SQL is the ability to build stored proce-
dures and triggers. Triggers should be used sparingly and avoided
for implementation of Referential Integrity; constraints are much
faster. In the case of stored procedures the obvious benefits are
centralized control and potential performance increases because
stored procedure code is executed on the server. Execution on a
database server reduces network traffic.

• There are some situations where it is impossible to code SQL code
using SQL alone and thus PL/SQL has to be resorted to. As Oracle
Corporation has developed SQL this has become less frequent.

• Some exceedingly complex SQL code can benefit from the use of
PL/SQL instead of SQL. Some SQL code can become so complex
that it is impossible to tune or even code in SQL and hence
PL/SQL becomes the faster option. Using the DECODE function
is similar to control structures such as IF and CASE statements.
PL/SQL allows all the appropriate control structures.

• PL/SQL packages can be cached into memory to avoid re-parsing.

189 6.10 Resorting to PL/SQL

Chapter 6

10g

PL/SQL can provide better program coding control of cursors
plus execution and maintenance from a central, single point. Perhaps
the most significant benefit of resorting to PL/SQL is a potential
reduction in complexity. Once again, as with views, reducing com-
plexity is not necessarily conducive to performance tuning. In fact
simplicity, as with over-Normalization can often hurt performance in
a relational database. Thus further discussion of tuning SQL
retrieval code using PL/SQL is largely irrelevant.

Tuning PL/SQL is a programming task and has little to do with
coding well-performing SQL code. The obvious programming points
to note are as follows:

• Do not process more in a loop or a cursor than is necessary.
Break out of loops when no more processing is required.

• Large IF statements should be replaced with CASE statements or
appropriate breaks should be used. Traditionally CASE state-
ments are faster than IF statements.

• Recursion using embedded procedures creates very elegant code
but in PL/SQL can cause performance problems, especially where
transactions are not completed. PL/SQL is not executed as com-
piled code in the sense that compiled C code is. PL/SQL compi-
lation involves syntax parsing and interpretation; no binary copy
is created. When PL/SQL code is executed it is interpreted and
not executed from a compiled binary form.

PL/SQL objects are now stored in compiled form in binary
object variables or BLOB objects. This helps PL/SQL procedure
execution performance.

• The WHERE CURRENT OF clause can refer to a cursor ROWID,
giving direct pointer access to a cursor row in memory. The
RETURNING INTO clause can help with reducing the need for
subsequent SELECT statements further on in a procedure by
returning values into variables.

• Explicit cursors can be faster than implicit cursors but are more
difficult to code.

• PL/SQL has three parameter formats for passing variables in
and out of procedures. IN and OUT pass values in and out of

6.10 Resorting to PL/SQL 190

10g

procedures, respectively. IN OUT passes a pointer both in and
out of a procedure. Use only what is needed.

• As with SQL code embedded in applications, PL/SQL procedures
of any kind can use bind variables. Using bind variables can have
a profound effect on increasing performance by lowering parsing
requirements in the library cache.

6.10.1 Tuning DML in PL/SQL

There are two interesting points to note in relation to performance
of DML statements in PL/SQL. Other than what has already been
covered in this chapter there is little else which can be done to tune
DML (INSERT, UPDATE, DELETE, MERGE) or SELECT statements
in PL/SQL.

The RETURNING INTO Clause

In the following example the RETURNING clause prevents the coder
having to code an extra SELECT statement to find the identifier value
required for the second INSERT statement. The same applies simi-
larly to the second INSERT statement returning a second value for
the DBMS_OUTPUT.PUT_LINE procedure.

DECLARE
division_id division.division_id%TYPE;
division_name division.name%TYPE;
department_name department.name%TYPE;

BEGIN
INSERT INTO division(division_id, name)
VALUES(division_seq.NEXTVAL, 'A New Division')
RETURNING division_id, name INTO division_id,
division_name;

INSERT INTO department(department_id, division_id, name)
VALUES(department_seq.NEXTVAL, division_id, 'A New
Department')

RETURNING name INTO department_name;

DBMS_OUTPUT.PUT_LINE('Added : '||division_name
||', '||department_name);

END;
/

191 6.10 Resorting to PL/SQL

Chapter 6

The RETURNING clause can be used to return collections.

6.10.2 When to Resort to PL/SQL and Cursors

In general, SQL in Oracle Database is now powerful enough to deal
with almost any requirement. Some occasions do call for substituting
SQL code nested loop type queries with PL/SQL. PL/SQL provides
better programming control and allows much easier management
of highly complex SQL code. It is sometimes the case that better
performance will be gained using PL/SQL to control nested SQL
statements.

PL/SQL can sometimes be faster when compiled, pinned, and
executed on the database server, depending on the application. The
goal of stored procedures is to minimize on network traffic. With the
speed of modern network connections available this is not necessar-
ily an issue anymore.

So what do I mean by resorting to PL/SQL and cursors? After all
I did not just state “Resorting to PL/SQL”. So what am I talking
about? Look at this example.

EXPLAIN PLAN SET statement_id='TEST' FOR
SELECT * FROM coa NATURAL JOIN generalledger;

This query plan shows the COA table in the outer loop and the
GeneralLedger table in the inner loop.

Query Cost Rows Bytes

1. SELECT STATEMENT on 1642 1068929 50239663
2. HASH JOIN on 1642 1068929 50239663
3. TABLE ACCESS FULL on COA 2 55 1320
3. TABLE ACCESS FULL on

GENERALLEDGER 1128 1068929 24585367

To convert the SQL statement shown previously to PL/SQL
I would need PL/SQL code something similar to that shown here.

DECLARE
CURSOR cCOA IS SELECT * FROM coa;
TYPE tGL IS REF CURSOR RETURN generalledger%ROWTYPE;
cGLs tGL;
rGL generalledger%ROWTYPE;

6.10 Resorting to PL/SQL 192

10g

BEGIN
FOR rCOA IN cCOA LOOP

OPEN cGLs FOR SELECT * FROM generalledger WHERE
coa# = rCOA.coa#;

LOOP
FETCH cGLs INTO rGL;
EXIT WHEN cGLs%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(

rCOA.coa#||' '||
TO_CHAR(rGL.dte)||' '||
TO_CHAR(rGL.dr)||' '||
TO_CHAR(rGL.cr));

END LOOP;
CLOSE cGLs;

END LOOP;
EXCEPTION WHEN OTHERS THEN CLOSE cGLs;
END;
/

In general, PL/SQL should only replace SQL when coding simply
cannot be achieved in SQL, it is too complex and convoluted for
SQL, or centralization on the database server is required.

6.10.3 Java or PL/SQL?

Java can be used to construct stored procedures in much the same
way that PL/SQL can. When to use Java? That is a question with a
very simple answer. Use Java when not accessing the database and
writing code which is computationally heavy. What does this mean?
When answering a question such as this I always prefer to go back
into the roots of a programming language or a database. In other
words, what were PL/SQL and Java originally built for? What is
their purpose? Let’s start by looking at PL/SQL.

PL/SQL is effectively a primitive programming language and is
purely an extension of SQL. SQL was originally built purely for the
purpose of accessing data in a relational database. Therefore, it fol-
lows that PL/SQL is of the same ilk as SQL. PL/SQL was originally
devised to create stored procedures in Oracle Database. Stored pro-
cedures were devised for relational databases in general, not just
Oracle Database, to allow for coding of self-contained blocks of
transaction-based SQL code. Those blocks of code are executed on
the database server thus minimizing on network traffic. PL/SQL is

193 6.10 Resorting to PL/SQL

Chapter 6

much richer than stored procedure languages used in other relational
databases. PL/SQL can be used to code complexity. This takes us
to Java.

Why use Java? Java is an object-oriented programming language
built for coding of highly complex front-end and back-end applica-
tions. If you know anything about objects at all you will understand
that objects in programming are superb at handling complexity.
It is in the very nature of objects to handle complexity by breaking
everything down into its most simplistic parts. Java can be used to
handle highly complex coding sequences and can be used to create
Oracle Database stored procedures, much in the same way that
PL/SQL can. Java is much more powerful than PL/SQL in doing
lots of computations. Java is better than PL/SQL at anything that
does not involve accessing the database, especially complex code.
Coding requirements when accessing a database are trivial in rela-
tion to the complex routines and functions required by applications-
level coding.

There is one small but fairly common problem with using Java.
Java is object oriented. Oracle Database is relational. Object and
relational methodologies do not mix well. Many Java applications, due
to their object nature, break things into very small, easily manageable
pieces. Object-oriented design is all about easy management of com-
plexity. In relational terms management of complexity by severe
break-down and object “black boxing” is an incredible level of
Normalization. Too much Normalization leads to too much granu-
larity and usually very slow performance. What commonly happens
with Java applications is one or all of a number of things. These are
some of the possibilities.

• Pre-loading of large data sets.

• Separation of parts of SQL statements into separate commands
sent to the database. For instance, a SELECT statement could be
submitted and then filtering would be performed in the Java
application itself. This leads to lots of full table scans and a
plethora of other performance problems.

• Sometimes object design is imposed onto the database to such
an extent as to continually connect to and disconnect from the
database for every SQL code execution. This is very heavy on
database resource consumption.

6.10 Resorting to PL/SQL 194

So what’s the answer to the nagging question of using Java or
PL/SQL? The answer is to use both, if your skills set permits it. Java
can be used to handle any kind of complex code not accessing the
database. PL/SQL should be used to access the database. If you can-
not or do not wish to use a mix and prefer Java then be aware that
a relational database is not able to manage the complete and total
“black box” breakdown into easily definable and understandable
individual objects. Do not attempt to impose an object structure on
a relational or furthermore even an object-relational database: they
are not designed for that level of granularity.

6.11 Replacing DELETE with TRUNCATE

The DDL TRUNCATE command is faster than using the DELETE
command when deleting all the rows from a table. The TRUNCATE
command automatically commits and does not create any log entries
or rollback. The obvious problem with TRUNCATE is that an error
cannot be undone.

6.12 Object and Relational Conflicts

Relational and object data model structures are completely different
to each other. There is great potential for conflict when combining
these two methodologies into what is called an object-relational
database. These conflicts can hamper performance in a relational
database such as Oracle Database.

6.12.1 Large Binary Objects in a Relational Database

The biggest benefit to the combination of objects and relations is
that of including large binary objects into a relational structure, such
as multimedia objects. However, there is a twist. In both relational
and object databases the most efficient storage method for multime-
dia objects is to use a BFILENAME pointer. A BFILENAME pointer
does not store the object itself in the database but contains a path and
file name for the object. The object is stored externally to the data-
base in the file system. Storing large binary objects in any database

195 6.12 Object and Relational Conflicts

Chapter 6

is inefficient because those binary objects can span multiple blocks,
both Oracle Database blocks and operating system blocks. Even with
Oracle9i Database multiple block sizes and specific storage structures
for LOB datatypes large multimedia objects will span more than one
block. Storing data into a database which spans more than a single block
is effectively row chaining where a row is “chained” from one block to
another. Chaining is not really an issue if the blocks are physically next
to each other. Also the DB_FILE_MULTIBLOCK_READ_COUNT
parameter can help to counteract this. The fact is contiguous, defrag-
mented block storage is extremely unlikely in any database environment.
It is usually best to store large singular binary objects in the file system.

BIGFILE tablespaces can possibly help to alleviate these issues
somewhat.

6.12.2 Object-Relational Collections

Including TABLE and VARRAY collections inside relational tables
and within PL/SQL is generally a very bad idea. Collections are an
object methodological approach to object data abstraction and
encapsulation. Object methodologies are completely opposed to
those of relational databases. An object structure is spherical allow-
ing access from any point to any point within an entire database. A
relational database is more two-dimensional in nature and requires
that access to data be passed through or down semi-hierarchical
structures or into subset parts of a data model. Since PL/SQL is
merely an extension of SQL, and SQL is a purely relational database
access language, any type of object coding is best avoided using
PL/SQL. If you want to write object code use Java. Java is built for
object structures.

The same approach applies to including object structures in tables.
There are various instances in which collection substructures can be
utilized in relational database tables. 1st Normal Form master detail
and 2nd Normal Form foreign key static table inclusion relation-
ships are possibilities. However, storage structures remain applicable
to a relational methodology and are still ultimately stored in rows
(tuples). Tables and rows are two-dimensional. Object structures are

6.12 Object and Relational Conflicts 196

10g

multi-dimensional. The two do not fit together. If you must contain
collections in tables in Oracle Database there are various object
collection types that could be used. Associative arrays are the most
efficient.

• Nested Table. A nested table is a dynamic array. A dynamic array
is a pointer. A pointer does not require a specific size limit and
thus the use of the term dynamic. Dynamic implies that it can
have any number of rows or entries in its array.

• VARRAY. A VARRAY is a fixed-length array. A fixed-length
array is a reserved chunk of memory saved for multiple array
rows. Unlike a dynamic array a fixed-length array has space in
memory reserved for the whole array structure.

• Associative Array. An associative array is an indexed dynamic
array and can potentially be accessed faster than a nested table
because it can be accessed using an index.

Problems with objects in relational models are more often than
not a misunderstanding of object-modeling techniques. It is common
knowledge that the approach required for object data modeling is
completely different to that of relational modeling. The same is very
likely to apply to object-relational modeling using object types such
as nested table, VARRAY or associative array collections in Oracle
Database tables. Using these collection data types requires object and
relational modeling skills, not only relational modeling skills.

That ends this chapter on examining the basics of how to create
efficient SQL. In the next chapter we will look at indexing and start
to delve a little deeper into Oracle Database specifics.

197 6.12 Object and Relational Conflicts

Chapter 6

625

21
Tools and Utilities

There are a multitude of tools available to both monitor and tune
Oracle installations. This chapter will simply introduce some of
those tools and categorize what each can do. It is best to explain
some of the various tools graphically. Let’s begin with Oracle
Enterprise Manager. In Chapter 10 of Part II we looked at the SQL
code tuning aspects of Oracle Enterprise Manager; this chapter
attempts to focus on the physical tuning aspects.

21.1 Oracle Enterprise Manager

Oracle Enterprise Manager in relation to physical tuning can be
divided into two parts. These two parts contain diagnostic and tun-
ing tools. Diagnosis usually implies monitoring for potential prob-
lems and sometimes repairing them; tuning and analysis can even
automatically repair possible performance problems.

21.1.1 Diagnostics Pack

With respect to physical tuning the interesting parts of the diagnos-
tics pack are as follows:

• Event Monitoring. Allows definition, automated detection of
and potential automated “FixIt” jobs, which can automatically
correct problems.

• Lock Monitoring. Allows monitoring and resolution of locks
in a database.

• TopSessions. Detects and displays the top best- or worst-performing
sessions ordered by a large number of different possible sorting
parameters.

• TopSQL. Detects and displays the top best- and worst-performing
SQL statements, again ordered by a large number of different
possible sorting parameters.

• Performance Manager. Performance Manager wraps everything
together such as details contained in the TopSessions and
TopSQL tools, with extra functionality and GUI usability.

� The ultimate of Oracle Enterprise Manager is a GUI window
interface into the Oracle Database Wait Event Interface.

Event Monitoring

Event monitoring covers areas such as performance, resource usage,
how space is used, amongst many other areas. There are an absolute
of plethora of events which can be included for automated detection
and potential “FixIt” action to resolve problems. Figure 21.1 shows
a very small subsection of the fully user definable event detection
tool. The event detection construction tool is accessible from the
Event menu in the Oracle Enterprise Manager Console.

Oracle Enterprise Manager repository, events and jobs are auto-
matically configured.

Lock Monitoring

Figure 21.2 shows lists of locks on a very busy database. Note the
drilldown menu with various options including the option to kill off
a session. Sometimes it is necessary to kill a session causing poten-
tially damaging problems.

TopSessions

The TopSessions tool allows ordered visualization of statistical
performance information where the best or worst sessions can be

21.1 Oracle Enterprise Manager 626

10g

displayed first. Figure 21.3 shows the first 10 sessions executing the
most physical reads.

TopSQL

TopSQL is similar to the TopSessions tool where the TopSQL tool
detects and displays the best- or worst-performing SQL statements in
a large number of different possible orders. An example of TopSQL
is shown in Figure 21.4.

TopSQL is much improved in relation to more usable reporting
capabilities.

627 21.1 Oracle Enterprise Manager

Chapter 21

Figure 21.1 Defining Events for Detection and Resolution

10g

Performance Manager

The Performance Manager is a very comprehensive tool. It allows
an intensive GUI picture of an environment with every possible
monitoring and performance metric imaginable. The Performance
Manager appears complex but it is comprehensive and very easily
usable.

Figure 21.5 shows the Performance Overview screen. This screen
is accessible from the Oracle Enterprise Manager Console on the
Tools menu. Select the Diagnostic Pack submenu. The Performance
Overview interface gives an overall picture of database performance

21.1 Oracle Enterprise Manager 628

Figure 21.2 Monitoring and Managing Locking

and is highly adaptable depending on requirements and what you
want to monitor.

Performance Overview charts are much improved allowing
monitoring and diagnostics checking from a central point using
an HTML interface.

The Performance Manager allows simple drill-down further
into the separate subset areas of those shown in Performance
Overview interface, to the point and beyond of drilling down

629 21.1 Oracle Enterprise Manager

Chapter 21

Figure 21.3 TopSessions Monitoring in a Specified Order

10g

into the Oracle Database Wait Event Interface. The Oracle Data-
base Wait Event Interface will be covered in detail in the next
chapter. Figure 21.6 shows a small part of the possible types of
information which can be monitored with the Performance
Manager.

Figure 21.7 shows a drilldown into latch get/miss rates.

Finally Figure 21.8 shows a detailed analysis of latches.

21.1.2 Tuning Pack

As far as physical tuning is concerned only the Tablespace Map and
Reorg Wizard tools are of interest. Other parts of the Oracle

21.1 Oracle Enterprise Manager 630

Figure 21.4 TopSQL Statements

Enterprise Manager tuning pack were covered in Chapter 10 of Part II
of this book.

Tablespace Map and the Reorg Wizard

The tablespace map presents a graphical representation of physical
data distribution within tablespaces. After executing a tablespace
analysis in the INDX tablespace of my database, two indexes are
recommended for reorganization, as shown in Figure 21.9.

As can be seen in the drop-down menu in Figure 21.9 various
options are available:

• Tablespace Analysis. Analyze a tablespace for problems such as
fragmentation.

• Reorganize Tablespace. Execute the Reorg Wizard.

631 21.1 Oracle Enterprise Manager

Chapter 21

Figure 21.5 The Performance Overview Tool

21.1 Oracle Enterprise Manager 632

Figure 21.6 The Performance Manager Main Screen

Figure 21.7
Latch

Get/Miss
Rates

Drilldown

• Reorganize Selected Segments. Execute reorganization on
selected indexes (segments) only.

• Coalesce Free Extents. Coalescence attempts to merge empty
adjacent physical areas into single reusable chunks of disk
storage space. In the past, I have not found coalescence to be
particularly useful.

Figure 21.10 simply shows the same screen as in Figure 21.9
except with the Tablespace Analysis Report tab selected. The table-
space analysis report describes exactly why the table analysis process
considers these indexes the cause for reorganization, namely frag-
mentation.

The result of execution of the Reorg Wizard and tablespace coa-
lescence on the INDX tablespace is shown in Figure 21.11. The
actual reorganization process is created as an instantly executed or

633 21.1 Oracle Enterprise Manager

Chapter 21

Figure 21.8 Latch Analysis

future scheduled job, to be executed inside the job control schedul-
ing system, visible in the Oracle Enterprise Manager Console job
scheduling screen.

That’s enough about Oracle Enterprise Manager. The best use of
Oracle Enterprise Manager for physical and configuration tuning is
diagnosis and analysis of potential bottlenecks using the GUI drill-
down access paths into the Oracle Database Wait Event Interface. The
Oracle Database Wait Event Interface will be covered in detail in the
next chapter. There are many other non-Oracle Corporation tools for
monitoring and tuning Oracle databases. Spotlight is one of these tools.

21.2 Spotlight

Spotlight on Oracle is an excellent tool for real-time monitoring
and reactive, not predictive, tuning of busy production databases.

21.2 Spotlight 634

Figure 21.9 After Execution of Tablespace Analysis

With respect to physical tuning Spotlight can do much and its GUI is
of excellent caliber. Spotlight can be used for SQL code tuning as well.
However, it is best used as a monitoring and physical tuning advisory
tool.

Figure 21.12 shows the primary screen in Spotlight on Oracle,
used for monitoring a busy Oracle production database. Different
colors represent different levels of alert: green being OK, red being
serious, or just panic!

There are an enormous number of subset screens in Spotlight on
Oracle, for every aspect of Oracle Database tuning imaginable.
Figure 21.13 shows a screen displaying real time usage of the Shared
Global Area (SGA) for a database.

Figure 21.14 shows a mixture of various views from Spotlight
with both textual and instantly recognizable graphical displays.

635 21.2 Spotlight

Chapter 21

Figure 21.10 What Should be Reorganized and Why

Spotlight is a very comprehensive tuning and monitoring tool for
Oracle Database, especially in the area of real time production data-
base monitoring. As already stated many non-Oracle Corporation
produced Oracle database monitoring and tuning tools are available.
Spotlight is one of the most comprehensive and useful of those tools
I have used in relation to its price.

21.3 Operating System Tools

21.3.1 Windows Performance Monitor

The Windows Performance Monitor is useful for monitoring
operating system-level performance. The GUI can be started up
on a Windows 2K server in the Administrative Tools icon on the

21.3 Operating System Tools 636

Figure 21.11 After Reorganization and Coalescence on the INDX Tablespace

Control Panel. This tool allows graphical display of all aspects of
hardware and operating system-level activity. Figure 21.15 shows a
picture of a dual-CPU server displaying both processors, memory,
and network activity for a relatively idle database server.

Figure 21.16 on the other hand shows the Windows Performance
Monitor GUI for a highly active single-CPU system. The Windows
Task Manager snapshot is added to show how busy this system was
when these screenshots were taken.

There are a multitude of command line and GUI tools used for
operating system monitoring and tuning in other operating systems
such as Unix or Linux.

637 21.3 Operating System Tools

Chapter 21

Figure 21.12 Spotlight on Oracle Main Monitoring Screen

21.3.2 Unix Utilities

There are a plethora of tools used in all flavors of Unix and Linux
operating systems, both command line utilities and GUI-based mon-
itoring tools. These tools are some of the command line monitoring
tools used on Solaris.

• CPU Usage. sar, vmstat, mpstat, iostat.

• Disk I/O Activity. sar, iostat.

• Memory Usage. sar, vmstat.

• Network Usage. netstat.

Since I am not an experienced systems administrator I see no point
in attempting to explain the detailed syntax and use of these tools.

21.3 Operating System Tools 638

Figure 21.13 Spotlight SGA View

21.4 Other Utilities and Tools

21.4.1 Import, Export, and SQL*Loader

The Export and SQL*Loader utilities can be executed in DIRECT
mode. DIRECT mode implies that the SQL engine, executing
INSERT statements, is completely bypassed and data is appended
directly to datafiles on disk. DIRECT mode is much faster than pass-
ing through the SQL engine. Import and Export have a parameter
called BUFFER. The BUFFER parameter limits chunks of rows
processed. In very busy environments using the BUFFER parameter
can limit the impact on other database services.

639 21.4 Other Utilities and Tools

Chapter 21

Figure 21.14 Various Spotlight Views

� Do not use the Import and Export Utilities for Backup and
Recovery. Generally only use Export to copy individual static
tables you are absolutely sure will not change. Additionally using
a previously FULL Export backup file to Import and recreate a
lost database is incredibly inefficient. I have seen a 200 Gb data-
base reconstruction using a FULL database Export take an
entire weekend to complete. This particular database was appar-
ently destroyed by a junior DBA executing a script to drop all
users in cascade mode, by mistake of course. Oops!

Data Pump Import and Data Pump Export have much better
performance than the Import and Export utilities. Data Pump
allows parallel execution, is self-tuning, and does not require
compression into a single extent.

SQL*Loader is an excellent tool for loading data into a database.
SQL*Loader is very easy to use and can map data files in text

21.4 Other Utilities and Tools 640

Figure 21.15 The Windows Performance Monitor

10g

format directly into database tables. Use SQL*Loader as an alternative
option to that of loading tables using large quantities of INSERT
statements, it can give performance increases in the thousands.
Use SQL*Loader as it is very easy to learn to use.

SQL*Loader can now cache dates reducing conversions on dupli-
cated date values.

21.4.2 Resource Management and Profiling

Resources can be managed and effectively shared in Oracle Data-
base to create round-robin-type queues. Hardware resources such
as CPU time can be evenly distributed across multiple profiles.

641 21.4 Other Utilities and Tools

Chapter 21

Figure 21.16 This is a Very Busy Server

10g

Profiles contain groups of users or functionality sets. Different activ-
ities can be given priority at different times of day. Perhaps OLTP
activity can be favored during the daytime and backup or batch pro-
cessing activities favored after-hours. This of course assumes that
you do not have to maintain a constant level of 24 × 7 database avail-
ability. There is a small amount of resource overhead with respect to
Oracle Database internal implementation and execution of resource
management.

21.4.3 Recovery Manager (RMAN)

RMAN or Recovery Manager is a slightly more power-user-oriented
backup utility when compared to using backup mode tablespace
datafile copies. However, RMAN simplifies backup and recovery
processing and DBA involvement. Additionally RMAN can be exe-
cuted in parallel.

21.4.4 STATSPACK

People have written and published entire books about STATSPACK.
STATSPACK is a comprehensive statistics monitoring and tuning
analysis tool, the next generation of the UTLBSTAT.sql and
UTLESTAT.sql tuning scripts. In addition STATSPACK can be used
to store statistical information in the database in a special repository
for later comparison and analysis between different statistics set col-
lections. Therefore, when a performance problem occurs a current
snapshot can be compared against a previously obtained baseline
snapshot, allowing for easy comparison and thus rapid diagnosis of
the problem.

� STATSPACK is useful for analysis and detection of bottlenecks
but using the Oracle Database Wait Event Interface and the
Capacity Planner in Oracle Enterprise Manager is better. The
Oracle Database Wait Event Interface will be covered in the next
chapter, along with some use of STATSPACK.

STATSPACK is very easy to install, configure, and to use. The
problem with it is that it produces enormous quantities of what

21.4 Other Utilities and Tools 642

could amount to superfluous information. Wading through all the
mounds of information produced by STATSPACK could be some-
what daunting to the tuning novice or someone who is trying to
solve a problem in a hurry. Large amounts of information can even
sometimes hide small things from an expert. The expression “trying
to find a needle in a haystack” comes to mind.

STATSPACK is more useful for general performance tuning
and analysis as opposed to attempting to find specific bottlenecks.
The Oracle Database Wait Event Interface in Oracle Enterprise
Manager is much more capable than STATSPACK in rapidly isolating
problems.

To use STATSPACK a specific tablespace must be created:

CREATE TABLESPACE perfstat DATAFILE
'ORACLE_HOME/<SID>/perfstat01.dbf'
SIZE 25M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT
AUTO;

Do not create a user because the scripts will crash! Additionally
you might want to set the ORACLE_SID variable if your database
server has multiple databases. The following script will create
STATSPACK goodies.

@ORACLE_HOME/rdbms/admin/spcreate.sql;

If the installation completely freaks out, the following script will
drop everything created by SPCREATE.SQL so that you can start all
over again.

@ORACLE_HOME/rdbms/admin/spdrop.sql;

Once installed take a snapshot of the database by executing these
commands in SQL*Plus.

CONNECT perfstat/perfstat[@tnsname];
EXEC STATSPACK.SNAP;

The DBMS_JOBS package can be used to automate STATSPACK
SNAP procedure executions on a periodical basis, as in the example
script shown overleaf, which executes every 5 min. Different snap-
shot levels can be used between 0 and 10. 0 is not enough, 10 far too
much, 5 is the default and 6 provides query execution plans. Since
the large majority of performance problems are caused by poorly
written SQL code I would recommend starting at snapshot level 6.

643 21.4 Other Utilities and Tools

Chapter 21

Snapshot levels are as follows:

• 0: simple performance statistics.

• 5: include SQL statements, which is the default level.

• 6: include SQL plans.

• 7: include segment statistics.

• 10: include parent and child latches.

� Running STATSPACK will affect performance so do not leave it
running constantly.

DECLARE
jobno NUMBER;
i INTEGER DEFAULT 1;

BEGIN
DBMS_JOB.SUBMIT(jobno,' STATSPACK.SNAP(I_SNAP_LEVEL=>6);'

,SYSDATE,'SYSDATE+1/288');
COMMIT;
END;
/

Remove all jobs using an anonymous procedure such as this.

DECLARE
CURSOR cJobs IS SELECT job FROM user_jobs;

BEGIN
FOR rJob IN cJobs LOOP

DBMS_JOB.REMOVE(rJob.job);
END LOOP;

END;
/
COMMIT;

Run a STATSPACK report using the following script. The script
will prompt for two snapshots to execute between, comparing sets of
statistics with each other.

@ORACLE_HOME/rdbms/admin/spreport.sql;

An SQL report can be executed on one SQL statement, searching
for a bottleneck, where the hash value for the SQL code statement is
found in the STATSPACK instance report.

@ORACLE_HOME/rdbms/admin/sprepsql.sql;

21.4 Other Utilities and Tools 644

There are a number of other “SP*.SQL” STATSPACK scripts used
for various functions. Two of those scripts are SPPURGE.SQL and
SPTRUNCATE.SQL. Purging allows removal of a range of snap-
shots. If the database is bounced then snapshots cannot be taken
across the database restart. Truncate simply removes all STATSPACK
data.

STATSPACK can also have threshold value settings such that
characteristics below threshold values will be ignored. Default
STATSPACK parameter settings including threshold values are
stored in the STATS$STATSPACK_PARAMETER table.

This is enough information about physical tuning tools and use of
utilities. The next chapter will look at physical and configuration
tuning from the perspective of finding bottlenecks using the Oracle
Database Wait Event Interface.

645 21.4 Other Utilities and Tools

Chapter 21

