

Palm OS

®

Programmer’s
Companion

Volume II Communications

Written by Greg Wilson, Jean Ostrem, Christopher Bey, Eric Shepherd, and Mark Dugger
Technical assistance from Ludovic Ferrandis, Gilles Fabre, David Fedor, Roger Flores, Steve Lemke, Bob
Ebert, Ken Krugler, Paul Plaquette, Bruce Thompson, Jesse Donaldson, Tim Wiegman, Gavin Peacock,
Ryan Robertson, Andy Stewart, and Waddah Kudaimi

Copyright © 1996-2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC.
ALSO EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, the PalmSource logo, BeOS, Graffiti, HandFAX, HandMAIL, HandPHONE, HandSTAMP, HandWEB,
HotSync, the HotSync logo, iMessenger, MultiMail, MyPalm, Palm, the Palm logo, the Palm trade dress, Palm
Computing, Palm OS, Palm Powered, PalmConnect, PalmGear, PalmGlove, PalmModem, Palm Pack, PalmPak,
PalmPix, PalmPower, PalmPrint, Palm.Net, Palm Reader, Palm Talk, Simply Palm and ThinAir are trademarks of
PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks or registered trademarks of
their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Palm OS Programmer’s Companion, Volume II: Communications
Document Number 3005-009
November 9, 2004
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Palm OS Programmer’s Companion, Volume II: Communications

iii

Table of Contents

About This Document ix

Palm OS SDK Documentation ix
What This Volume Contains ix
Additional Resources . x
Conventions Used in This Guide xi

1 Object Exchange 1

About the Exchange Manager 2
Exchange Libraries 2
Typed Data Objects 3

Initializing the Exchange Socket Structure 4
Identifying the Exchange Library 5
Identifying the Type of Data 7

Registering for Data. . 8
General Registration Guidelines 9
Setting the Default Application. 10
Registering to Receive Unwrapped Data 13

Sending Data. 15
Sending a Single Object 15
Sending Multiple Objects 16
Implementing the Send Command 18

Receiving Data . 19
Controlling the Exchange Dialog 19
Displaying a Preview 21
Receiving the Data 23

Sending and Receiving Databases. 26
Sending a Database 26
Receiving a Database 29

Requesting Data . 29
Sending a Get Request for a Single Object 30
Responding to a Get Request 30
Two-Way Communications 30
Requesting a URL 31

Sending and Receiving Locally 32

iv

 Palm OS Programmer’s Companion, Volume II: Communications

Interacting with the Launcher 34
Summary of Exchange Manager 35

2 Exchange Libraries 37

About Exchange Libraries 37
Exchange Libraries, Exchange Manager, and Applications . . 38
Palm OS Exchange Libraries 39

Exchange Library Components 40
The Exchange Library API 40
Dispatch Table . 42

Implementing an Exchange Library 46
Required Functions 46
Registering with the Exchange Manager. 49

Summary of Exchange Library 49

3 Personal Data Interchange 51

About Personal Data Interchange 52
About vObjects . 52
Overview of vObject Structure 53

About the PDI Library. 55
PDI Property and Parameter Types 56
The PDI Library Properties Dictionary 57
PDI Readers . 57
PDI Writers . 58
Format Compatibility 59
International Considerations. 60
Features Not Yet Supported 60

Using the PDI Library 61
Accessing the PDI Library 64
Unloading the PDI Library 65
Creating a PDI Reader 65
Reading Properties 66
Reading Property Values 67
Creating a PDI Writer 71
Writing Properties 72
Writing Property Values 72

Palm OS Programmer’s Companion, Volume II: Communications

v

Specifying PDI Versions 73
Using UDA for Different Media. 73

About the UDA Library 73
Using a PDI Reader - An Example 74
Using a PDI Writer - An Example 79
Summary of Personal Data Interchange 83
Summary of Unified Data Access Manager 84

4 Beaming (Infrared Communication) 85

IR Library . 85
IrDA Stack . 86
Accessing the IR Library 87

Summary of Beaming 87

5 Serial Communication 89

Serial Hardware . 90
Byte Ordering . 91
Serial Communications Architecture Hierarchy 91
The Serial Manager . 92

Which Serial Manager Version To Use 93
Steps for Using the Serial Manager 97
Opening a Port. 98
Closing a Port . 101
Configuring the Port 102
Sending Data . 105
Receiving Data. . 106
Serial Manager Tips and Tricks 112
Writing a Virtual Device Driver 114

The Connection Manager 116
The Serial Link Protocol 120

SLP Packet Structures 120
Transmitting an SLP Packet 123
Receiving an SLP Packet 123

The Serial Link Manager. 124
Using the Serial Link Manager 124

Summary of Serial Communications 127

vi

 Palm OS Programmer’s Companion, Volume II: Communications

6 Bluetooth 131

Palm OS Bluetooth System 131
Bluetooth System Components 132
Implementation Overview. 135
Profiles . 135
Usage Scenarios . 138
Authentication and Encryption. 138
Device Discovery. 139
Piconet Support . 139
Radio Power Management 140

Developing Bluetooth-Enabled Applications 141
Overview of the Bluetooth Library 142
Management . 142
Sockets . 146

Bluetooth Virtual Serial Driver 149
Opening the Serial Port 150
Palm-to-Palm Communication 153
How Palm OS Uses the Bluetooth Virtual Serial Driver . . . 154

Bluetooth Exchange Library Support 154
Detecting the Bluetooth Exchange Library 154
Using the Exchange Manager With Bluetooth 155
ExgGet and ExgRequest 156

7 Network Communication 157

Net Library . 157
About the Net Library 158
Net Library Usage Steps. 161
Obtaining the Net Library’s Reference Number 162
Setting Up Berkeley Socket API 163
Setup and Configuration Calls 163
Opening the Net Library 173
Closing the Net Library 174
Version Checking. 175
Network I/O and Utility Calls 176
Berkeley Sockets API Functions 177

Palm OS Programmer’s Companion, Volume II: Communications

vii

Extending the Network Login Script Support 184
Socket Notices . . 188

Internet Library . 191
System Requirements 192
Initialization and Setup 193
Accessing Web Pages 194
Asynchronous Operation 194
Using the Low Level Calls 196
Cache Overview . 197
Internet Library Network Configurations 197

Summary of Network Communication 199

8 Secure Sockets Layer (SSL) 203

SSL Library Architecture. 203
Attributes . 206

Always-Used Attributes. 207
Debugging and Informational Attributes 213
Advanced Protocol Attributes 222

Sample Code . . 225

9 Internet and Messaging Applications 229

Internet Access on Palm Powered Handhelds. 230
Overview of Web Clipping Architecture 230

About Web Clipping Applications 231
Using the Viewer to Display Information 232
Sending Email Messages. 234

Registering an Email Application 234
Sending Mail from the Viewer 235
Launching the Email Application for Editing. 235
Adding an Email to the Outbox 235

Using Wireless Capabilities in Your Applications 236
System Version Checking 236
Wireless keyDownEvent Key Codes 237
Including Over-the-Air Characters 238

viii

 Palm OS Programmer’s Companion, Volume II: Communications

10 Telephony Manager 239

Telephony Service Types. 239
Using the Telephony API 241

Accessing the Telephony Manager Library. 241
Closing the Telephony Manager Library 243
Testing the Telephony Environment. 243
Using Synchronous and Asynchronous Calls. 244
Registering for Notifications 247
Using Data Structures With Variably-sized Fields 248

Summary of Telephony Manager 250

Index 253

Palm OS Programmer’s Companion, Volume II: Communications

ix

About This

Document

The

Palm OS Programmer’s Companion

 is part of the Palm OS

®

Software Development Kit. This introduction provides an overview
of SDK documentation, discusses what materials are included in
this document and what conventions are used.

Palm OS SDK Documentation

The following documents are part of the SDK:

What This Volume Contains

This volume is designed for random access. That is, you can read
any chapter in any order.

Note that each chapter ends with a list of hypertext links into the
relevant function descriptions in the Reference book.

Here is an overview of this volume:

• Chapter 1, “Object Exchange.” Describes how applications
use the Exchange Manager to send and receive typed data
objects.

Document Description

Palm OS Programmer’s
API Reference

An API reference document that contains descriptions of all
Palm OS function calls and important data structures.

Palm OS Programmer’s
Companion

A multi-volume guide to application programming for the
Palm OS. This guide contains conceptual and “how-to”
information that complements the Reference.

Constructor for Palm OS

A guide to using Constructor to create Palm OS resource
files.

Palm OS Programming
Development Tools Guide

A guide to writing and debugging Palm OS applications
with the various tools available.

About This Document

Additional Resources

x

 Palm OS Programmer’s Companion, Volume II: Communications

• Chapter 2, “Exchange Libraries.” Describes how to
implement an exchange library.

• Chapter 3, “Personal Data Interchange.” Describes the PDI
library, which you use to exchange Personal Data
Interchange (PDI) information with other devices and media

• Chapter 4, “Beaming (Infrared Communication).” Describes
the two facilities for beaming, or IR communication: the
exchange manager and the IR library.

• Chapter 5, “Serial Communication.” Describes the serial port
hardware, the serial communications architecture, the serial
link protocol, and the various serial communication
managers.

• Chapter 6, “Bluetooth.”Describes how to use the Bluetooth
APIs to access the Palm OS Bluetooth system and write
Bluetooth-enabled applications.

• Chapter 7, “Network Communication.” Describes the net
library and Internet library and how to perform
communications with networking protocols such as TCP/IP
and UDP. The net library API maps very closely to the
Berkeley UNIX sockets API.

• Chapter 8, “Secure Sockets Layer (SSL).” Describes the
Secure Sockets Layer library. This library lets you apply SSL
security to your network sockets.

• Chapter 9, “Internet and Messaging Applications.” Describes
the Palm.Net system and how to use the Web Clipping
Application Viewer and iMessenger applications to access
and send information using the wireless capabilities of the
Palm VII

™

 device.

• Chapter 10, “Telephony Manager.” Describes the component
parts of the telephony API and shows how to use the
telephony API in your applications.

Additional Resources

• Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

http://www.palmos.com/dev/support/docs/

About This Document

Conventions Used in This Guide

Palm OS Programmer’s Companion, Volume II: Communications

xi

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

Conventions Used in This Guide

This guide uses the following typographical conventions:

This style... Is used for...

fixed width font

Code elements such as function,
structure, field, bitfield.

italic

Emphasis (for other elements).

blue and underlined Hot links.

http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

Palm OS Programmer’s Companion, Volume II: Communications

1

1

Object Exchange

The simplest form of communication for a Palm OS

®

 application to
implement is the sending and receiving of typed data objects, such
as MIME data, databases, or database records.

You use the Exchange Manager to send and receive typed data
objects. The Exchange Manager interface is independent of the
transport mechanism. You can use IR, SMS, or any other protocol
that has an Exchange Manager plug-in called an

exchange library

.

The Exchange Manager is supported in Palm OS 3.0 and higher. In
Palm OS 4.0, significant updates were made.

This chapter describes how applications use the Exchange Manager
to send and receive typed data objects. It covers the following
topics:

• About the Exchange Manager

• Initializing the Exchange Socket Structure

• Registering for Data

• Registering to Receive Unwrapped Data

• Receiving Data

• Sending and Receiving Databases

• Requesting Data

• Sending and Receiving Locally

• Interacting with the Launcher

This chapter does not describe how to implement an exchange
library.

Object Exchange

About the Exchange Manager

2

 Palm OS Programmer’s Companion, Volume II: Communications

About the Exchange Manager

This section explains concepts you need to know before you can
begin using the Exchange Manager. It discusses the following
topics:

• Exchange Libraries

• Typed Data Objects

Exchange Libraries

The Exchange Manager works in conjunction with an exchange
library. Each

exchange library

 is transport-dependent and performs
the actual communication with the remote device. When an
application makes an Exchange Manager call, the Exchange
Manager forwards the request to the appropriate exchange library.
The Exchange Manager’s main duty is to maintain a registry of
which libraries implement each protocol and which applications
receive each type of data. See Figure 1.1.

Figure 1.1 Object exchange using Exchange Manager

The list of supported exchange libraries depends on the version of
Palm OS. See Table 1.1.

Object Exchange

About the Exchange Manager

Palm OS Programmer’s Companion, Volume II: Communications

3

As other exchange libraries become available, users can install them
on their Palm Powered

™

 handhelds and use the communications
functionality they provide.

Note that on Palm OS 3.X the only exchange library available is the
IR Library, and it is not extensible. The IR Library cannot, for
example, be replaced with a different exchange library.

Typed Data Objects

The Exchange Manager sends and receives typed data objects. A

typed data object

 (or

object

) is a stream of bytes plus some
information about its contents. The content information includes
any of: a creator ID, a MIME data type, or a filename.

The object itself can be in any format, but it’s best to use a
standardized data format rather than a proprietary one if you have
a choice. Table 1.2 lists the standardized data formats that the built-
in Palm OS applications can receive.

Table 1.1 Supported exchange libraries

Exchange Library Minimum Palm
OS Version

IR Library (IrDA) Palm OS 3.0

Local Exchange Library Palm OS 4.0

SMS Library (Short Messaging System) Palm OS 4.0

Bluetooth Library

1

1. The Bluetooth Library is not present in Palm OS 4.0, but is planned to be pro-
vided shortly after Palm OS 4.0 ships.

Palm OS 4.0

Object Exchange

Initializing the Exchange Socket Structure

4

 Palm OS Programmer’s Companion, Volume II: Communications

NOTE:

The MIME type application/vnd.palm has been
registered with the IANA and is preferred over the application/x-

pilot MIME type.

If you want your application to receive objects, you must first
register with the Exchange Manager for the type of data you want to
receive. See “Registering for Data” for instructions on how to do so.
You can override the built-in applications by registering for any
data type listed in Table 1.2 and becoming the default application
for that type. See “Setting the Default Application” for more
information.

If you only want to send data, you do not have to register. Your
application can send data of the types listed in Table 1.2, and the
Exchange Manager ensures that the appropriate application
receives it.

Initializing the Exchange Socket Structure

The Exchange Manager, exchange library, and application use an
exchange socket structure (

ExgSocketType

) to communicate with

Table 1.2 Built-in applications and standard data types

Application Data Type

Address Book vCards (vcf file extension, text/x-vCard MIME
type)

Datebook vCalendars (vcs file extension, text/x-vCalendar
MIME type)

Launcher Palm OS databases (prc, pdb, oprc, and pqa file
extensions, application/x-pilot and application/
vnd.palm MIME types)

Memo Plain text (txt file extension, text/plain MIME
type)

ToDo Not explicitly registered, but receives vCalendar
objects from Datebook as appropriate

Object Exchange

Initializing the Exchange Socket Structure

Palm OS Programmer’s Companion, Volume II: Communications

5

each other. This structure is passed from the application to the
Exchange Manager to the exchange library and vice versa. (The use
of the term “socket” in the Exchange Manager API is not related to
the term “socket” as used in sockets communication programming.)
When your application sends data, you must create this structure
and initialize it with the appropriate information. When you receive
data, this structure provides information about the connection and
the incoming data.

The

ExgSocketType

 structure you use must identify two
important pieces of information:

• the exchange library that should do the sending (see
“Identifying the Exchange Library”)

• the type of data being sent (see “Identifying the Type of
Data”)

The socket structure defines other fields that you may use to
provide other information if you want. See the description of the

ExgSocketType structure in the Palm OS Programmer’s API
Reference for complete details.

IMPORTANT: When initializing the ExgSocketType structure,
set all unused fields to 0.

Identifying the Exchange Library
The ExgSocketType structure identifies the library to be used in
one of the following ways:

• a library reference number in the libraryRef field

• a Uniform Resource Locator (URL) in the name field

The Exchange Manager checks for a library reference number first.
If it is 0, it checks for a URL.

When your application sends data, it must identify which exchange
library to use. You only need to identify the exchange library in
Palm OS 4.0 and higher. Earlier releases contain only one exchange
library (for IR), so all sending is automatically done by that library.
If you do not specify an exchange library on Palm OS 4.0 and higher,
the IR Library is used to maintain backward compatibility.

Object Exchange
Initializing the Exchange Socket Structure

6 Palm OS Programmer’s Companion, Volume II: Communications

It’s more common to identify the library using a URL instead of a
library reference number. The URL scheme specifies which
exchange library to use. The scheme is the part of the URL that
appears before the colon (:). For example, the scheme in the
following URL is “http”
http://www.palmos.com

When you pass the preceding URL to a web browser, the scheme
tells the browser to connect to the server using the HTTP protocol.
Similarly, when you pass the Exchange Manager a URL, the scheme
tells the Exchange Manager which exchange library to use. For
example, the following URL tells the Exchange Manager to connect
to a remote Palm Powered handheld using the IR Library:
_beam:BusinessCard.vcf

On Palm OS, a URL has the following format:
[?]scheme1[;scheme2]...:filename

where:

?
If more than one exchange library is registered for the
provided schemes, the Exchange Manager has the user select
the exchange library by displaying the Send With dialog.

scheme1[;scheme2]...
The URL schemes that identify which exchange library
should be used. If more than one exchange library is
registered for the scheme, the default exchange library is
selected unless the URL begins with a question mark.

As shown, multiple schemes may be provided, separated by
semicolons. Multiple schemes are only supported in
conjunction with the question mark. For example, the string
“?_send;_beam” has the Exchange Manager display a Send
With dialog that lists all exchange libraries that support
either the _send scheme or the _beam scheme.

filename
The name of the file to send. Typically, this file also has an
extension that is used, if necessary, to determine which
application should receive the data. See “Identifying the Type
of Data” for more information about the file extension.

Palm OS defines some URL prefixes that any application can use to
connect with the installed exchange libraries. A URL prefix is

Object Exchange
Initializing the Exchange Socket Structure

Palm OS Programmer’s Companion, Volume II: Communications 7

everything up to and including the colon character. Table 1.3
describes the prefixes.

The section “Implementing the Send Command” provides more
information on using exgSendPrefix or exgSendBeamPrefix.

Identifying the Type of Data
When your application sends data, the exchange socket structure
(ExgSocketType) identifies the type of data being sent. It can do
so with one of the following values:

• A MIME type in the type field. This field is only used on
Palm OS 4.0 and higher.

• A file extension for the file in the name field. That is, you
might supply MyDB.pdb as the value of the name field. The
part after the last period (.) is the extension.

In most cases, the data type determines which application receives
the data on the remote side. (If the target field is specified, it
determines which application receives the data instead of the data
type as described below.) The Exchange Manager maintains a
registry of applications and the types of data each application can
receive. When the Exchange Manager receives an object, it checks
the exchange socket for the data type. It checks the type field first,
and if it is not defined or if no application is registered to receive
that MIME type, it checks the name field for a file extension. This is
discussed in more detail in the “Registering for Data” section.

Table 1.3 Exchange Library URL Prefixes

Exchange Library URL Prefix

IR Library exgBeamPrefix

Local Exchange Library exgLocalPrefix

SMS Library kSmsScheme

Any library that supports the _send
scheme (user’s choice)

exgSendPrefix

Any library that supports the _send or
_beam scheme (user’s choice)

exgSendBeamPrefix

Object Exchange
Registering for Data

8 Palm OS Programmer’s Companion, Volume II: Communications

Note that you may also directly specify which application should
receive the data. To do so, place the creator ID in the target field.
You do not have to specify a MIME type or file extension in this
instance. When the target field is nonzero, the Exchange Manager
checks for the existence of that application on the receiving device.
If it exists, that application receives the data regardless of whether it
is registered. If the target application does not exist, the Exchange
Manager searches the registry as usual. Use the target field only if
you know that you are communicating with a Palm Powered
handheld and want to explicitly specify which application should
receive the data.

On Palm OS 4.0 and higher, an application can register for another
application’s creator ID and receive all objects targeted to that
creator ID. See “Setting the Default Application” for more details.

Registering for Data
In most cases, applications that want to receive data from the
Exchange Manager must register for the MIME type and/or file
extension that they want to receive. The function that you use to do
so differs depending on which operating system versions you want
to support.

On Palm OS 3.X, you call ExgRegisterData and pass it three
parameters: your application’s creator ID, a constant that identifies
the type of data you want to register to receive
(exgRegExtensionID for file extensions or exgRegTypeID for
MIME types), and a string that lists the MIME types or file
extensions. For example, on Palm OS 3.X the Beamer sample
application distributed with the Palm OS SDK makes this call:

ExgRegisterData(beamerCreator,
 exgRegExtensionID, BitmapExt);

On Palm OS 4.0 and higher, ExgRegisterData is deprecated and
replaced with ExgRegisterDatatype. ExgRegisterDatatype
supports more types of data and takes more parameters. You still
pass the creator ID, the type of data you want to register for, and the
string that describes the specifics of what you are registering for.
Palm OS 4.0 and higher supports registering for creator IDs

Object Exchange
Registering for Data

Palm OS Programmer’s Companion, Volume II: Communications 9

(exgRegCreatorID) or URL schemes (exgRegSchemeID) in
addition to MIME types and file extensions; however, registering for
these new data types is not as common. See “Setting the Default
Application” for a case where you would register for a creator ID,
and see “Requesting a URL” for a case where you would register for
a URL.

In addition, you must pass two more parameters to
ExgRegisterDatatype: a string containing descriptions of the
data you are registering to receive and a flag indicating whether you
want to receive the data directly if it is sent as part of another object.
The descriptions that you pass in are displayed to preview the data
in the exchange dialog under certain circumstances. The flag
parameter is described in the “Registering to Receive Unwrapped
Data” section.

For example, on Palm OS 4.0 the Beamer sample application
distributed with the Palm OS SDK makes this call:

ExgRegisterDatatype(beamerCreator,
 exgRegExtensionID, BitmapExt, "bitmap", 0);

General Registration Guidelines
Follow these guidelines when registering for data:

• Register as early as possible.

To ensure that your application can receive data at any time
after it is installed, call ExgRegisterData or
ExgRegisterDatatype in response to the
sysAppLaunchCmdSyncNotify launch code. This launch
code is sent to your application upon its first installation and
any time the HotSync® operation modifies the application’s
database.

• It’s best to use a standardized data format rather than a
proprietary one if you have a choice.

• On Palm OS 4.0 and higher, multiple applications can
register to receive the same data type. The section “Setting
the Default Application” describes this further.

Object Exchange
Registering for Data

10 Palm OS Programmer’s Companion, Volume II: Communications

• When registering for file extensions, do not include the
period (.) as part of the extension. Register for “TXT”, for
example, not “.TXT”.

• Do not make multiple calls if you want to register for more
than one MIME type or more than one file extension.

Instead, make one call for all file extensions and one call for
all MIME types. Pass a single string containing file extensions
or MIME types separated by a tab (\t) character. For
example, the following call registers the application for two
file extensions, TXT and DOC:

ExgRegisterData(myCreator, exgRegExtensionID,
"TXT\tDOC", "plain text", 0);

• The description parameter is optional. If you implement the
preview mode as described in “Displaying a Preview” later
in this chapter, you do not need to provide a description. It is,
however, strongly recommended that you provide one.

Setting the Default Application
Because multiple applications can register for the same data type on
Palm OS 4.0 and higher, the Exchange Manager supports the
concept of a default application that receives all objects of a
particular data type. To set the default application, call the function
ExgSetDefaultApplication. There is one default application
per data type in the registry. Palm OS 3.X does not support having
multiple applications registered for the same data types.

Suppose a device running Palm OS 4.0 receives a vCard object, and
it has three applications registered to receive vCards. The Exchange
Manager checks the registry to see if any of these applications is
assigned as the default. If so, the default application receives all
vCards (unless the exchange socket structure’s target field is set).
If none of the three applications is the default, the Exchange
Manager chooses one, and that application receives all vCards.

PalmSource, Inc. strongly recommends that you allow users to
choose which application is the default. To do so, you could display
a panel that shows users the applications that can receive the same
type of data as your application, show them which is the default,
and allow them to select a different default. Use

Object Exchange
Registering for Data

Palm OS Programmer’s Companion, Volume II: Communications 11

ExgGetRegisteredApplications to get a list of all applications
registered to receive the same data type as yours, and use
ExgGetDefaultApplication to retrieve the current default, if
any. See Listing 1.2 to see how the iMessenger example application
performs this task for the mailto URL scheme. The full source code
is distributed with the SDK.

Listing 1.1 Initializing a List of Registered Applications

void PrvSetMailAppsList(Int32 listSelection)
{
 ControlPtr ctl;
 ListPtr lst;
 UInt32 defaultID;

 ctl = GetObjectPtr(PrefDefaultMailTrigger);
 lst = GetObjectPtr(PrefDefaultMailList);

 // crIDs, appCnt, appNames are all global variables.
 // Get the list of creator IDs if we don’t have it already.
 if(!crIDs) {
 ExgGetRegisteredApplications(&crIDs, &appCnt, &appNames, NULL,
 exgRegSchemeID, "mailto");
 if(appCnt) {
 MemHandle tmpH = SysFormPointerArrayToStrings(appNames, appCnt);
 if(tmpH)
 appNamesArray = MemHandleLock(tmpH);
 else
 return;
 }
 else
 return;
 }

 if(appNamesArray)
 LstSetListChoices(lst, appNamesArray, appCnt);
 LstSetHeight(lst, appCnt < 6 ? appCnt : 6);

 if(listSelection == -1)
 {
 UInt16 i;
 ExgGetDefaultApplication(&defaultID, exgRegSchemeID, "mailto");

 for(i=0;i<appCnt;i++) {
 if(crIDs[i] == defaultID)
 LstSetSelection(lst, i);

Object Exchange
Registering for Data

12 Palm OS Programmer’s Companion, Volume II: Communications

 }
 }
 else
 LstSetSelection(lst, listSelection);

 CtlSetLabel(ctl, appNamesArray[LstGetSelection(lst)]);
}

To become the default application for a data type that a built-in
Palm OS application is registered to receive (see Table 1.2), you must
perform some extra steps to ensure that you can receive that type of
object when it is beamed from a device running Palm OS 3.X. You
must register for the built-in application’s creator ID and become
the default application for that creator ID.

On Palm OS 3.X, the built-in applications always set their creator
IDs in the target field when sending data, causing the data to
always be sent to that application. On Palm OS 4.0 and higher, the
built-in applications still register to receive the same type of data,
but they do not set the target field when sending. This means that
if your application is registered for the same data type and is the
default application, it receives the data from Palm OS 4.0 and higher
as expected, but if the data is sent from a device running Palm OS
3.X, you still won’t receive that data because it is specifically
targeted for the built-in application.

To solve this problem, the ExgRegisterData function in Palm OS
4.0 and higher supports registering for another application’s creator
ID. Listing 1.2 shows how an application that receives vCards might
set the default application after allowing the user to select the
default from a list, assuming the list is initialized with code similar
to that in Listing 1.1.

Note that, as with all data types, your application won’t receive the
data targeted for the other application unless yours is the default
application for that creator ID.

Listing 1.2 Setting the default application for vCards

UInt32 PilotMain (UInt16 cmd, void *cmdPBP, UInt16 launchFlags)
{
 ...
 // Register for vCard MIME type, extension, and Address Book’s creator ID.

Object Exchange
Registering for Data

Palm OS Programmer’s Companion, Volume II: Communications 13

 // At this point, we are not the default application so we do not receive
 // vCards. We still must register upon install so that our application
 // appears in the preferences list when the user chooses the default
 // application for vCards.
 case sysAppLaunchCmdSyncNotify:
 Char addressCreatorStr[5];

 // Create a string from Address Book’s creator ID.
 MemMove(addressCreatorStr, sysFileCAddress, 4);
 addressCreatorStr[4] = chrNull;

 ExgRegisterDatatype(crID, exgRegTypeID, "text/x-vCard", "vCard", 0);
 ExgRegisterDatatype(crID, exgRegExtensionID, "vcf", "vCard", 0);
 ExgRegisterDatatype(crID, exgRegCreatorID, addressCreatorStr, NULL, 0);
 ...
}

static void PrefApply (void)
{
 MemHandle h;
 FieldType *fld;
 ControlType *ctl;
 UInt16 listItem;

 // Set the default vCard app
vif(appCnt && crIDs)
 {
 UInt32 crID;
 Char addressCreatorStr[5];

 // Create a string from Address Book’s creator ID.
 MemMove(addressCreatorStr, sysFileCAddress, 4);
 addressCreatorStr[4] = chrNull;

 listItem = LstGetSelection(GetObjectPtr(PrefDefaultAppList));
 crID = crIDs[listItem];
 ExgSetDefaultApplication(crID, exgRegTypeID, "text/x-vCard");
 ExgSetDefaultApplication(crID, exgRegExtensionID, "vcf");
 ExgSetDefaultApplication(crID, exgRegCreatorID, addressCreatorStr);
 }
}

Registering to Receive Unwrapped Data
On Palm OS 4.0 or higher, in rare circumstances, you can register to
receive data that is sent enclosed in another object.

Object Exchange
Registering for Data

14 Palm OS Programmer’s Companion, Volume II: Communications

For example, suppose you have a stock quote application that wants
to receive vStock objects. If the device is sent an e-mail message that
has the vStock object attached, your application may want to
register to receive the vStock object directly rather than having the
e-mail application receive it. To do so, call ExgRegisterDatatype
and pass the constant exgUnwrap as the last parameter. The flag is
named exgUnwrap because the exchange library unwraps the
received object (the e-mail message in this example) so that it can
send the contained objects (the vStock object) directly.

If you want to register to receive an object when it is sent as part of
another object, you probably also want to receive it when it is sent
by itself. This requires two calls to ExgRegisterDatatype: one
with the exgUnwrap flag set, and one without.

ExgRegisterDatatype(myCreator,
 exgRegExtensionID, "TXT\tDOC", "plain text",
 0);
ExgRegisterDatatype(myCreator,
 exgRegExtensionID, "TXT\tDOC", "plain text",
 exgUnwrap);

Thus, you might make four calls to ExgRegisterDatatype:

• one call to register for the file extensions

• one call to register for file extensions that are sent as part of
another object

• one call to register for MIME types

• one call to register for MIME types that are sent as part of
another object

As mentioned previously, it’s rare for an application to register to
receive unwrapped data directly. It’s more common for one
application (such as an e-mail application) to receive the entire
compound object and then unwrap and disperse the enclosed
objects using the Local Exchange Library. See “Sending and
Receiving Locally” for more information.

Object Exchange
Sending Data

Palm OS Programmer’s Companion, Volume II: Communications 15

Sending Data
This section describes how to send data using the Exchange
Manager. It discusses the following topics:

• Sending a Single Object

• Sending Multiple Objects

• Implementing the Send Command

Sending a Single Object
The most common use of the Exchange Manager is to send or
receive a single object. To send an object, do the following:

1. Create and initialize an ExgSocketType data structure with
information about which library to use and the data to be
sent. See “Initializing the Exchange Socket Structure” for
more information.

2. Call ExgPut to establish the connection with the exchange
library.

3. Call ExgSend one or more times to send the data.

In this function, you specify the number of bytes to send, and
ExgSend returns the number of bytes that were sent. You
may need to call it multiple times if data is remaining to be
sent after the first and subsequent calls.

4. Call ExgDisconnect to end the connection.

A zero (0) return value indicates a successful transmission.
However, this doesn’t necessarily mean that the receiver kept
the data. If the target application for an object doesn’t exist
on the receiving device, the data is discarded; or the user can
decide to discard any received objects.

Note that the ExgSend function blocks until it returns. However,
most libraries provide a user interface dialog that keeps the user
informed of transmission progress and allows them to cancel the
operation.

The Exchange Manager automatically displays error dialogs as well,
if errors occur. You must check for error codes from Exchange
Manager routines, but you don’t need to display an error dialog if
you get one because the Exchange Manager handles this for you.

Object Exchange
Sending Data

16 Palm OS Programmer’s Companion, Volume II: Communications

For example, Listing 1.3 shows how to send the current draw
window from one Palm Powered handheld to another Palm
Powered handheld. It is modified from the Beamer example
application that is included in the Palm OS SDK.

Listing 1.3 Sending data using Exchange Manager

Err SendData(void)
{
 ExgSocketType exgSocket;
 UInt32 size = 0;
 UInt32 sizeSent = 0;
 Err err = 0;
 BitmapType *bmpP;

 // copy draw area into the bitmap
 SaveWindow();
 bmpP = PrvGetBitmap(canvasWinH, &size, &err);
 // Is there data in the field?
 if (!err && size) {
 // important to init structure to zeros...
 MemSet(&exgSocket,sizeof(exgSocket),0);
 exgSocket.description = "Beamer picture";
 exgSocket.name = "Beamer.pbm";
 exgSocket.length = size;
 err = ExgPut(&exgSocket);
 if (!err) {
 sizeSent = ExgSend(&exgSocket,bmpP,size,&err);
 ExgDisconnect(&exgSocket,err);
 }
 }
 if (bmpP) MemPtrFree(bmpP);
 return err;
}

Sending Multiple Objects
On Palm OS 4.0 and higher, if the exchange library supports it, you
can send multiple objects in a single connection. To send multiple
objects, do the following:

1. Create and initialize an ExgSocketType data structure with
information about which library to use and the data to be
sent. See “Initializing the Exchange Socket Structure” for

Object Exchange
Sending Data

Palm OS Programmer’s Companion, Volume II: Communications 17

more information. You might also supply a value for the
count field to specify how many objects are to be sent.

2. Call ExgConnect to establish the connection with the
exchange library.

3. For each object, do the following:

a. Call ExgPut to signal the start of a new object.

b. Call ExgSend multiple times to send the data.

In this function you specify the number of bytes to send,
and ExgSend returns the number of bytes that were sent.
You may need to call it multiple times if data is remaining
to be sent after the first and subsequent calls.

4. Call ExgDisconnect to end the connection.

A zero (0) return value indicates a successful transmission.
However, this doesn’t necessarily mean that the receiver kept
the data. If the target application for an object doesn’t exist
on the receiving device, the data is discarded; or the user can
decide to discard any beamed objects.

The ExgConnect call is optional. Some exchange libraries, such as
the IR Library, support the sending of multiple objects but do not
support ExgConnect. If ExgConnect returns an error, the first call
to ExgPut initiates the connection. You should only continue to
send objects if the first ExgPut call succeeds. See Listing 1.4.
Libraries that support the ExgConnect call also support sending
multiple objects without using ExgConnect.

Listing 1.4 Sending multiple objects

Boolean isConnected = false;
err = ExgConnect(&exgSocket); //optional
if (!err)
 isConnected = true;
if (!err || err == exgErrNotSupported) {
 while (/* we have objects to send */) {
 err = ExgPut(&exgSocket);
 if (!isConnected && !err)
 isConnected = true; //auto-connected on first put.
 while (!err && (sizeSent < size))
 sizeSent += ExgSend(&exgSocket,dataP,size,&err);
 if (err)
 break;

Object Exchange
Sending Data

18 Palm OS Programmer’s Companion, Volume II: Communications

 }
}
if (isConnected)
 ExgDisconnect(&exgSocket, err);

Implementing the Send Command
Starting in Palm OS 4.0, the built-in applications support a Send
menu command. The purpose of this command is to allow the user
to send data using any available transport mechanism.

The Exchange Manager defines a _send URL scheme. The intent is
that any exchange library that supports sending is registered for the
_send scheme. Currently, only the SMS Library is registered for this
scheme on release ROMs. When Bluetooth support becomes
available, the Bluetooth Library will be registered for this scheme.
The IR Library is not registered for the _send scheme.

To implement the Send command in your application, construct a
URL that has the prefix exgSendPrefix, and send the data in the
normal manner. You can also use the exgSendBeamPrefix instead
so that the user can select from all exchange libraries registered for
either sending or beaming (which includes the IR Library). Both of
these prefixes begin with a question mark, causing the Exchange
Manager to display a dialog if it finds more than one exchange
library registered for the specified schemes.

Currently on a Palm OS 4.0 release ROM, only the SMS Exchange
Library supports the _send scheme, so using exgSendPrefix
would not cause the dialog to be displayed. If the user later adds
Bluetooth support, the prefix would cause the dialog to be
displayed.

NOTE: On debug ROMs, the Local Exchange Library is listed as
one of the possible transport mechanisms. This allows you to
debug your Send command. The Local Exchange Library is not
listed in the Send With dialog on release ROMs.

For an example of how to implement the Send command, see the
Memo application example code distributed with the Palm OS SDK.

Object Exchange
Receiving Data

Palm OS Programmer’s Companion, Volume II: Communications 19

Receiving Data
To have your application receive data from the Exchange Manager,
do the following:

1. Register for the type of data you want to receive. See
“Registering for Data” for more information.

2. Handle the launch code sysAppLaunchCmdExgAskUser if
you want to control the user confirmation dialog that is
displayed. See “Controlling the Exchange Dialog” for more
information.

3. Handle the launch code sysAppLaunchCmdExgPreview if
you want to display a preview of the data to be received. See
“Displaying a Preview” for more information.

4. Handle the launch code
sysAppLaunchCmdExgReceiveData to receive the data.
See “Receiving the Data” for more information.

5. If you want, handle sysAppLaunchCmdGoTo to display the
record.

Controlling the Exchange Dialog
When the Exchange Manager receives an object and decides that
your application is the target for that object, it sends your
application a series of launch codes. The first launch code your
application receives, in most cases, is
sysAppLaunchCmdExgAskUser.

NOTE: In Palm OS 4.0 and higher, the Exchange Manager
allows the exchange library to turn off the user confirmation
dialog. In this case, your application does not receive the
sysAppLaunchCmdExgAskUser launch code.

The Exchange Manger sends this launch code because it is about to
display the exchange dialog, which asks the user to confirm the
receipt of data. The launch code is your opportunity to accept the
data without confirmation, reject the data without confirmation, or
replace the exchange dialog.

Object Exchange
Receiving Data

20 Palm OS Programmer’s Companion, Volume II: Communications

Responding to this launch code is optional. If you don’t respond,
the Exchange Manager calls ExgDoDialog to display the exchange
dialog.

On Palm OS 3.5 and higher, the ExgDoDialog function allows you
to specify that the dialog display a category pop-up list. This pop-
up list allows the user to receive the data into a certain category in
the database, but the pop-up list is not shown by default. If you
want the exchange dialog to display the pop-up list, you must
respond to sysAppLaunchCmdExgAskUser and call
ExgDoDialog yourself. Pass a pointer to an ExgDialogInfoType
structure. The ExgDialogInfoType structure is defined as
follows:

typedef struct {
 UInt16 version;
 DmOpenRef db;
 UInt16 categoryIndex;
} ExgDialogInfoType;

→ version
Set this field to 0 to specify version 0 of this structure.

→ db
A pointer to an open database that defines the categories the
dialog should display.

← categoryIndex
The index of the category in which the user wants to file the
incoming data.

If db is valid, the function extracts the category information from
the specified database and displays it in a pop-up list. Upon return,
the categoryIndex field contains the index of the category the
user selected, or dmUnfiledCategory if the user did not select a
category.

If the call to ExgDoDialog is successful, your application is
responsible for retaining the value returned in categoryIndex
and using it to file the incoming data as a record in that category.
One way to do this is to store the categoryIndex in the socket’s
appData field (see ExgSocketType) and then extract it from the
socket in your response to the launch code

Object Exchange
Receiving Data

Palm OS Programmer’s Companion, Volume II: Communications 21

sysAppLaunchCmdExgReceiveData. See Listing 1.5 for an
example.

Listing 1.5 Extracting the category from the exchange socket

UInt16 categoryID = (ExgSocketType *)cmdPBP->appData;

/* Receive the data, and create a new record using the
 received data. indexNew is the index of this record. */
if (category != dmUnfiledCategory){
 UInt16 attr;
 Err err;
 err = DmRecordInfo(dbP, indexNew, &attr, NULL, NULL);

 // Set the category to the one the user specified, and
 // mark the record dirty.
 if ((attr & dmRecAttrCategoryMask) != category) {
 attr &= ~dmRecAttrCategoryMask;
 attr |= category | dmRecAttrDirty;
 err = DmSetRecordInfo(dbP, indexNew, &attr, NULL);
 }
}

Some of the Palm OS built-in applications (Address Book, Memo,
and ToDo) use this method of setting the category on data received
through beaming. Refer to the example code provided in the Palm
OS SDK for these applications for a more complete example of how
to use ExgDoDialog.

When you explicitly call ExgDoDialog, you must set the result
field of the sysAppLaunchCmdExgAskUser launch code’s
parameter block to either exgAskOk (upon success) or
exgAskCancel (upon failure) to prevent the system from
displaying the dialog a second time.

Displaying a Preview
On Palm OS 4.0 and higher, the exchange dialog contains a preview
of the data to be received. The preview allows the user to see what
the data is. The reason for the preview is that Palm OS 4.0 and
higher supports exchange libraries other than the IR Library. When
you use the IR Library to beam data to another Palm Powered
handheld, the sender and the receiver must be in close contact with

Object Exchange
Receiving Data

22 Palm OS Programmer’s Companion, Volume II: Communications

one another. Other transport mechanisms do not require the devices
to be within close proximity, so the user might not know that the
data is being received or why. In this case, the user might need more
information about the object being received, so the Exchange
Manager displays information about the object in the exchange
dialog. Also, some exchange libraries do not transmit information
for the exchange socket’s description field, so the Exchange
Manager must provide another means of supplying the user with
information about the data being received.

To display the preview, the Exchange Manager launches the
receiving application with the launch code
sysAppLaunchCmdExgPreview. Your application does not have
to respond to this launch code. If it doesn’t, the Exchange Manager
displays the first item that it locates in the following list:

• The data’s description from the exchange socket’s
description field

• The filename in the socket’s name field

• The receiving application’s description as stored in the
exchange registry (you pass this description to
ExgRegisterDatatype when registering)

• The MIME type in the socket’s type field

• The file extension in the socket’s name field

If you want to support a preview that is more elaborate than those
in the previous list, handle the sysAppLaunchCmdExgPreview
launch code.

The launch code’s parameter block is an ExgPreviewInfoType
structure. This structure contains the ExgSocketType structure, an
op field that describes what type of preview data the Exchange
Manager expects, and fields in which to return the data.

To respond to the launch code, do the following:

1. Check the op field in the parameter block to see what type of
preview data is expected. In most cases, the preview data is a
string, but a graphical display might also be requested.

2. Call ExgAccept to establish a connection with the exchange
library.

Object Exchange
Receiving Data

Palm OS Programmer’s Companion, Volume II: Communications 23

3. Call ExgReceive one or more times to receive the data.

In this function, you specify the number of bytes to receive
and it returns the number of bytes that were received. You
may need to call it multiple times if data is remaining to be
received after the first and subsequent calls.

4. Place the data in the parameter block’s string field if the op
field specifies a string preview. If the op field specifies a
graphical preview, draw the data into the rectangle identified
by the parameter block’s bounds field.

5. Call ExgDisconnect to end the connection.

A zero (0) return value indicates a successful transmission.

Note that you perform essentially the same steps to preview the
data as you do to receive it. The only difference is what you do with
the data after you receive it. In response to
sysAppLaunchCmdExgPreview, you pass the data back to the
Exchange Manager and discard it in case the user rejects the data. In
response to sysAppLaunchCmdExgReceiveData, you store the
data.

For an example of handling the sysAppLaunchCmdExgPreview
launch code, see the Address Book example application that is
distributed with the Palm OS SDK. The TransferPreview
function handles the launch code.

Receiving the Data
If the Exchange Manager receives exgAskOk in response to the
exchange dialog or the sysAppLaunchCmdExgAskUser launch
code, the next step is to launch the application with
sysAppLaunchCmdExgReceiveData. This launch code tells the
application to actually receive the data.

To respond to this launch code, do the following:

1. Call ExgAccept to accept the connection.

2. Call ExgReceive one or more times to receive the data.

In this function you specify the number of bytes to receive,
and ExgReceive returns the number of bytes that were

Object Exchange
Receiving Data

24 Palm OS Programmer’s Companion, Volume II: Communications

received. You may need to call it multiple times if data is
remaining to be received after the first and subsequent calls.

Note that in the socket structure, the length field may not
be accurate, so in your receive loop you should be flexible in
handling more or less data than length specifies.

3. If you want your application launched again with the
sysAppLaunchCmdGoTo launch code, place your
application’s creator ID in the ExgSocketType’s
goToCreator field and supply the information that should
be passed to the launch code in the gotoParams field. (The
ExgSocketType structure is the
sysAppLaunchCmdExgReceiveData’s parameter block.)

4. Call ExgDisconnect to end the connection.

A zero (0) return value indicates a successful transmission.

After your application returns from
sysAppLaunchCmdExgReceiveData, if the goToCreator
specifies your application’s creator ID and if the exchange library
supports it, your application is launched with
sysAppLaunchCmdGoto. In response to this launch code, your
application should launch, open its database, and display the record
identified by the recordNum field (or matchCustom field) in the
parameter block. The Exchange Manager always does a full
application launch with sysAppLaunchCmdGoto, so your
application has access to global variables; however, if you also use
this launch code to implement the global find facility, you may not
have access to global variables in that instance. The example code in
Listing 1.6 checks to see if globals are available, and if so, calls
StartApplication to initialize them.

Listing 1.6 Responding to sysAppLaunchCmdGoto

case sysAppLaunchCmdGoto:
 if (launchFlags & sysAppLaunchFlagNewGlobals) {
 err = StartApplication();
 if (err) return err;
 GoTo(cmdPBP, true);
 EventLoop();
 StopApplication();
 } else {

Object Exchange
Receiving Data

Palm OS Programmer’s Companion, Volume II: Communications 25

 GoTo(cmdPBP, false);
}

On Palm OS 4.0 and higher, not all exchange libraries support using
the sysAppLaunchCmdGoto launch code after the receipt of data.

Also note that because Palm OS 4.0 and higher supports multiple
object exchange, there is no guarantee that your application is the
one that is launched at the end of a receipt of data. If multiple
objects are being received, it is possible for another application to
receive data after yours and to set the goToCreator field to its own
creator ID. In this case, the last application to set the field is the one
that is launched.

Listing 1.7 shows a function that receives a data object and sets the
goToCreator and goToParams. This code is taken from the
Beamer example application that is distributed with the Palm OS
SDK.

Listing 1.7 Receiving a data object

static Err ReceiveData(ExgSocketPtr exgSocketP)
{
 Err err;
 MemHandle dataH;
 UInt16 size;
 UInt8 *dataP;
 Int16 len;
 UInt16 dataLen = 0;

 if (exgSocketP->length)
 size = exgSocketP->length;
 else
 size = ChunkSize;
 dataH = MemHandleNew(size);
 if (!dataH) return -1; //
 // accept will open a progress dialog and wait for your receive commands
 err = ExgAccept(exgSocketP);
 if (!err){
 dataP = MemHandleLock(dataH);
 do {
 len = ExgReceive(exgSocketP,&dataP[dataLen], size-dataLen,&err);
 if (len && !err) {
 dataLen+=len;
 // resize block when we reach the limit of this one...

Object Exchange
Sending and Receiving Databases

26 Palm OS Programmer’s Companion, Volume II: Communications

 if (dataLen >= size) {
 MemHandleUnlock(dataH);
 err = MemHandleResize(dataH,size+ChunkSize);
 dataP = MemHandleLock(dataH);
 if (!err) size += ChunkSize;
 }
 }
 }
 while (len && !err);

 MemHandleUnlock(dataH);

 ExgDisconnect(exgSocketP,err); // closes transfer dialog

 if (!err) {
 exgSocketP->goToCreator = beamerCreator;
 exgSocketP->goToParams.matchCustom = (UInt32)dataH;
 }
 }
 // release memory if an error occured
 if (err) MemHandleFree(dataH);
 return err;
}

Sending and Receiving Databases
It’s common to want to send and receive an entire database using
the Exchange Manager. For example, you might want to allow your
application’s users to share their versions of the PDB file associated
with your application by beaming that file to each other.

Sending and receiving a database involves the extra steps of
flattening the database into a byte stream when sending and un-
flattening it upon return.

Sending a Database
To send a database, do the following:

1. Create and initialize an ExgSocketType data structure with
information about which library to use and the data to be
sent. See “Initializing the Exchange Socket Structure” for
more information.

Object Exchange
Sending and Receiving Databases

Palm OS Programmer’s Companion, Volume II: Communications 27

2. Call ExgPut to establish the connection with the exchange
library.

3. Call ExgDBWrite and pass it a pointer to a callback function
in your application that it can use to send the database. You
make the call to ExgSend in that function.

4. Call ExgDisconnect to end the connection.

The ExgDBWrite function takes as parameters the local ID and
card number of the database to be sent and a pointer to a callback
function. You may also pass in the name of the database as it should
appear in a file list and any application-specific data you want
passed to the callback function. In this case, you would pass the
pointer to the exchange socket structure as the application-specific
data. If you need any other data, create a structure that contains the
exchange socket and pass a pointer to that structure instead.

The write callback function is called as many times as is necessary to
send the data. It takes three arguments: a pointer to the data to be
sent, the size of the data, and the application-specific data passed as
the second argument to ExgDBWrite.

Listing 1.8 shows an example of how to send a database. The
SendMe function looks up the database creator ID and card number
and passes it to the SendDatabase function. The SendDatabase
function creates and initializes the exchange socket structure and
then passes all that information along to the ExgDBWrite function.
The ExgDBWrite function locates the database in the storage heap,
translates it into a stream of bytes and passes that byte stream as the
first argument to the write callback function WriteDBData.
WriteDBData forwards the exchange socket and the data stream to
the ExgSend call, sets its size parameter to the number of bytes sent
(the return value of ExgSend), and returns any error returned by
ExgSend.

Listing 1.8 Sending a database

// Callback for ExgDBWrite to send data with Exchange Manager
Err WriteDBData(const void* dataP, ULong* sizeP, void* userDataP)
{
 Err err;

 sizeP = ExgSend((ExgSocketPtr)userDataP, (void)dataP, *sizeP, &err);

Object Exchange
Sending and Receiving Databases

28 Palm OS Programmer’s Companion, Volume II: Communications

 return err;
}

Err SendDatabase (Word cardNo, LocalID dbID, CharPtr nameP,
CharPtr descriptionP)
{
 ExgSocketType exgSocket;
 Err err;

 // Create exgSocket structure
 MemSet(&exgSocket, sizeof(exgSocket), 0);
 exgSocket.description = descriptionP;
 exgSocket.name = nameP;

 // Start an exchange put operation
 err = ExgPut(&exgSocket);
 if (!err) {
 err = ExgDBWrite(WriteDBData, &exgSocket, NULL, dbID, cardNo);
 err = ExgDisconnect(&exgSocket, err);
 }
 return err;
}

// Sends this application
Err SendMe(void)
{
 Err err;

 // Find our app using its internal name
 LocalID dbID = DmFindDatabase(0, "Beamer");

 if (dbID)
 err = SendDatabase(0, dbID, "Beamer.prc", "Beamer application");
 else
 err = DmGetLastErr();
 return err;
}

Note that there is nothing about ExgDBWrite that is tied to the
Exchange Manager, so it may be used to send a database using other
transport mechanisms as well. For example, if you wanted to
transfer a database from your Palm Powered handheld to your
desktop PC using the serial port, you could use ExgDBWrite to do
so.

Object Exchange
Requesting Data

Palm OS Programmer’s Companion, Volume II: Communications 29

Receiving a Database
The Launcher application receives databases with the .prc or .pdb
file extension. If you want your application to be launched when the
database is received, you can use a different extension and handle
receiving the database within your application. For example, a book
reader application might want to be launched when the user is
beamed a book. In this case, the book reader application might use
an extension such as .bk for the book databases.

You receive a database by responding to the same launch codes that
you do for receiving any other data object (see “Receiving Data”);
however, your response to the
sysAppLaunchCmdExgReceiveData launch code is a little
different:

1. Call ExgAccept to accept the connection.

2. Call ExgDBRead and pass it a pointer to a callback function
in your application that it can use to read the database. You
make the call to ExgReceive in that function.

3. Call ExgDisconnect to end the connection.

The ExgDBRead function takes as parameters two pointers to
callback functions. The first callback function is a function that is
called multiple times to read the data. The second function is used if
the database to be received already exists on the device.

Requesting Data
On Palm OS 4.0 and higher, some exchange libraries allow you to
request data from a remote device through a call to ExgGet. You
can use ExgGet to implement two-way communications between
two Palm™ devices.

This section describes how to use the Exchange Manager to request
data. It covers:

• Sending a Get Request for a Single Object

• Responding to a Get Request

• Two-Way Communications

• Requesting a URL

Object Exchange
Requesting Data

30 Palm OS Programmer’s Companion, Volume II: Communications

Sending a Get Request for a Single Object
To request data from a remote device, do the following:

1. Create and initialize an exchange socket structure
(ExgSocketType) as described in “Initializing the Exchange
Socket Structure”section. The data structure should identify
the exchange library and the type of data that your
application wants to receive.

2. Call ExgGet to establish the connection and request the data.

In response, the exchange library establishes a connection
with the remote device, and upon return has data that your
application should receive. If the remote device is a Palm
Powered handheld, the exchange library obtains this data
from an application on the remote side using the process
described in the “Responding to a Get Request” section.

3. Call ExgReceive one or more times to receive the data.

4. Call ExgDisconnect to end the connection.

Responding to a Get Request
When the Exchange Manager on the remote device receives the get
request, it launches the appropriate application with the launch
code sysAppLaunchCmdExgGetData.

Your response to the sysAppLaunchCmdExgGetData launch code
should be to send the requested data:

1. Call ExgSend one or more times.

2. Call ExgDisconnect when finished.

See the “Sending a Single Object” section for more information.

Two-Way Communications
You can use ExgGet and ExgPut in combination with the
ExgConnect call to have your application perform two-way
communication. For example, you may want to implement two-way
communication in a multiuser game.

In such a situation, one device acts as a client and the other acts as a
server. The client calls ExgConnect, which tells the exchange
library that a connection is established to perform multiple

Object Exchange
Requesting Data

Palm OS Programmer’s Companion, Volume II: Communications 31

operations, such as the sending of multiple objects. The client then
calls ExgGet or ExgPut repeatedly and calls ExgDisconnect
when finished. On the server device, the appropriate application is
launched for each of these requests. The server also calls
ExgDisconnect when it is done sending or receiving each object.
The swapping of client and server roles is not supported.

Remember that not all exchange libraries support ExgConnect and
ExgGet. If either one of these returns an error, your application
should assume that this feature is not available.

Requesting a URL
In addition to requesting data with an ExgGet call, you can request
a URL with a ExgRequest call on Palm OS 4.0 and higher. The idea
behind the ExgRequest call is to follow the model of pull
technology. You could, for example, implement a web browser if
you had an exchange library that supported the HTTP protocol. You
could then send an ExgRequest call with an exchange socket
containing a URL such as http://www.palmos.com and receive
the web page in response.

The fundamental differences between ExgRequest and ExgGet
are:

• ExgRequest does not automatically send the data back to
the application that requested it. With ExgRequest, when
the exchange library receives the requested data, it has the
Exchange Manager send it to the default application for that
data type.

• Applications can register for URLs sent using ExgRequest.
ExgRequest first looks for an exchange library that handles
the URL scheme. If it cannot find one, it looks for an
application instead. If it finds an application, it launches it
with the sysAppLaunchCmdGoToURL launch code.

For example, the iMessenger application distributed with the
Palm OS SDK registers for the mailto URL scheme. If
another application wants to implement an e-mail command,
it could do so by calling ExgRequest and passing an
exchange socket with a URL that begins with mailto. In
response to this command, the Exchange Manager launches

Object Exchange
Sending and Receiving Locally

32 Palm OS Programmer’s Companion, Volume II: Communications

the iMessenger application, allowing the user to compose the
email.

Sending and Receiving Locally
Most of this chapter has described how to use the Exchange
Manager to send data to a remote device and receive data from a
remote device.

You may also use the Exchange Manager to exchange data with
other applications on the local device. To do so, use the Local
Exchange Library. You might want to do so in the following
circumstances:

• You might have an application that creates some sort of event
in the Datebook application. Your users might have an
application that they use in place of the built-in Datebook. To
ensure that the appointment is sent to the user’s chosen
application, you can send that data as a vCalendar object
using the Local Exchange Manager. This way, whichever
application is the default in the Exchange Manager registry is
the one that receives your vCalendar.

• You could use the preview feature of the Exchange Manager
to have another application display data for you. As
described in the “Displaying a Preview” section, an
application can be launched with the
sysAppLaunchCmdExgPreview launch code to display a
preview of the data it is registered to receive. You could use
this feature in your own application to display data your
application does not recognize. Suppose your application has
a GIF and wants to display it in a dialog. It could use the
Local Exchange Library to send that GIF to a graphics
application on the local device, which in response draws the
preview into the bounds of a rectangle you provide.

• Your application receives compound data objects, such as e-
mail messages that contain attachments intended for other
applications. As described in the “Registering to Receive
Unwrapped Data” section, exchange libraries can “unwrap”
a compound object and deliver the objects it contains
directly; however, doing so is the exception the rule.

It’s much more common for the e-mail message to be sent to
the e-mail application and have the attachments delivered to

Object Exchange
Sending and Receiving Locally

Palm OS Programmer’s Companion, Volume II: Communications 33

the appropriate applications only when the user requests it.
In response to a user request, the e-mail application extracts
the attached object and uses the Local Exchange Library to
send it to the application that should receive it.

• Your application exchanges data with a remote device, and
you want to debug the code that interacts with the Exchange
Manager. In this case, using the Local Exchange Library
causes your application to send data in loopback mode,
where it is also the recipient of the data.

To use the Local Exchange Library, do the following:

1. Use a URL in the name field of the ExgSocketType
structure to identify the Local Exchange Library. Begin the
URL with the constant string exgLocalPrefix.

The Exchange Manager only supports URLs on Palm OS 4.0
and higher. On Palm OS 3.X devices, set the localMode flag
to 1 to interact with the Local Exchange Library instead of the
IR Library.

2. If you want to suppress the exchange dialog or if you want to
perform a preview operation, create and initialize an
ExgLocalSocketInfoType structure and assign it to the
socket’s socketRef field.

typedef struct {
 Boolean freeOnDisconnect;
 Boolean noAsk;
 ExgPreviewInfoType *previewInfoP;
 ExgLocalOpType op;
 FileHand tempFileH;
} ExgLocalSocketInfoType;

where the following are parameters you might want to set:

Object Exchange
Interacting with the Launcher

34 Palm OS Programmer’s Companion, Volume II: Communications

All other fields are set by the Local Exchange Library. If you
don’t create this structure, the library does it for you;
therefore, you only need to create this structure if you want
to supply non-default values for the noAsk or
previewInfoP fields.

3. You can suppress the display of the progress dialogs that the
exchange libraries typically display by setting the noStatus
field of the ExgSocketType structure to true.

4. Send and receive data in the normal manner. See “Sending
Data” and “Receiving Data” for details.

Interacting with the Launcher
On Palm OS 4.0 and higher, when you beam an application from the
Launcher, other databases can be automatically beamed with it. If

freeOnDisconnect Whether the structure is freed when the
ExgDisconnect call is made. The default is
true. In general, code that allocates a
structure should be responsible for freeing
that structure. Therefore, if you have
allocated ExgLocalSocketInfoType, you
should set this field to false and explicitly
free the structure when you are finished
with it.

noAsk Set to true to disable the display of the
exchange dialog. If you want to, for example,
create a vCalendar object and send it to the
datebook application in response to a user
command, you probably want to set noAsk
to true so that the user does not have to
confirm the receipt of the data they just
requested you to send.

previewInfoP A pointer to an ExgPreviewInfoType
structure, used to display a preview of the
data. If you wanted to simply use another
application to help display data, you would
create and initialize this structure.

Object Exchange
Summary of Exchange Manager

Palm OS Programmer’s Companion, Volume II: Communications 35

the application has an associated overlay database, the overlay is
beamed along with the application. You do not have to perform any
extra work to allow this to happen.

Overlay database support begins in Palm OS 3.5; however, if you
beam an application from the Palm OS 3.5 Launcher application, it
does not beam the overlay.

In addition to beaming overlays, you can set up a record database so
that the Launcher beams it along with the application database and
the overlay. For example, a dictionary application might have its
dictionary data in an associated database. When a user beams the
dictionary application to another user, the dictionary data should be
beamed along with the application itself. To allow this to happen,
you set the bit dmHdrAttrBundle in the database’s attributes, as
shown here:

DmDatabaseInfo(cardNo, dbID, NULL, &attributes,
 NULL, NULL, NULL, NULL, NULL, NULL, NULL,
 NULL, NULL);
attributes |= dmHdrAttrBundle;
DmSetDatabaseInfo(cardNo, dbID, NULL,
 &attributes, NULL, NULL, NULL, NULL, NULL,
 NULL, NULL, NULL, NULL);

If you beam an application plus databases to a device running Palm
OS 4.0 or higher, the user sees a single confirmation message. If you
beam the application to a device running Palm OS 3.X, the device
receives only the application database and displays an alert saying
that it cannot receive the other databases.

Summary of Exchange Manager
Exchange Manager Functions

Sending Data

ExgSend

ExgPut

ExgDBWrite

Receiving Data

Object Exchange
Summary of Exchange Manager

36 Palm OS Programmer’s Companion, Volume II: Communications

ExgReceive

ExgAccept

ExgDBRead

Registering for Data

ExgRegisterDatatype

ExgSetDefaultApplication

ExgRegisterData

Requesting Data

ExgGet ExgRequest

Connecting and Disconnecting

ExgDisconnect ExgConnect

Displaying the Exchange Dialog

ExgDoDialog

Obtaining Registry Information

ExgGetTargetApplication

ExgGetRegisteredApplications

ExgGetRegisteredTypes

ExgGetDefaultApplication

Querying the Exchange Library

ExgControl

For Exchange Library Use Only

ExgNotifyReceive

ExgNotifyPreview

ExgNotifyGoto

Exchange Manager Functions

Palm OS Programmer’s Companion, Volume II: Communications 37

2
Exchange Libraries
This chapter describes how to implement an exchange library. It
covers the following topics:

• About Exchange Libraries

• Exchange Library Components

• Implementing an Exchange Library

Prior to implementing an exchange library, you should have a clear
understanding of how the Exchange Manager operates. See Chapter
1, “Object Exchange,” on page 1 for an in-depth discussion on the
Exchange Manager. Also see Chapter 63, “Exchange Library,” on
page 1409 of the Palm OS Programmer’s API Reference for a detailed
description of the functions that must be implemented in each
exchange library.

About Exchange Libraries
Exchange libraries are Palm OS® shared libraries that act as “plug-
ins” to the Exchange Manager. They deal with protocols and
communication devices and allow Palm OS applications to import
and export data objects without regard to the transport mechanism.
For example, one exchange library always available to Palm
Powered™ handhelds implements the IrDA protocol, IrOBEX. This
allows applications to beam objects by way of infrared from one
Palm Powered handheld to another.

The following can take advantage of the Exchange Library API:

• Removable storage cards

• Notification services

• Email attachments

• Web (HTTP/FTP/CTP/WAP) exchange

• HotSync® simplified import and export

Exchange Libraries
About Exchange Libraries

38 Palm OS Programmer’s Companion, Volume II: Communications

Exchange Libraries, Exchange Manager, and
Applications
The Exchange Manager is a high-level tool for applications to use.
An exchange library is a set of routines that handle the
implementation specifics of a particular transport. Typically,
exchange library functions are called from the Exchange Manager
and are not directly accessed by applications. Applications wanting
to send or receive data call the functions provided by the Exchange
Manager API, many of which do little more than invoke the
corresponding function in the appropriate exchange library.

Exchange libraries also make calls back into the Exchange Manager.
For example, an exchange library would call ExgNotifyReceive
to have the Exchange Manager deliver objects received by the
exchange library.

No one component involved with data exchange (Exchange
Manager, exchange library, or application) is complete in itself.
However, applications and exchange libraries should be written so
the user experiences all interaction as a single seamless interface,
even though what takes place is really a complex interaction
between different pieces of code.

Figure 2.1 illustrates the relationship between applications, the
Exchange Manager, and the exchange libraries within two devices
that are in communication.

Figure 2.1 Object exchange using Exchange Manager

Exchange Libraries
About Exchange Libraries

Palm OS Programmer’s Companion, Volume II: Communications 39

The following table lists the division of responsibilities between
Palm OS applications, the Exchange Manager, and the exchange
libraries.

Palm OS Exchange Libraries
The Exchange Manager was introduced in Palm OS 3.0 and was
significantly enhanced in Palm OS 4.0. Because of this, the various
exchange libraries require different versions of the OS. Table 2.2 lists
the minimum OS version required by various exchange libraries.

Table 2.1 Division of responsibility for data object exchange

Palm OS
Application

Exchange
Manager

Exchange Library

Creates, edits, and
stores data

Maintains registry
of exchange
libraries

Sends data to or
receives data from
other devices

Converts data to
and from the
interchange formats

Maintains registry
of applications that
can receive data

Displays a dialog to
get addressing
information from
user

Views or describes
data

Passes send and
receive requests to
appropriate
exchange library

Displays status and
error dialogs,
possibly using the
Progress Manager

Displays a dialog
asking if user wants
to receive data

Table 2.2 Version of Palm OS required by exchange libraries

Exchange Library Minimum Palm
OS Version

IR Library (IrDA) Palm OS 3.0

Local Exchange Library Palm OS 4.0

Exchange Libraries
Exchange Library Components

40 Palm OS Programmer’s Companion, Volume II: Communications

Included with the Palm OS SDK version 4 is the HostTransfer
sample exchange library which can be used as a starting point when
creating your own exchange libraries.

Exchange Library Components
This section describes the components that make up an exchange
library. The topics covered are:

• The Exchange Library API

• Dispatch Table

The Exchange Library API
The Palm OS Exchange Library API specifies the minimum set of
functions that all exchange libraries must implement. These
functions can be classified into three major categories: functions that
must be included in all shared libraries, functions that establish a
connection and send and receive data, and miscellaneous support
functions.

Standard Shared Library Functions

Any Palm OS shared library must implement open, close, sleep, and
wake functions.

• ExgLibOpen

• ExgLibClose

• ExgLibSleep

• ExgLibWake

SMS Library (Short Messaging System) Palm OS 4.0

Bluetooth Library1 Palm OS 4.0

1. Although not present in Palm OS 4.0, Palm plans to provide a Bluetooth Li-
brary soon after Palm OS 4.0 ships.

Table 2.2 Version of Palm OS required by exchange libraries

Exchange Library Minimum Palm
OS Version

Exchange Libraries
Exchange Library Components

Palm OS Programmer’s Companion, Volume II: Communications 41

Functions That Send and Receive Data

These functions do the work of establishing a connection and
sending and receiving data.

• ExgLibAccept

• ExgLibConnect

• ExgLibDisconnect

• ExgLibGet

• ExgLibPut

• ExgLibReceive

• ExgLibRequest

• ExgLibSend

Note that each of these corresponds directly to an Exchange
Manager function; in most cases the Exchange Manager simply calls
the corresponding exchange library function.

Support Functions

This category consists of functions that provide information about
your exchange library and that handle events.

• ExgLibControl

• ExgLibHandleEvent

Although each of the functions in these three categories must be
present in every exchange library, depending on the specific
requirements of the exchange library some of them can simply
return errNone or exgErrNotSupported.

As with any shared library, the order in which the functions appear
in the exchange library’s dispatch table identifies the functions in
the library. This order is specified in ExgLib.h. Because it’s the
function’s position in the dispatch table and not its name that is
important, the actual function names used in a given exchange
library may be different from those specified in ExgLib.h. In fact,
you’ll likely want to use function names that are unique to your
shared library, as the Host Transfer library does with such functions
as HostTransferLibPut, HostTransferLibSend, and
HostTransferLibDisconnect. By using function names specific
to your exchange library, you can link your functions into the Mac

Exchange Libraries
Exchange Library Components

42 Palm OS Programmer’s Companion, Volume II: Communications

Simulator and debug with it. If you use the function names defined
in ExgLib.h for your functions, you’ll get a link error because the
Simulator uses those names for stub functions which call your
functions.

Beyond the functions listed above, additional library-specific
functions must appear in the exchange library’s dispatch table after
exgLibTrapLast.

Dispatch Table
The dispatch table is a map used by the Palm OS to find the
functions in the exchange library. At link time, references to the
exchange library functions are resolved to a system trap by way of
the SYS_TRAP macro. At runtime, when an exchange library
function is called, a trap occurs and the trap finds the function in its
library dispatch table and computes the function’s offset into the
code resource of the exchange library. A JMP instruction to the
function’s address is made, causing the function to be executed.

NOTE: The structure of the dispatch table for exchange libraries
is the same as that of shared libraries. Exchange libraries must do
everything shared libraries must do, plus they must register with
the Exchange Manager. This gives applications access to their
services by way of the Exchange Manager APIs such as ExgPut.

A sample dispatch table source file, HostTransferDispatch.c,
is provided with the OS SDK. Listing 2.1 provides a sample of the
dispatch table contained within this file (some parts are omitted for
clarity).

Listing 2.1 HostTransferDispatch.c

...
void *PrvHostTransferDispatchTable(void);
...
extern Err PrvInstallHostTransferDispatcher(UInt16 refNum, SysLibTblEntryType
*entryP);
...
Err __Startup__(UInt16 refNum, SysLibTblEntryType *entryP)
{
 return PrvInstallHostTransferDispatcher(refNum, entryP);

Exchange Libraries
Exchange Library Components

Palm OS Programmer’s Companion, Volume II: Communications 43

}
...
asm void *PrvHostTransferDispatchTable(void)
{
 LEA @Table, A0 // table ptr
 RTS // exit with it

@Table:
 DC.W @Name
 DC.W (kOffset) // Open
 DC.W (kOffset+(1*4)) // Close
 DC.W (kOffset+(2*4)) // Sleep
 DC.W (kOffset+(3*4)) // Wake
 // Start of the exchange libary
 DC.W (kOffset+(4*4)) // HostTransferLibHandleEvent
...
 DC.W (kOffset+(12*4)) // HostTransferLibControl
 DC.W (kOffset+(13*4)) // HostTransferLibRequest

@GotoOpen:
 JMP HostTransferLibOpen
@GotoClose:
 JMP HostTransferLibClose
@GotoSleep:
 JMP HostTransferLibSleep
@GotoWake:
 JMP HostTransferLibWake

@GotoHandleEvent:
 JMP HostTransferLibHandleEvent
...
@GotoOption:
 JMP HostTransferLibControl
@GotoCheck:
 JMP HostTransferLibRequest

@Name:
 DC.B HostTransferName
}
...

The last entry in the dispatch table is the name of the exchange
library. This must match the name of the database containing the
exchange library, and on the simulator, it must end with “-crid”,

Exchange Libraries
Exchange Library Components

44 Palm OS Programmer’s Companion, Volume II: Communications

where crid is the creator ID. For example, the Host Transfer library
uses "HostTransfer Library-HXfr".

The code segment must be locked so that the dispatch table itself,
and the routine addresses in it, will remain valid. The library's
database is automatically protected so that it cannot be deleted.

NOTE: The system's shared library table has a slot for library
globals for each loaded library. The start-up routine should at
least zero this field, if not actually allocate the globals. Some
libraries allocate a small structure with an openCount and leave
the larger allocation for later, when the library is opened by way of
the library's Open() entry point. In this case, the small structure
has a reference to the larger one.

The code resource of an exchange library must start with a routine
that sets up the dispatch table. This routine must be named
__Startup__. The prototype for this function is:

Err __Startup__(UInt16 refNum,
SysLibTblEntryType *entryP)

Usually, __Startup__ consists of a one line call in a
MyLibDispatch.c file that calls the actual setup routine in a
corresponding MyLib.c file. For example, in the
HostTransferDispatch.c sample file provided with the OS
SDK the following is used to install the HostTransfer dispatch table:

extern Err PrvInstallHostTransferDispatcher(UInt16 refNum,
SysLibTblEntryType *entryP);
...
Err __Startup__(UInt16 refNum, SysLibTblEntryType *entryP)
{

return PrvInstallHostTransferDispatcher(refNum, entryP);
}
...

__Startup__ is called to set up the dispatch table when a call to
SysLibInstall or SysLibLoad is made. For example:

SysLibInstall(PrvInstallHostTransferDispatcher, &refNum);

Exchange Libraries
Exchange Library Components

Palm OS Programmer’s Companion, Volume II: Communications 45

Listing 2.2 shows how the HostTransfer dispatch table installer
function is implemented. This function can be found in the OS SDK
sample file HostTransferLib.c. The dispatch table installer
function is responsible for making the system’s library table entry
(entryP) point to the dispatch table. For example:

entryP->dispatchTblP =
 (MemPtr *)PrvHostTransferDispatchTable();

The dispatch installer routine generally does a bit of initialization as
well.

Listing 2.2 Host transfer dispatch table installer function

Err PrvInstallHostTransferDispatcher(UInt16 refNum, SysLibTblEntryType *entryP)
{
 Err err;
 HostTransferGlobalsType *gP;
 UInt32 value;
 Char macro[14];

 // Must be 4.0 or greator
 err = FtrGet(sysFtrCreator, sysFtrNumROMVersion, &value);
 if (err || value < kVersion4_0) return -1;

 // Allocate library globals and store pointer to them in the system's
 // library table
 gP = MemPtrNew(sizeof(HostTransferGlobalsType));
 ErrFatalDisplayIf(!gP, "No memory for globals");
 if (gP)
 {
 MemPtrSetOwner(gP, 0);
 MemSet(gP, sizeof(HostTransferGlobalsType), 0);
 gP->refNum = refNum; // make self reference
 entryP->globalsP = gP;
 }

 // Install pointer to our dispatch table in system's library table
 entryP->dispatchTblP = (MemPtr *)PrvHostTransferDispatchTable();

 // Check if we're running on the simulator or emulator. On a real device,
 // there's no host so we don't register this library with the Exchange
 // Manager. In this case, we should really abort the library installation
 // altogether, but this demonstrates how exchange libs can change their
 // registration status.

Exchange Libraries
Implementing an Exchange Library

46 Palm OS Programmer’s Companion, Volume II: Communications

#if EMULATION_LEVEL == EMULATION_NONE
 if (FtrGet('pose', 0, &value) != ftrErrNoSuchFeature)
#endif
 {
 Char description[exgTitleBufferSize + 1];
 UInt16 descriptionSize = sizeof(description);
 Err err;

 // Get the title of the library
 err = HostTransferLibControl(refNum, exgLibCtlGetTitle, &description,
 &descriptionSize);
 if (! err)
 {
 // Register this library with the Exchange Manager
 err = ExgRegisterDatatype(HostTransferCreator, exgRegSchemeID,
 kHostTransferScheme "\t" exgSendScheme, description, 0 /*flags*/);
 }
 }

 // Add a magic macro to initiate ExgRequest
 StrCopy(macro, "\x01" "0117" "0000" "0408");
 // virtualkeycode,vchrIrReceive,refnum,libEvtHookKeyMask
 macro[7] = PrvHexToAscii((refNum>>4) & 0x0f); // put refnum into string as
hex
 macro[8] = PrvHexToAscii(refNum & 0x0f);
 PrvDeleteExistingMacro(".r");
 GrfAddMacro(".r", (UInt8 *)macro, 13);

 return err;
}

Implementing an Exchange Library
In order to work with the Palm OS Exchange Manager, an exchange
library must implement a required set of functions and must
register with the Exchange Manager.

Required Functions
Exchange libraries contain functions to handle implementation
specifics of a particular transport plus the functions required by the
Exchange Library API. Functions required to handle transport-
specific tasks or other tasks that aren’t specific to the Exchange
Library API are outside the scope of this document. In general,

Exchange Libraries
Implementing an Exchange Library

Palm OS Programmer’s Companion, Volume II: Communications 47

however, other functions required by the exchange library could
include tasks such as polling devices, handling interrupts, or
checking for user input.

Depending on the application, the exchange library’s requirements
may be send only, receive only, or both. At a minimum, when
sending objects, ExgLibPut, ExgLibSend, and
ExgLibDisconnect are typically required; for receiving objects,
ExgLibAccept, ExgLibReceive, and ExgLibDisconnect are
needed. See Chapter 63, “Exchange Library,” on page 1409 of the
Palm OS Programmer’s API Reference for a detailed description of
each exchange library function.

Implementing ExgLibAccept

There are two situations in which an application calls the Exchange
Manager’s ExgAccept function:

• The application wants to initiate a connection to receive data,
which it does in response to
sysAppLaunchCmdExgReceiveData.

• The application wants to initiate a connection to receive a
preview of the data, which it does in response to
sysAppLaunchCmdExgAskUser.

The Exchange Manager in turn calls ExgLibAccept.

When previewing data, you must buffer incoming data. Your
ExgLibAccept function should observe the preview flag and
rewind the buffer, preparing for non-destructive read. When it is
called again without the preview flag, it should rewind again, this
time preparing for destructive read.

ExgLibAccept must update any progress dialogs to indicate that
data is being accepted, or received, into an application.

Handling Connection Errors

ExgLibConnect can be used by exchange libraries as a convenient
place to put code that needs to be executed prior to the first
ExgLibPut call. Many exchange libraries don’t support
ExgLibConnect, however, instead establishing a connection in the
initial call to ExgLibPut. If your library doesn’t need to support

Exchange Libraries
Implementing an Exchange Library

48 Palm OS Programmer’s Companion, Volume II: Communications

ExgLibConnect, your implementation of this function should
simply return errNone.

If your exchange library doesn’t support ExgLibConnect and an
error occurs during the initial call to ExgLibPut, your
implementation of ExgLibPut should clean up after itself; it
should not count on ExgLibDisconnect being called. If the initial
call to ExgLibPut succeeds, however, cleanup of subsequent errors
can be done in ExgLibDisconnect.

If your exchange library does support ExgLibConnect and an
error occurs during a call to it, ExgLibConnect should clean up
after itself. Cleanup of errors that occur after a successful call to
ExgLibConnect, however, can be delegated to
ExgLibDisconnect.

Finally, if your exchange library supports ExgLibConnect but the
application doesn’t call it prior to calling ExgLibPut, the situation
is as if your library didn’t implement ExgLibConnect: if an error
occurs during the initial call to ExgLibPut your implementation of
ExgLibPut should clean up after itself, while if the initial call to
ExgLibPut succeeds you can clean up after any subsequent errors
in ExgLibDisconnect.

Note that you must support ExgLibConnect if your exchange
library supports two-way communication as discussed in “Two-
Way Communications” on page 30.

Buffering Data

Data can be sent by the exchange library as it receives it by using
ExgLibSend calls or by buffering the data and sending it in
response to an ExgLibDisconnect call. Buffering has some
advantages. For example, the communication stack does not have to
share cycles with the sending or receiving application and the
communication hardware is on for the shortest possible time,
conserving battery power. One drawback is that buffering requires
extra storage that could be problematic if the amount of data
exchanged is large.

Exchange Libraries
Summary of Exchange Library

Palm OS Programmer’s Companion, Volume II: Communications 49

Registering with the Exchange Manager
Exchange libraries, like applications, must register with the
Exchange Manager for the object types they are to receive. Exchange
libraries typically register for two URL schemes, one that is used to
uniquely identify the exchange library, and one for how it is used.

For example, the IR library registers for “_irobex”, which identifies
the specific protocol, and for “_beam” which makes it accessible
from the Beam command. The Host Transfer sample exchange
library registers for “_host” and “_send”. The latter registration
makes it accessible from the Send command. Most exchange
libraries will probably want to register for the “_send” scheme.
These URL schemes all start with an underscore to avoid conflicting
with standard URL schemes like “http” and “mailto”. See Table 1.3
in Chapter 1, “Object Exchange,” on page 1 for the supported URL
schemes.

Summary of Exchange Library
Exchange Library Functions

Handling the Connection

ExgLibConnect
ExgLibDisconnect

ExgLibAccept
ExgLibPut

Requesting Data

ExgLibGet ExgLibRequest

Transferring Data

ExgLibReceive ExgLibSend

Querying the Exchange Library

ExgLibControl

Handling Events

ExgLibHandleEvent

Exchange Libraries
Summary of Exchange Library

50 Palm OS Programmer’s Companion, Volume II: Communications

Required Shared Library Functions

ExgLibOpen
ExgLibClose

ExgLibSleep
ExgLibWake

Exchange Library Functions

Palm OS Programmer’s Companion, Volume II: Communications 51

3
Personal Data
Interchange
The Palm OS® provides the PDI library API for exchanging Personal
Data Interchange (PDI) information with other devices and media.
This chapter contains the following sections that describe how to
use the Palm OS PDI library:

• About Personal Data Interchange briefly introduces the PDI
standard and provides links to sources of more complete
information.

• About the PDI Library describes how the Palm OS PDI
library implements PDI reader and writer objects for
exchanging information.

• Using the PDI Library describes how to use the functions in
the PDI library.

• Using UDA for Different Media describes how you can use
the Unified Data Access (UDA) Manager to access data from
different media in your PDI reader or writer.

• Using a PDI Reader - An Example provides a detailed walk-
through of a code segment that creates a PDI reader and then
uses it to parse vCard information.

• Using a PDI Writer - An Example provides a detailed walk-
through of a code segment that creates a PDI writer and then
uses it to generate vCal information.

For detailed information about the PDI library data types, constants,
and functions, see Chapter 88, “Personal Data Interchange Library,”
in Palm OS Programmer’s API Reference.

The PDI reader and writer objects make use of the United Data
Access (UDA) Manager to manage input and output data streams.
“Using UDA for Different Media” on page 73 provides an overview
of using the UDA Manager. The reference information for UDA

Personal Data Interchange
About Personal Data Interchange

52 Palm OS Programmer’s Companion, Volume II: Communications

functions is in Chapter 89, “Unified Data Access Manager,” on
page 2355 in Palm OS Programmer’s API Reference.

About Personal Data Interchange
Personal data interchange involves the exchange of information
using a communications medium. The Palm OS PDI Library
facilitates the exchange of information using standard vObjects,
including data formatted according to vCard and vCal standards.

The vObject standards are maintained by a group known as the
versit consortium, which consists of individuals from a number of
companies and institutions. The best information about the PDI
standards can be found at the consortium’s web site:
http://www.imc.org/pdi/

These standards are finding increased use in a number of computers
and hand-held devices that wish to exchange personal data such as
business card and calendar information.

The PDI Library provides a PdiReaderType object for reading
vObjects from an input stream, and a PdiWriterType object for
writing vObjects to an output stream. The input streams and output
streams can be connected to various data sources.

About vObjects
This section provides a brief overview of vObject standards. Two
common vObject types are vCards and vCals:

• vCards are used to exchange virtual business card
information electronically. Each vCard can include a large
variety of personal and business information about an
individual, including name, address, and
telecommunications numbers.

• vCals are used to exchange virtual calendaring and
scheduling information electronically. Each vCal can include:

– vEvent objects, each of which represents a scheduled
amount of time on a calendar

– vTodo objects, each of which defines an action item or
assignment

http://www.imc.org/pdi/

Personal Data Interchange
About Personal Data Interchange

Palm OS Programmer’s Companion, Volume II: Communications 53

Overview of vObject Structure
This section provides a brief overview of vObject standards,
including the vCard and vCal standards. Each vObject standard
provides the same, basic organizational structure:

• Each vObject is a collection of one or more property
definitions.

• Each property definition contains a name, a value, and an
optional collection of property parameter definitions.

• Each property parameter definition contains a name and a
value. Each parameter value qualifies the property definition
with additional information.

• A property value can be structured to contain multiple
values. The values are typically separated with commas or
semicolons.

The vObject standards also allow developers to add custom
extensions. All vObject readers that conform to the standard,
including the PdiReaderType object, can read these extensions,
though not all readers will act upon the information contained in
them.

Each property has the following syntax:

PropertyName [';' Parameters] ':' PropertyValue

Note that property and parameter names are case insensitive.

Listing 3.1 shows a typical vCard definition.

Listing 3.1 Example of a vCard definition

BEGIN:VCARD
VERSION:2.1
N:Smith, John;M.;Mr.; Esq.
TEL;WORK;VOICE; MSG:+1 (408) 555-1234
TEL;CELL:+1 (408) 555-4321
TEL;WORK;FAX:+1 (408) 555-9876
ADR;WORK;PARCEL;POSTAL;DOM:Suite 101;1 Central St.;Any
Town;NC;28654
END:VCARD

Personal Data Interchange
About Personal Data Interchange

54 Palm OS Programmer’s Companion, Volume II: Communications

Each line in Listing 3.1 is a property definition, with the exception of
the next to last line, which is a continuation of the ADR property
definition, and begins with white space. Each property definition is
delimited by a CR/LF sequence.

The BEGIN, VERSION, and END lines are examples of simple
property definitions.

The N (Name) property has a structured value. The components of
the name are separated by semicolons.

Each TEL (Telephone) property has parameters that qualify the kind
of telephone number that is being specified.

The ADR (Address) property has parameters and a structured value.

NOTE: The vObject specifications also allow long lines of text to
be folded. This means that wherever you can have white space
in a property definition, you can insert a CR/LF followed by white
space, as shown in the next to last line in Listing 3.1 When the
vObject reader finds a CR/LF followed by white space, it unfolds
the text back into one long line.

Grouping vObjects

You can specify multiple vObjects in a single vObject data stream.
You can also specify a vObject as the value of a property; for
example, you can include a vCard as the value of the ADR property
of another vCard.

Grouping Properties

You can specify a name for a group of related properties within a
vObject. The name is a single character that you use as a prefix to
each property in the group.

One use of this facility is to group a comment that describes a
property with the property to keep the two together. For example,
the following creates a group named G that includes a vCard home
telephone property with a comment property:

G.TEL;HOME:+1 (831) 555-1234
G.Note: This is my home office number.

Personal Data Interchange
About the PDI Library

Palm OS Programmer’s Companion, Volume II: Communications 55

Encodings

The default encoding for vObject properties is 7-bit. You can
override this encoding for individual property values by using the
ENCODING parameter. You can specify various encoding values,
including BASE64, QUOTED-PRINTABLE, and 8-BIT.

Character Sets

The default character set for vObject properties is ASCII. You can
override the character set for individual property values by using
the CHARSET parameter. You can specify any character set that has
been registered with the Internet Assigned Numbers Authority
(IANA). For example, to specify the Latin/Hebrew encoding, you
would use the value ISO-8859-8.

Finding More Information

For a complete description of the vObject specifications, visit the
versit consortium’s web site:
http://www.imc.org/pdi/

About the PDI Library
The Palm OS PDI library is a shared library that provides objects
and functions for:

• Reading vCard objects from an input data stream. The
section Creating a PDI Reader describes how to create and
use a PDI reader, and the section Using a PDI Reader - An
Example provides an example of reading vCard data from an
input stream.

• Writing vCard objects to an output data stream. The section
Creating a PDI Writer describes how to create and use a PDI
reader, and the section Using a PDI Writer - An Example
provides an example of reading vCard data from an input
stream.

The PDI library handles reading and writing objects in a number of
different formats, and from or to a variety of media. For more
information about specifying the media, see “Using UDA for
Different Media” on page 73.

http://www.imc.org/pdi/

Personal Data Interchange
About the PDI Library

56 Palm OS Programmer’s Companion, Volume II: Communications

PDI Property and Parameter Types
The PDI library provides constants that you can use with the reader
and writer objects to specify property information. These include
the following types of constants that specify vObject standard
entities:

• The Property Name constants represent the PDI property
names. Each of the property name constants starts with the
kPdiPRN_ prefix. For example, the kPdiPRN_ADR constant
represents the ADR property name. For more information, see
the section Property Name Constants in Chapter 88,
“Personal Data Interchange Library,” on page 2315 in Palm
OS Programmer’s API Reference.

• The Property Value Field constants represent the position of
property value fields for properties with structured field
values. Each of the property value field constants starts with
the kPdiPVF_ prefix. For example, the
kPdiPVF_ADR_COUNTRY constant represents the COUNTRY
field of an ADR property value. For more information, see the
section Property Value Field Constants in Chapter 88,
“Personal Data Interchange Library,” on page 2315 in Palm
OS Programmer’s API Reference.

• The Parameter Name constants represent the names of
vObject property parameters. Each of the parameter name
constants starts with the kPdiPAN_ prefix. For example, the
kPdiPAN_Type constant represents the TYPE parameter,
and the kPdiPAN_Encoding constant represents the
ENCODING parameter. For more information, see the section
Parameter Name Constants in Chapter 88, “Personal Data
Interchange Library,” on page 2315 in Palm OS Programmer’s
API Reference.

• The Parameter Value constants represent the combined
name and value of parameters. Each of the parameter value
constants starts with the kPdiPAV_ prefix. For example,
kPdiPAV_ENCODING_BASE64 constant represents the
Base64 encoding. For more information, see the section
Parameter Value Constants in Chapter 88, “Personal Data
Interchange Library,” on page 2315 in Palm OS Programmer’s
API Reference.

For a complete list of all of these constants, see the PdiConst.h
file.

Personal Data Interchange
About the PDI Library

Palm OS Programmer’s Companion, Volume II: Communications 57

The PDI Library Properties Dictionary
The PDI library features a dictionary that stores information about
the properties that are considered “well-known.” A well-known
property is one that is defined in one of the vObject standard
specifications, including the vCard and vCal standards. Both of
these standards can be found online at the PDI developer’s web
page:
http://www.imc.org/pdi/pdiproddev.html

PDI readers and writers use information in the properties dictionary
to determine how to read or write a certain property. Specifically,
the dictionary stores information about the format of each property
value; the reader uses this information to correctly parse the
property value, and the writer uses this information to correctly
format the written value. This information is important because
some property values are structured with multiple fields, while
others contain a single value field.

For example, the standard address (ADR) property has a structured
value with seven required fields, and the fields are separated by
semicolons. The dictionary stores this information, and the PDI
reader then knows to read seven, semicolon-separated fields when
parsing an ADR property.

By default, each PDI reader and writer uses a standard dictionary
when parsing input and generating output. You can, however,
override this behavior to parse or generate the value for a property
in some other way. For more information, see “Reading Property
Values” on page 67 and “Writing Property Values” on page 72.

You can also amend or replace the dictionary to add parsing and/or
generation of customized PDI properties for your application. For
more information, see “Adding Custom Extensions” on page 70.

PDI Readers
The PDI library provides the PDI reader object for reading and
parsing vObject input. A PDI reader object is a structure that stores
the current state of parsing through a PDI input stream.

The PDI reader parses the input stream one property at a time,
starting with the Begin Object property and finishing with the End
Object property.

http://www.imc.org/pdi/pdiproddev.html

Personal Data Interchange
About the PDI Library

58 Palm OS Programmer’s Companion, Volume II: Communications

The PdiReaderType structure stores a variety of information
about the current state of parsing the input stream, including the
following information about the current property:

• the encoding and character set

• the type of the current property, parameter, and property
value

• the name of the current property and parameter

• the current property’s value string

• a mask of the parsing events encountered for the current
property

About Parsing Events

The PDI reader records each parsing event that it encounters while
processing a property. For example, when it parses a BEGIN:VCARD
property, the PDI reader records the
kPdiBeginObjectEventMask, and when it parses a property
name, the PDI reader records the kPdiPropertyNameEventMask.

Each event is represented by one of the Reader Event Constants,
which are described in Chapter 88, “Personal Data Interchange
Library,” on page 2315 in Palm OS Programmer’s API Reference. The
PDI reader records the event by adding (OR’ing) the event constant
into the events field of the PdiReaderType structure.

You can determine if a specific event has occurred while parsing the
current property by testing that event’s constant against the events
field in the reader structure. For example, the following statement
returns false if the end of the input stream was reached.

return((reader->events & kPdiEOFEventMask)==0);

PDI Writers
The PDI library provides the PDI writer object for writing vObject
output. A PDI writer object is a structure that stores the current state
of and manages the generation of PDI data.

The PDI writer sends data to the output stream one property at a
time, starting with the Begin Object property and finishing with the
End Object property.

Personal Data Interchange
About the PDI Library

Palm OS Programmer’s Companion, Volume II: Communications 59

The PdiWriterType structure stores information about the current
state of writing the output stream, including the following:

• the encoding and character set of the current property

• the mode used to write the current property value, which
specifies how the property value is structured

• the number of required fields for the current property value

Format Compatibility
The PDI library can read and write data streams in the following
formats:

• vCard 3.0

• vCard 2.1

• vCal 1.0

• iCalendar

• Palm format

You can use the PDI library to convert an input data stream that
uses one format into an output data stream in another format. For
more information, see “Specifying PDI Versions” on page 73.

Compatibility with Earlier Versions of the Palm OS

The PDI library has been designed to maintain compatibility with
earlier versions of the Palm OS, which means that you can use the
library functions to receive vObjects from or send vObjects to
devices that use those earlier versions.

To take advantage of this compatibility, the PDI library has been
built to send or receive data in different formats, one of which is the
format supported by earlier versions of the Palm OS that included
the ImcUtils implementation.

To include support for this compatibility in a PDI Reader, specify
the kPdiOpenParser constant in your call to the PdiReaderNew
function.

To include support for this compatibility in a PDI Writer, specify the
kPdiPalmCompatibility option when calling the
PdiWriterNew function.

Personal Data Interchange
About the PDI Library

60 Palm OS Programmer’s Companion, Volume II: Communications

International Considerations
The PDI library handles various character sets, including Katakana.
If you specify the CHARSET parameter in the input stream, the PDI
reader will correctly read the property value.

The PDI library included with version 4.0 of the Palm OS®
understands the following character sets:

• charEncodingAscii

• charEncodingISO8859_1

• charEncodingShiftJIS

• charEncodingISO2022Jp

If you specify an unknown character set, the current character set
becomes unknown, as represented by the charEncodingUnknown
constant.

Features Not Yet Supported
The PDI library included with version 4.0 of the Palm OS does not
handle the following features:

• Multi-part MIME messages are not handled.

• The XML version of vObjects is not supported.

• Applications ignore grouping. The PDI reader parses group
identifiers, but ignores them. However, the name of the
group most recently parsed is stored in the groupName field
of the PdiReaderType object.

Personal Data Interchange
Using the PDI Library

Palm OS Programmer’s Companion, Volume II: Communications 61

Using the PDI Library
This section describes how to use the functions in the PDI library to
read or write PDI content. Figure 3.1 shows the typical sequences of
calls that you make to read or write vObjects.

To read vObjects, you need to:

• access the PDI library

• create a PDI reader

• read each property in the input stream:

– read the property name

– read any parameters for the property

– read the property value

• delete the PDI reader

• unload the PDI library

To write vObjects, you need to:

• access the PDI library

• create a PDI writer

• write each property in the input stream:

– write the property name

– write any parameters for the property

– write the property value

• delete the PDI writer

• unload the PDI library

The remainder of this section describes the following operations:

• Accessing the PDI Library

• Unloading the PDI Library

• Creating a PDI Reader

• Reading Properties

• Creating a PDI Writer

• Writing Property Values

• Specifying PDI Versions

Personal Data Interchange
Using the PDI Library

62 Palm OS Programmer’s Companion, Volume II: Communications

• Using UDA for Different Media

The section “Using a PDI Reader - An Example” on page 74
provides a detailed example of creating a PDI Reader and using it to
import vCard data into a database.

The section “Using a PDI Writer - An Example” on page 79 provides
a detailed example of creating a PDI Writer and using it to export
data from a database in vCal format.

Personal Data Interchange
Using the PDI Library

Palm OS Programmer’s Companion, Volume II: Communications 63

Figure 3.1 Using the PDI library

Personal Data Interchange
Using the PDI Library

64 Palm OS Programmer’s Companion, Volume II: Communications

Accessing the PDI Library
Before you can use the PDI library, you must load the library and
obtain a reference number for it. Each of the functions in the library
requires a reference number argument, which is used with the
system code to access a shared library.

The example function LoadPdiLibrary, which is shown in Listing
3.2, makes sure that the PDI library is loaded and returns a reference
number for it.

Listing 3.2 Loading the PDI library

Static Err LoadPdiLibrary(UInt16 *libRefNum)
{
 Err error

 error = SysLibFind(kPdiLibName, librefNum);
 if (error != 0)
 {
 error = SysLibLoad(sysResTLibrary,
 sysFileCPdiLib, libRefNum);
 }
 if (error)
 {
 ErrNonFatalDisplay(kPdiLibName "not found")
 return error;
 }
 error = PdiLibOpen(*libRefNum);
 return error;
}

The LoadPdiLibrary function first calls the SysLibFind
function to determine if the library has already been loaded, which
might be the case if your code has been called by another
application that has already loaded the library. Note that the call to
SysLibFind uses the kPdiLibName constant, which is defined as
follows in the PdiLib.h file:

#define kPdiLibName "Pdi.lib"

If the library has not already been loaded, LoadPdiLibrary calls
the SysLibLoad function to load the library and obtain a reference
number for it.

Personal Data Interchange
Using the PDI Library

Palm OS Programmer’s Companion, Volume II: Communications 65

After obtaining a reference number for the library,
LoadPdiLibrary calls the PdiLibOpen function to open the
loaded library.

Unloading the PDI Library
When you are done with the library, you should unload it. The
example function UnloadPdiLibrary, which is shown in Listing
3.2, unloads the PDI library.

Listing 3.3 Unloading the PDI library

static void UnloadPdiLibrary(UInt16 refNum)
{
 if (PdiLibClose(refNum) == 0)
 {
 SysLibRemove(refNum);
 }
}

Note that the library reference number becomes invalid after you
call the SysLibRemove function.

Creating a PDI Reader
To create a PDI reader, you need to first access the library, and then
call the PdiReaderNew function, which is declared as follows:

PdiReaderType* PdiReaderNew(UInt16 libRefnum,
UDAReader *input, UInt16 optionFlags)

The PdiReaderNew parameters are:

• The library reference number, as described in “Accessing the
PDI Library” on page 64.

• The Unified Data Access (UDA) input stream to use with the
reader. The UDA Manager allows you to read input from
various sources, including strings and the Exchange
Manager. For more information, see “Using UDA for
Different Media” on page 73.

• Option flags that control the parsing behavior of the reader,
including its default encoding and compatibility settings.

Personal Data Interchange
Using the PDI Library

66 Palm OS Programmer’s Companion, Volume II: Communications

The option flags are described in Reader and Writer Options
Constants in Chapter 88, “Personal Data Interchange
Library,” on page 2315 in Palm OS Programmer’s API
Reference.

Once you have created the reader, you can use it to parse properties
from the input stream. The section “Using a PDI Reader - An
Example” on page 74 provides an example of creating and using a
PDI reader.

Reading Properties
To read PDI property data with a PDI reader, you need to call the
data reading functions:

• PdiReadProperty reads a property and all of its
parameters from the input stream.

• PdiReadPropertyName reads just the name of the next
property from the input stream. You can call this function if
you want to then handle the reading of the property’s
parameters individually.

• PdiReadParameter reads a single parameter and its value
from the input stream.

• PdiReadPropertyField reads a property value field. A
property value can a simple value, or it can be structured to
contain multiple fields that are separated by commas or
semicolons, as described in “Reading Property Values” on
page 67.

The most common way to read input data is to follow these steps:

• Call PdiReadProperty to read the vObject Begin property.
For example, if you are reading vCards, you can call
PdiReadProperty until it reads the
kPdiPRN_BEGIN_VCARD property from the input stream.

• Once you have found the beginning of the object, repeatedly
call PdiReadProperty to read the next property and its
parameters.

• For each property, call the PdiReadPropertyField
function as required to read the fields of the property.

• Continue reading properties until you read the vObject End
property. For vCards, you process properties until

Personal Data Interchange
Using the PDI Library

Palm OS Programmer’s Companion, Volume II: Communications 67

PdiReadProperty reads the kPdiPRN_END_VCARD
property from the input stream.

Examining Property Information

After calling a property-reading function, you can access fields of
the PdiReaderType object to determine information about the
current property. The current property is the one that is currently
being parsed, or which has just been parsed.

For example, you can examine the property field of the
PdiReaderType object to determine which type of property has
just been read, or you can call the PdiParameterPairTest macro
to determine if a certain parameter pair was present in the property
definition.

Reading Property Values
Some properties have simple values and others have structured
values. A structured property value has multiple fields that are
separated by commas or semicolons.

For example, the following phone property definition has a simple
value:

TEL;CELL:+1 (408) 555-4321

Note that the phone property contains a semicolon to separate the
CELL parameter from the property name. Each property’s value
follows the colon in the definition.

The following name property definition has a structured value that
contains four fields separated by semicolons:

N:Smith; John;M.;Mr.; Esq.

You must pass a parameter to the PdiReadPropertyField
function to tell it how to process a property value. To specify how
the field is formatted, use one of the Property Value Format
Constants described in Chapter 88, “Personal Data Interchange
Library,” on page 2315 in Palm OS Programmer’s API Reference.

Personal Data Interchange
Using the PDI Library

68 Palm OS Programmer’s Companion, Volume II: Communications

You can specify kPdiDefaultFields to allow the PDI reader to
determine the property value format. The reader looks up the
property name in the dictionary to determine its format.

• Specify kPdiNoFields to have the reader parse the entire
value in one operation.

• Specify kPdiCommaFields or kPdiSemicolonFields to
have the reader parse a single field from the value.

• Specify kPdiConvertComma or kPdiConvertSemicolon
to have the reader parse all of the fields in a value into a
single value.

You can usually specify kPdiDefaultFields and allow the PDI
Reader to use the information in the dictionary to properly parse the
value. However, this might not always meet your needs, especially
if your input stream contains custom properties.

Table 3.1 shows the results of using the different format constants to
read the same property from the input stream. The example
property is a standard address (ADR) property that has a structured
value with seven, semicolon-delimited fields:

ADR:postoffice;extended;street;locale;region;postal_code;country

Note that since the ADR property is defined in the vCard standard as
a structured value with seven, semicolon-delimited field, the PDI
library dictionary defines its default format as kPdiSemicolon.

Table 3.1 Parsing a structured value with different value
format types

Value format type Description of PdiReadPropertyField results

kPdiNoFields One call returns the entire value as a string:

"postoffice;extended;street;locale;region;postal_code;co
untry"

kPdiSemicolon Each call returns a single, semicolon-delimited field
from the value. For example:
• the first call returns "postoffice"
• the second call returns "extended"
• the third call returns "street"

Personal Data Interchange
Using the PDI Library

Palm OS Programmer’s Companion, Volume II: Communications 69

Reading Value Fields One At a Time

If you are reading the fields in a structured value one at a time, and
you don’t know the exact number of fields, you can call

kPdiComma Each call returns a single, comma-delimited field from
the value. For example, if the input string is
"postoffice,extended,street," then:
• the first call returns "postoffice"
• the second call returns "extended"
• the third call returns "street"

kPdiConvertSemicolon One call returns the entire value as a string that has
newline characters wherever a semicolon appeared in
the input:

"postoffice
extended
street
locale
region
postal_code
country"

kPdiConvertComma One call returns the entire value as a string that has
newline characters wherever a comma appeared in the
input:

"postoffice
extended
street
locale
region
postal_code
country"

kPdiDefaultFields Same as kPdiSemicolon, because the PDI library
dictionary defines the property value format of the ADR
field as kPdiSemicolon.

Table 3.1 Parsing a structured value with different value
format types (continued)

Value format type Description of PdiReadPropertyField results

Personal Data Interchange
Using the PDI Library

70 Palm OS Programmer’s Companion, Volume II: Communications

PdiReadPropertyField repeatedly until it returns a nonzero
result.

For example, the following code segment from the
DateTransfer.c program parses each field of the EXDATE
property value fields:

Listing 3.4 Reading an undetermined number of value fields

while (PdiReadPropertyField(pdiRefNum, reader, &tempP,
 kPdiResizableBuffer, kPdiSemicolonFields) == 0)
 {
 // Resize handle to hold exception
 err = MemHandleResize(exceptionListH,
sizeof(ExceptionsListType) + sizeof(DateType) * exceptionCount);
 ErrFatalDisplayIf(err != 0, "Memory full");
 // Lock exception handle
 exceptionListP = MemHandleLock(exceptionListH);
 // Calc exception ptr
 exceptionP = (DateType*)((UInt32)exceptionListP
 + (UInt32)sizeof(UInt16)
 + (UInt32)(sizeof(DateType) * exceptionCount));
 // Store exception into exception handle
 MatchDateTimeToken(tempP, exceptionP, NULL);
 // Increase exception count
 exceptionCount++;
 // Unlock exceptions list handle
 MemHandleUnlock(exceptionListH);
 }

NOTE: If you leave fields in a structured value unread, the next
call to PdiReadProperty will skip over them and correctly find
the beginning of the next property.

Adding Custom Extensions

The vObject standards are extensible, which means that you can add
custom properties to vCards and other vObjects. The PDI library
handles these custom properties; however, you must either add an
entry to the library’s dictionary for each custom property, or specify
a constant other than kPdiDefaultFields when parsing the
property’s value.

Personal Data Interchange
Using the PDI Library

Palm OS Programmer’s Companion, Volume II: Communications 71

Each PDI reader object and each PDI writer object can have a
custom dictionary associated with it. You can configure the custom
dictionary to amend or to replace the standard, built-in dictionary.

To associate a custom dictionary with a reader or writer, you need to
first create the dictionary with the You can then call the
PdiDefineReaderDictionary function to associate that
dictionary with a reader object or call the
PdiDefineWriterDictionary function to associate the
dictionary with a writer object.

NOTE: For more information about the dictionary tool at http://
www.palmos.com/dev/tech/kb.

Creating a PDI Writer
To create a PDI writer, you need to first access the library, and then
call the PdiWriterNew function, which is declared as follows:

PdiWriterType* PdiWriterNew(UInt16 libRefnum,
UDAWriter *output, UInt8 optionFlags)

The PdiWriterNew parameters are:

• The library reference number, as described in “Accessing the
PDI Library” on page 64..

• The UDA output stream to use with the writer. For more
information, see “Using UDA for Different Media” on
page 73.

• Option flags that control the output generation behavior of
the writer, including its default encoding and compatibility
settings. The option flags are described in Reader and Writer
Options Constants in Chapter 88, “Personal Data Interchange
Library,” on page 2315 in Palm OS Programmer’s API
Reference.

Once you have created the writer, you can use it to generate
properties to the output stream. The section “Using a PDI Writer -
An Example” on page 79 provides an example of creating and using
a PDI writer.

http://www.palmos.com/dev/tech/kb/
http://www.palmos.com/dev/tech/kb/

Personal Data Interchange
Using the PDI Library

72 Palm OS Programmer’s Companion, Volume II: Communications

Writing Properties
To write PDI data with a PDI writer, you need to call the data
writing functions. The most commonly used functions are:

• PdiWriteBeginObject, which writes a vObject Begin tag
to the output stream.

• PdiWriteEndObject, which writes a vObject End tag to
the output stream.

• PdiWriteProperty, which writes a property to the output
stream.

• PdiWritePropertyValue, which writes a property value
to the output stream.

The most common way to write output data is to follow these steps:

• Call PdiWriteBeginObject to write the vObject Begin
property. For example, if you are writing vCards, you call
PdiWriteBeginObject to write the
kPdiPRN_BEGIN_VCARD property to the output stream.

• For each property that you want to write, call
PdiWriteProperty to write the next property and its
parameters, and then call the PdiWritePropertyValue
function to write the property’s value.

• Call PdiWriteEndObject to write the vObject End
property. For example, if you are writing vCards, you call
PdiWriteEndObject to write the kPdiPRN_END_VCARD
property to the output stream.

Writing Property Values
In many cases, you can simply call the PdiWritePropertyValue
function to write a value to the output stream. If a value contains a
variable number of fields, you can instead use the
PdiWritePropertyFields to write the fields from an array. Or
you can use the PdiWritePropertyStr to write multiple fields
separated by commas or semicolons.

Personal Data Interchange
Using UDA for Different Media

Palm OS Programmer’s Companion, Volume II: Communications 73

Specifying PDI Versions
The PDI library options constants control how the PDI reader and
PDI writer operate. These options are described in Reader and
Writer Options Constants in Chapter 88, “Personal Data Interchange
Library,” on page 2315 in Palm OS Programmer’s API Reference.

Using UDA for Different Media
The PDI reader and writer objects use Unified Data Access (UDA)
Manager objects for reading from and writing to a variety of media.
The UDA data types, constants, and functions are documented in
Chapter 89, “Unified Data Access Manager,” on page 2355 in Palm
OS Programmer’s API Reference. This section provides an overview of
using UDA objects with the PDI library.

About the UDA Library
The UDA Manager provides an abstract layer for reading, filtering,
and writing data to and from different media. The UDA Manager
provides three general purpose object types:

• UDAReaderType objects (UDA Readers) read data from an
input stream.

• UDAFilterType objects (UDA Filters) take input from UDA
Readers or UDA Filters, perform some encoding or decoding
operations, and output the data to a memory buffer.

• UDAWriterType objects (UDA Writers) write data to a filter
or an output stream.

The UDA Manager provides general purpose functions for creating
these object types. In addition, the UDA Manager provides built-in
object types for working with memory buffers and the Exchange
Manager.

NOTE: The implementation of the UDA Manager in version 4.0
of the Palm OS does not provide built-in filter objects. These
objects are planned for future versions.

Personal Data Interchange
Using a PDI Reader - An Example

74 Palm OS Programmer’s Companion, Volume II: Communications

Interfacing with the Exchange Manager

The UDA Manager provides two functions for interfacing with the
Exchange Manager:

• The UDAExchangeReaderNew function creates a UDA
Reader object that reads data from an Exchange Manager
socket.

• The UDAExchangeWriterNew function creates a UDA
Writer object that writes data to an Exchange Manager
socket.

The Exchange Manager, which is described in Chapter 1, “Object
Exchange,” on page 1, provides a mechanism for reading typed data
in a transport-independent manner.

When you use the UDA interface to the Exchange Manager, you add
the benefits of a simple, uniform way to read and write data in a
transport-independent manner. This allows you to create PDI
readers and writers that can work on data that is stored on a variety
of media types.

If you wish to parse PDI objects from memory, you can use an object
created by the UDAMemoryReaderNew function instead of an
Exchange Manager reader object.

The PDI Reader example in the next section reads its data from an
Exchange Manger socket, using the UDAExchangeReaderNew
function to create the reader object.

The PDI Writer example in “Using a PDI Writer - An Example” on
page 79 writes its data to an Exchange Manager socket, using the
UDAExchangeWriterNew function to create the writer object.

Using a PDI Reader - An Example
This section provides an example of reading PDI data from an input
stream and storing it in a database. This example is from the
AddressTransfer.c file, which is located inside of the
Examples/Address/Src folder.

Listing 3.5 shows the TransferReceiveData function from the
AddressTransfer.c sample program. This function controls the

Personal Data Interchange
Using a PDI Reader - An Example

Palm OS Programmer’s Companion, Volume II: Communications 75

reading of vCard data into the address database by performing the
following operations:

• Calls the ExgAccept function to accept a connection from a
remote device.

• Calls a local function, PrvTransferPdiLoadLibrary, to
load an open the PDI library. The
PrvTransferPdiLoadLibrary function is almost exactly
the same as the LoadPdiLibrary function shown in Listing
3.2.

• Calls the UDAExchangeReaderNew function to create an
input data stream for connection with the Exchange
Manager.

• Calls the PdiReaderNew function to create a new PDI reader
object that reads from the input stream.

• Repeatedly calls the local function TransferImportVCard
to read vCard data and store it into the address database.
This function is described in the next section, Importing
vCard Data Into a Database.

• Calls the ExgDisconnect function to terminate the transfer
and close the connection.

• Calls the PrvTransferPdiLibUnload function to unload
the PDI library.

• Deletes the PDI reader and UDA input stream objects.

Listing 3.5 Reading a PDI input stream

extern Err TransferReceiveData(DmOpenRef dbP, ExgSocketPtr exgSocketP)
{
 volatile Err err;
 UInt16 pdiRefNum = sysInvalidRefNum;
 PdiReaderType* reader = NULL;
 UDAReader* stream = NULL;
 Boolean loaded;

 if ((err = ExgAccept(exgSocketP)) != 0)
 return err;
 if ((err = PrvTransferPdiLibLoad(&pdiRefNum, &loaded)))
 {
 pdiRefNum = sysInvalidRefNum;
 goto errorDisconnect;
 }

Personal Data Interchange
Using a PDI Reader - An Example

76 Palm OS Programmer’s Companion, Volume II: Communications

 if ((stream = UDAExchangeReaderNew(exgSocketP)) == NULL)
 {
 err = exgMemError;
 goto errorDisconnect;
 }
 if ((reader = PdiReaderNew(pdiRefNum, stream, kPdiOpenParser)) == NULL)
 {
 err = exgMemError;
 goto errorDisconnect;
 }
 reader->appData = exgSocketP;
 ErrTry
 {
 while(TransferImportVCard(dbP, pdiRefNum, reader, false, false)){};
 }
 ErrCatch(inErr)
 {
 err = inErr;
 } ErrEndCatch
 if (err == errNone && exgSocketP->goToParams.uniqueID == 0)
 err = exgErrBadData;
errorDisconnect:
 if (reader)
 PdiReaderDelete(pdiRefNum, &reader);
 if (stream)
 UDADelete(stream);
 if (pdiRefNum != sysInvalidRefNum)
 PrvTransferPdiLibUnload(pdiRefNum, loaded);
 ExgDisconnect(exgSocketP, err); // closes transfer dialog
 err = errNone; // error was reported, so don't return it
 return err;
}

Importing vCard Data Into a Database

The TransferImportVCard function imports a vCard record
from an input stream. Listing 3.6 shows the basic outline of the
TransferImportVCard function; you can review the entire
function by viewing the AddressTransfer.c file, which is
located inside of the Examples/Address/Src folder.

Personal Data Interchange
Using a PDI Reader - An Example

Palm OS Programmer’s Companion, Volume II: Communications 77

Listing 3.6 Importing vCard data into a database

Boolean TransferImportVCard(DmOpenRef dbP, UInt16 pdiRefNum,
PdiReaderType* reader, Boolean obeyUniqueIDs, Boolean beginAlreadyRead)
{

... // local declarations and initialization code

 ErrTry
 {
 phoneField = firstPhoneField;
 if (!beginAlreadyRead)
 {
 PdiReadProperty(pdiRefNum, reader);
 beginAlreadyRead = reader->property == kPdiPRN_BEGIN_VCARD;
 }
 if (!beginAlreadyRead)
 ErrThrow(exgErrBadData);
 PdiEnterObject(pdiRefNum, reader);
 PdiDefineResizing(pdiRefNum, reader, 16, tableMaxTextItemSize);
 while (PdiReadProperty(pdiRefNum, reader) == 0
 && (property = reader->property) != kPdiPRN_END_VCARD)
 {
 switch(property)
 {
 case kPdiPRN_N:
 PdiReadPropertyField(pdiRefNum, reader,
 (Char **) &newRecord.fields[name],
 kPdiResizableBuffer, kPdiDefaultFields);
 PdiReadPropertyField(pdiRefNum, reader,
 (Char **) &newRecord.fields[firstName],
 kPdiResizableBuffer, kPdiDefaultFields);
 break;
 case kPdiPRN_NOTE:
 PdiDefineResizing(pdiRefNum, reader, 16,
 noteViewMaxLength);
 PdiReadPropertyField(pdiRefNum, reader,
 Char **) &newRecord.fields[note],
 kPdiResizableBuffer, kPdiNoFields);
 PdiDefineResizing(pdiRefNum, reader, 16,
 tableMaxTextItemSize);
 break;

,,, // other cases here for other properties

 }
 } // end while
 if (newRecord.fields[name] != NULL

Personal Data Interchange
Using a PDI Reader - An Example

78 Palm OS Programmer’s Companion, Volume II: Communications

 && newRecord.fields[company] != NULL
 && newRecord.fields[firstName] != NULL
 && StrCompare(newRecord.fields[name],
 newRecord.fields[company]) == 0)
 { // if company & name fields are identical, assume company only
 MemPtrFree(newRecord.fields[name]);
 newRecord.fields[name] = NULL;
 }
AddRecord:
 err = AddrDBNewRecord(dbP, (AddrDBRecordType*) &newRecord,
 &indexNew);
 if (err)
 ErrThrow(exgMemError);

 ... // handle category assignment here

 } //end of ErrTry
 if (error == exgErrBadData)
 return false;
 if (error != errNone)
 ErrThrow(error);
 return ((reader->events & kPdiEOFEventMask) == 0);
}

The TransferImportVCard function performs the following
operations:

• Calls the PdiReadProperty function to read the
BEGIN:VCard property from the input stream.

• Calls the PdiEnterObject function to notify the PDI
library that it is reading a new object from the input stream.

• Calls the PdiDefineResizing function to set the
maximum buffer size for reading properties for the address
card.

• Repeatedly calls the PdiReadProperty function to read
properties of the address card. This repeats until
PdiReadProperty reads the END:VCard property, which
indicates the end of data for the address card.

• For each address card property, calls
PdiReadPropertyField as required to read the values
associated with the property. For example, when it reads the
kPdiPRN_N name property, AddrImportVCard calls

Personal Data Interchange
Using a PDI Writer - An Example

Palm OS Programmer’s Companion, Volume II: Communications 79

PdiReadPropertyField twice: once to read the last name,
and a second time to read the first name.

• Creates a new address record and adds it to the Address
Book database.

• Deallocates memory that it has allocated and performs other
cleanup operations.

Again, note that Listing 3.6 only shows the outline of this function.
You can find the entire function in the AddressTransfer.c file.

Using a PDI Writer - An Example
This section provides an example of writing PDI data from a
database record to an output stream. This example is from the
ToDoTransfer.c file, which is located inside of the Examples/
ToDo/Src folder.

Listing 3.7 shows an example of creating and using a PDI writer.
The ToDoSendRecordTryCatch function controls the writing of
data from the To Do database to vCal objects by performing the
following operations:

• Calls a local function, LoadPdiLibrary, to load and open
the PDI library. The LoadPdiLibrary function is shown in
Listing 3.2.

• Calls the PdiWriterNew function to create a new PDI writer
object that writes to the UDA output stream specified by the
media parameter.

• Calls the PdiWriteBeginObject function to write the
BEGIN:VCAL property to the output stream.

• Calls the PdiWriteProperty function to write the
VERSION property, and then calls the
PdiWritePropertyValue function to write the version
value.

• Calls the ToDoExportVCal function to write the To Do
record, as described in the next section, Exporting vCal Data
From a Database.

• Calls the PdiWriteEndObject function to write the
END:VCAL property to the output stream.

• Deletes the PDI writer object and unloads the PDI library.

Personal Data Interchange
Using a PDI Writer - An Example

80 Palm OS Programmer’s Companion, Volume II: Communications

Listing 3.7 Writing a PDI Output Stream

static Err ToDoSendRecordTryCatch (DmOpenRef dbP,
 Int16 recordNum, ToDoDBRecordPtr recordP, UDAWriter* media)
{
 volatile Err error = 0;
 UInt16 pdiRefNum;
 PdiWriterType* writer;

 if ((error = LoadPdiLibrary(&pdiRefNum)))
 return error;
 writer = PdiWriterNew(pdiRefNum, media, kPdiPalmCompatibility);
 if (writer)
 {
ErrTry
 {
 PdiWriteBeginObject(pdiRefNum, writer,
 kPdiPRN_BEGIN_VCALENDAR);
 PdiWriteProperty(pdiRefNum, writer, kPdiPRN_VERSION);
 PdiWritePropertyValue(pdiRefNum, writer, (Char*)"1.0",
 kPdiWriteData);
 ToDoExportVCal(dbP, recordNum, recordP, pdiRefNum,
 writer, true);
 PdiWriteEndObject(pdiRefNum, writer,
 kPdiPRN_END_VCALENDAR)
;
 }
ErrCatch(inErr)
 {
 error = inErr;
 } ErrEndCatch
 PdiWriterDelete(pdiRefNum, &writer);
 }
 UnloadPdiLibrary(pdiRefNum);
 return error;
}

Exporting vCal Data From a Database

The ToDoExportVCal function exports a vCal record from the To
Do database to an output stream. Listing 3.8 shows the basic outline
of the ToDoExportVCal function; you can review the entire
function by viewing the ToDoTransfer.c file, which is located
inside of the Examples/Address/Src folder.

Personal Data Interchange
Using a PDI Writer - An Example

Palm OS Programmer’s Companion, Volume II: Communications 81

Listing 3.8 Exporting vCal data from a database

extern void ToDoExportVCal(DmOpenRef dbP, Int16 index,
ToDoDBRecordPtr recordP, UInt16 pdiRefNum, PdiWriterType* writer,
Boolean writeUniqueIDs)
{
Char * note;
 UInt32 uid;
 Char tempString[tempStringLengthMax];
 UInt16 attr;
...

 PdiWriteBeginObject(pdiRefNum, writer, kPdiPRN_BEGIN_VTODO);
 // Emit the Category
 PdiWriteProperty(pdiRefNum, writer, kPdiPRN_CATEGORIES);
 // ...code to create the property string (tempString)
 PdiWritePropertyValue(pdiRefNum, writer, tempString, kPdiWriteText);

 // Code to emit the record information, including the:
 // - due date
 // - completed flag
 // - priority value
 // - description text
...

 // Emit the note
 if (*note != ’\0’)
 {
 PdiWriteProperty(pdiRefNum, writer, kPdiPRN_ATTACH);
 PdiWritePropertyValue(pdiRefNum, writer, note, kPdiWriteText);
 }

 // Emit an unique id
 if (writeUniqueIDs)
 {
 PdiWriteProperty(pdiRefNum, writer, kPdiPRN_UID);
 // Get the record’s unique id and append to the string.
 DmRecordInfo(dbP, index, NULL, &uid, NULL);
 StrIToA(tempString, uid);
 PdiWritePropertyValue(pdiRefNum, writer, tempString, kPdiWriteData);
 }

 PdiWriteEndObject(pdiRefNum, writer, kPdiPRN_END_VTODO);
}

The ToDoExportVCal function performs the following operations:

Personal Data Interchange
Using a PDI Writer - An Example

82 Palm OS Programmer’s Companion, Volume II: Communications

• Calls the PdiWriteBeginObject function to write the
BEGIN:VTODO property to the output stream.

• Calls the PdiWriteProperty function to write the category
information for the To Do record.

• Calls the PdiWriteProperty function to write other
information for the To Do record, including the due date,
completed flag, priority value, and description text.

• Calls the PdiWriteProperty function to write the note and
again to write a unique ID for the note.

• Calls the PdiWriteEndObject function to write the
END:VTODO property to the output stream.

Again, note that Listing 3.8 only shows the outline of this function.
You can find the entire function in the ToDoTransfer.c file.

Personal Data Interchange
Summary of Personal Data Interchange

Palm OS Programmer’s Companion, Volume II: Communications 83

Summary of Personal Data Interchange
PDI Library Functions

Library Open and Close

PdiLibClose PdiLibOpen

Object Creation and Deletion

PdiReaderNew
PdiReaderDelete

PdiWriterNew
PdiWriterDelete

Property Reading

PdiDefineResizing
PdiEnterObject
PdiParameterPairTest
PdiReadParameter

PdiReadProperty
PdiReadPropertyField
PdiReadPropertyName

Property Writing

PdiSetCharset
PdiSetEncoding
PdiWriteBeginObject
PdiWriteEndObject
PdiWriteParameter

PdiWriteParameterStr
PdiWriteProperty
PdiWritePropertyBinaryValue
PdiWritePropertyFields
PdiWritePropertyStr
PdiWritePropertyValue

Property Dictionary

PdiDefineReaderDictionary PdiDefineWriterDictionary

Personal Data Interchange
Summary of Unified Data Access Manager

84 Palm OS Programmer’s Companion, Volume II: Communications

Summary of Unified Data Access Manager
UDA Manager Functions

UDAControl
UDADelete
UDAEndOfReader
UDAFilterJoin
UDAInitiateWrite

UDAMoreData
UDARead
UDAWriterFlush
UDAWriterJoin

Object Creation

UDAExchangeReaderNew
UDAExchangeWriterNew

UDAMemoryReaderNew

Palm OS Programmer’s Companion, Volume II: Communications 85

4
Beaming (Infrared
Communication)
The Palm OS® provides three levels of support for beaming, or
infrared communication (IR):

• The Exchange Manager provides a high-level interface that
handles all of the communication details transparently. See
the “Object Exchange” chapter for more information.

• The Serial Manager provides a virtual driver that
implements the IrComm protocol. To use IrComm, you
specify sysFileCVirtIrComm as the port you want to open
and use the Serial Manager APIs to send and receive data on
that port. See the “Serial Communication” chapter for
information on how to use the Serial Manager APIs.

• The IR Library provides a low-level, direct interface to the IR
communications capabilities of the Palm OS. It is designed
for applications that want more direct access to the IR
capabilities than the Exchange Manager provides.

This chapter discusses the IR Library.

IR Library
The IR (InfraRed) library is a shared library that provides a direct
interface to the IR communications capabilities of the Palm OS. It is
designed for applications that want more direct access to the IR
capabilities than the exchange manager provides.

The IR support provided by the Palm OS is compliant with the IrDA
specifications. IrDA (Infrared Data Association), is an industry body
consisting of representatives from a number of companies involved
in IR development. For a good introduction to the IrDA standards,
see the IrDA web site at:

http://www.IrDA.org/

http://www.IrDA.org/

Beaming (Infrared Communication)
IR Library

86 Palm OS Programmer’s Companion, Volume II: Communications

IrDA Stack
The IrDA stack comprises a number of protocol layers, of which
some are required and some are optional. The complete stack looks
something like Figure 4.1.

Figure 4.1 IrDA Protocol Stack

The SIR/FIR layer is purely hardware. The SIR (Serial IR) layer
supports speeds up to 115k bps while the FIR (Fast IR) layer
supports speeds up to 4M bps. IrLAP is the IR Link Access Protocol
that provides a data pipe between IrDA devices. IrLMP, the IR Link
Management Protocol, manages multiple sessions using the IrLAP.
Tiny TP is a lightweight transfer protocol on which some higher-
level IrDA layers are built.

One or more of SIR/FIR must be implemented, and Tiny TP, IrLMP
and IrLAP must also be implemented. IrComm provides serial and
parallel port emulation over an IR link and is optional (it is not
currently supported in the Palm OS). IrLAN provides an access
point to Local Area Network protocol adapters. It too is optional
(and is not supported in the Palm OS).

OBEX is an object exchange protocol that can be used (for instance)
to transfer business cards, calendar entries or other objects between
devices. It too is optional and is supported in the Palm OS. The
capabilities of OBEX are made available through the exchange
manager; there is no direct API for it.

Beaming (Infrared Communication)
Summary of Beaming

Palm OS Programmer’s Companion, Volume II: Communications 87

The Palm OS implements all the required protocol layers (SIR,
IrLAP, IrLMP, and Tiny TP), as well as the OBEX layer, to support
the Exchange Manager. Palm III™ devices provide SIR (Serial IR)
hardware supporting the following speeds: 2400, 9600, 19200, 38400,
57600, and 115200 bps. The software (IrOpen) currently limits
bandwidth to 57600 bps by default, but you can specify a connection
speed of up to 115200 bps if desired.

The stack is capable of connection-based or connectionless sessions.

IrLMP Information Access Service (IAS) is a component of the
IrLMP protocol that you will see mentioned in the interface. IAS
provides a database service through which devices can register
information about themselves and retrieve information about other
devices and the services they offer.

Accessing the IR Library
Before you can use the IR library, you must obtain a reference
number for it by calling the function SysLibFind, as in this
example:

err = SysLibFind(irLibName, &refNum);

This function returns the library reference number in the refNum
parameter. This parameter is passed to most of the other functions
in the IR library.

Summary of Beaming
IR Library Functions

IrAdvanceCredit IrIsNoProgress

IrBind IrIsRemoteBusy

IrClose IrLocalBusy

IrConnectIrLap IrMaxRxSize

IrConnectReq IrMaxTxSize

IrConnectRsp IrOpen

Beaming (Infrared Communication)
Summary of Beaming

88 Palm OS Programmer’s Companion, Volume II: Communications

IrDataReq IrSetConTypeLMP

IrDisconnectIrLap IrSetConTypeTTP

IrDiscoverReq IrSetDeviceInfo

IrIsIrLapConnected IrTestReq

IrIsMediaBusy IrUnbind

IR Library IAS Database Functions

IrIAS_Add IrIAS_GetUserString

IrIAS_GetInteger IrIAS_GetUserStringCharSet

IrIAS_GetIntLsap IrIAS_GetUserStringLen

IrIAS_GetObjectID IrIAS_Next

IrIAS_GetOctetString IrIAS_Query

IrIAS_GetOctetStringLen IrIAS_SetDeviceName

IrIAS_GetType IrIAS_StartResult

IR Library Functions

Palm OS Programmer’s Companion, Volume II: Communications 89

5
Serial
Communication
The Palm OS® serial communications software provides high-
performance serial communications capabilities, including byte-
level serial I/O, best-effort packet-based I/O with CRC-16, reliable
data transport with retries and acknowledgments, connection
management, and modem dialing capabilities.

This chapter helps you understand the different parts of the serial
communications system and explains how to use them, discussing
these topics:

• Serial Hardware describes the serial port hardware.

• Byte Ordering briefly explains the byte order used for all
data.

• Serial Communications Architecture Hierarchy provides an
overview of the hierarchy, including an illustration.

• The Serial Manager is responsible for byte-level serial I/O
and control of the RS-232, USB, Bluetooth, and IR signals.

• The Connection Manager allows other applications to access,
add, and delete connection profiles contained in the
Connection preferences panel.

• The Serial Link Protocol provides an efficient mechanism for
sending and receiving packets.

• The Serial Link Manager is the Palm OS implementation of
the serial link protocol.

NOTE: Although the Palm OS supports Bluetooth connections,
Bluetooth requires additional hardware and software that is not
available as of this writing.

Serial Communication
Serial Hardware

90 Palm OS Programmer’s Companion, Volume II: Communications

Serial Hardware
The Palm OS platform device serial port is used for implementing
desktop PC connectivity or other external communication. The
serial communication is fully interrupt-driven for receiving data.
Currently, interrupt-driven transmission of data is not implemented
in software, but the hardware does support it. Five external signals
are used for this communication:

• SG (signal ground)

• TxD (transmit data)

• RxD (receive data)

• CTS (clear to send)

• RTS (request to send)

Some devices also have a configurable DTR (data terminal ready)
signal. Normally, the DTR signal is always high.

The Palm OS platform device has an external connector that
provides:

• Five serial communication signals

• General-purpose output

• General-purpose input

• Cradle button input

Palm, Inc. publishes information designed to assist hardware
developers in creating devices to interface with the serial
communications port on Palm OS platform products. You can
obtain this information by joining the Alliance Program and
enrolling in the Plugged-In Program. For more information about
this program and the serial port hardware, see the Palm™ developer
web page at http://www.palm.com/developers/pluggedin/.

http://www.palm.com/developers/pluggedin/

Serial Communication
Serial Communications Architecture Hierarchy

Palm OS Programmer’s Companion, Volume II: Communications 91

Byte Ordering
By convention, all data coming from and going to the Palm OS
device use Motorola byte ordering. That is, data of compound types
such as UInt16 (2 bytes) and UInt32 (4 bytes), as well as their
integral counterparts, are packaged with the most-significant byte at
the lowest address. This contrasts with Intel byte ordering.

Serial Communications Architecture Hierarchy
The serial communications software has multiple layers. Higher
layers depend on the more primitive functionality provided by
lower layers. Applications can use the functionality of all layers. The
software consists of the following layers, described in more detail
below:

• The Serial Manager, at the lowest layer, deals with the serial
port and control of the RS-232 signals, USB signals, or IR
signals, providing byte-level serial I/O. See “The Serial
Manager” on page 92.

• The Modem Manager provides modem dialing capabilities.

• The Serial Link Protocol (SLP) provides best-effort packet
send and receive capabilities with CRC-16. Packet delivery is
left to the higher-level protocols; SLP does not guarantee it.
See “The Serial Link Protocol” on page 120.

• The Packet Assembly/Disassembly Protocol (PADP) sends
and receives buffered data. PADP is an efficient protocol
featuring variable-size block transfers with robust error
checking and automatic retries. Applications don’t need
access to this part of the system.

• The Desktop Link Protocol (DLP) provides remote access to
Palm OS data storage and other subsystems.

DLP facilitates efficient data synchronization between
desktop (PC or Macintosh) and Palm OS applications,
database backup, installation of code patches, extensions,
applications, and other databases, as well as Remote
Interapplication Communication (RIAC) and Remote
Procedure Calls (RPC).

Figure 5.1 illustrates the communications layers.

Serial Communication
The Serial Manager

92 Palm OS Programmer’s Companion, Volume II: Communications

Figure 5.1 Palm OS Serial Communications Architecture

The Serial Manager
The Palm OS Serial Manager is responsible for byte-level serial I/O
and control of the RS-232, IR, Bluetooth, or USB signals.

NOTE: Although the Palm OS supports Bluetooth connections,
Bluetooth requires additional hardware and software that is not
available as of this writing.

To ensure that the Serial Manager does not slow down processing of
user events, the Serial Manager receives data asynchronously.

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion, Volume II: Communications 93

Sending data is performed synchronously in the current
implementation.

This section describes the Serial Manager and how to write the
virtual serial drivers that it can use. It covers the following topics:

• Which Serial Manager Version To Use

• Steps for Using the Serial Manager

• Opening a Port

• Closing a Port

• Configuring the Port

• Sending Data

• Receiving Data

• Serial Manager Tips and Tricks

• Writing a Virtual Device Driver

NOTE: You must check which Serial Manager is present before
making any calls. See the next section for details. When in doubt,
the old Serial Manager API is always available.

IMPORTANT: Virtual serial drivers are not supported in Palm
OS Cobalt. Third-party developers can only create virtual serial
drivers for use with devices running Palm OS 4.x and earlier (and
the New Serial Manager Feature Set must be present).

Which Serial Manager Version To Use
There are several versions of the Serial Manager available. The first
several releases of Palm OS had a Serial Manager that supported
only a a single serial port. The API for this Serial Manager is
documented in the chapter “Old Serial Manager” on page 1633 of
the Palm OS Programmer’s API Reference.

If the New Serial Manager Feature Set is present, the Serial Manager
has a different set of API (described in the chapter “Serial Manager”
on page 1593 of the Palm OS Programmer’s API Reference) and can
support multiple physical serial hardware devices and virtual serial

Serial Communication
The Serial Manager

94 Palm OS Programmer’s Companion, Volume II: Communications

devices. Physical serial drivers manage communication with the
hardware as needed, and virtual drivers manage blocks of data to
be sent to some sort of block-based serial code. The detailed
operation of drivers is abstracted from the main serial management
code.

The newest versions of Palm OS may have an updated version of
the new Serial Manager installed. Version 2 provides USB and
Bluetooth virtual drivers and provides a few enhancements to the
Serial Manager and virtual driver APIs.

When deciding which API to use, note the following:

• If you are writing new application code, best performance is
achieved by using the new Serial Manager functions directly,
if it is available. The new Serial Manager was introduced in
Palm OS 3.3. If it is available on all devices in your target
market, consider using new Serial Manager directly.

• The old Serial Manager API is available on all versions of
Palm OS; however, it only supports RS-232 communications
and low-level IrDA communications.

• The new Serial Manager API supports the IrComm protocol.

• Version 2 of the new Serial Manager supports USB and
Bluetooth communication.

• If you write a virtual serial driver, you must use the new
Serial Manager API. Note that virtual drivers aren’t
supported on Palm OS Garnet, however.

Checking the Serial Manager Version

To check whether you can use the new Serial Manager API, check
for the existence of the new Serial Manager feature set by calling
FtrGet as follows:

err = FtrGet(sysFileCSerialMgr,
 sysFtrNewSerialPresent, &value);

If the new Serial Manager is installed, the value parameter is non-
zero and the returned error is zero (for no error).

To check for the existence of version 2 of the new Serial Manager,
you should check both the Serial Manager version number and the
Palm OS version number as follows:

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion, Volume II: Communications 95

err = FtrGet(sysFileCSerialMgr,
 sysFtrNewSerialVersion, &value);
err = FtrGet(sysFtrCreator,
 sysFtrNumROMVersion, &romVersion);

If the value parameter is 2, the romVersion is 0x04003000, and
both calls to FtrGet return 0 (for no error), version 2 of the new
Serial Manager feature set is present.

Version 2 of the new Serial Manager ships with roughly Palm OS 4.0
and higher; however, some Handspring devices that run Palm OS
3.5 have a Serial Manager that returns a version number of 2. This
Serial Manager has a slightly different feature set than the Serial
Manager that ships with Palm OS 4.0. It contains virtual driver
operation codes and virtual driver enhancements to support USB,
but it does not contain any of the public Serial Manager functions
added in version 2. As well, virtual drivers aren’t supported on
Palm OS Garnet. Therefore, you need to check both the Serial
Manager version number and the Palm OS version number before
you use the version 2 Serial Manager functions.

About the New Serial Manager

The new Serial Manager manages multiple serial devices with
minimal duplication of hardware drivers and data structures. In
older Palm systems, the serial library managed any and all
connections to the serial hardware in the 68328 (Dragonball)
processor, which was the only serial device in the system. Newer
systems contain additional serial devices, such as an IR port and
possibly a USB port.

The figure below shows the layering of communication software
with the Serial Manager and hardware drivers.

Serial Communication
The Serial Manager

96 Palm OS Programmer’s Companion, Volume II: Communications

Figure 5.2 Serial Communications Architecture with Serial
Manager

The Serial Manager maintains a database of installed hardware and
currently open connections. Applications, libraries, or other serial
communication tasks open different pieces of serial hardware by
specifying a logical port number or a four-character code
identifying the exact piece of serial hardware that a task wishes to
open a connection with. The Serial Manager then performs the
proper actions on the hardware through small hardware drivers
that are opened dynamically when the port is needed. One
hardware driver is needed for each serial communication hardware
device available to the Palm unit.

At system restart, the Serial Manager searches for all serial drivers
on the Palm device. Serial drivers are independent .prc files with a
code resource and a version resource and are of type 'sdrv' (for
physical serial drivers) or 'vdrv' (for virtual serial drivers). Once a
driver is found, it is asked to locate its associated hardware and
provide information on the capabilities of that hardware. This is
done for each driver found and the Serial Manager always
maintains a list of hardware currently on the device.

Once a port is opened, the Serial Manager allocates a structure for
maintaining the current information and settings of the particular
port. The task or application that opens the port is returned a port

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion, Volume II: Communications 97

ID and must supply the port ID to refer to this port when other
Serial Manager functions are called.

Upon closing the port, the Serial Manager deallocates the open port
structure and unlocks the driver code resource to prevent memory
fragmentation.

Note that applications can use the Connection Manager to obtain
the proper port name and other serial port parameters that the user
has stored in connection profiles for different connection types. For
more information, see the section “The Connection Manager” on
page 116.

Steps for Using the Serial Manager
Regardless of which version of the API you use, the main steps to
perform serial communication are the same. They are:

1. Open a serial port.

To open a port in the new Serial Manager, you specify which
port to open and obtain a port ID that uniquely identifies this
connection. You pass that port ID to every other Serial
Manager call you make.

Because the old Serial Manager only has one port, it uses the
serial library reference number to uniquely identify the
connection. Therefore, with the old Serial Manager, you must
first obtain the serial library reference number and then open
the port.

See “Opening a Port” on page 98.

2. If necessary, configure the connection.

You might need to change the baud rate or increase the size
of the receive queue before you use any other Serial Manager
calls. See “Configuring the Port” on page 102.

3. Send or receive data.

See “Sending Data” on page 105 and “Receiving Data” on
page 106.

4. Close the port.

See “Closing a Port” on page 101.

Serial Communication
The Serial Manager

98 Palm OS Programmer’s Companion, Volume II: Communications

The next several sections describe these steps in more detail. Where
the old and new Serial Manager APIs are similar, the task is
described in terms of using the new Serial Manager, and the old
Serial Manager API is given in parentheses. In these cases, the only
difference is in the name of the function and the ID you pass to
identify the connection. Where the two APIs differ considerably,
both are described.

TIP: See “Serial Manager Tips and Tricks” on page 112 for
debugging information and information on how to fix common
errors.

Opening a Port
The Serial Manager is installed when the device is booted. Before
you can use it, however, you must enable the serial hardware by
opening a port.

You open a port for the Serial Manager differently depending on
which API you are using: the new Serial Manager or the old Serial
Manager.

IMPORTANT: Applications that open a serial port are
responsible for closing it. Opening a serial port powers up the
UART and drains batteries. To conserve battery power, don’t
keep the port open longer than necessary.

When you attempt to open a serial port, regardless of which API
you use, you must check for errors upon return:

• If errNone is returned, the port was opened successfully.
The application can then perform its tasks and close the port
when finished.

• If serErrAlreadyOpen is returned, the port was already
open. For example, you might receive this error if the console
opened the port during a previous debugging session and
never closed it or, on some devices, if there is an open TCP/
IP stack.

• If any other error is returned, the port was not opened, and
the application must not close it.

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion, Volume II: Communications 99

Opening a Port With the New Serial Manager

To open a port using the new Serial Manager, call the SrmOpen
function, specifying the port (see “Specifying the Port” on page 100)
and the initial baud rate of the UART. SrmOpen returns a port ID
that uniquely identifies this connection. You pass this port ID to all
other Serial Manager calls.

Version 2 of the new Serial Manager supports USB and Bluetooth
connections as well as RS-232 and IR connections. With the
Bluetooth and USB protocols, it is often more important to specify
the reason why the application is opening the port. The baud rate is
unimportant as that is negotiated in USB and Bluetooth protocols.
To open a USB or Bluetooth connection, use SrmExtOpen instead of
SrmOpen. This function takes a SrmOpenConfigType structure,
which allows you to specify the purpose of the connection instead
of the baud rate.

Once the SrmOpen or SrmExtOpen call is made successfully, it
indicates that the Serial Manager has successfully allocated internal
structures to maintain the port and has successfully loaded the
serial driver for this port.

Listing 5.1 Opening the port (new Serial Manager)

UInt16 portId;
Boolean serPortOpened = false;

err = SrmOpen(serPortCradlePort /* port */, 57600, /* baud */
 &portId);
if (err) {
 // display error message here.
}
//record our open status in global.
serPortOpened = true;

A port may be opened with either a foreground connection
(SrmOpen or SrmExtOpen) or background connection
(SrmOpenBackground or SrmExtOpenBackground). A
foreground connection makes an active connection to the port and
controls usage of the port until the connection is closed. A
background connection opens the port but relinquishes control to
any other task requesting a foreground connection. Background

Serial Communication
The Serial Manager

100 Palm OS Programmer’s Companion, Volume II: Communications

connections are provided to support tasks (for example, a keyboard
driver) that want to use a serial device to receive data only when no
other task is using the port.

Note that background ports have limited functionality: they can
only receive data and notify owning clients of what data has been
received.

Specifying the Port

Ports must be specified using one of the following methods:

• Logical ports (see “Logical Serial Port Constants” on
page 1598 of the Palm OS Programmer’s API Reference)

The recommended way to specify the port is to use the
logical port name. Logical ports are hardware independent.
Palm OS will map them to the correct physical port. It is
better to use logical ports instead of physical ports.

• Physical ports (see “Physical Serial Port Constants” on
page 1599 of the Palm OS Programmer’s API Reference)

Physical ports are 4-character constants ('uxxx') that
reference the physical hardware of the device. It is usually
not a good idea to use these ports because the hardware they
reference may not exist on a particular device.

• Virtual ports (see “Virtual Serial Port Constants” on
page 1600 of the Palm OS Programmer’s API Reference)

Virtual ports are associated with virtual drivers installed on
the device. For example, the virtual port constant
sysFileCVirtIrComm specifies the virtual driver that
implements the IrComm protocol.

• Connection Manager (see “The Connection Manager” on
page 116)

If you want to use a particular connection profile as stored in
the Connection preferences panel, use the Connection
Manager to obtain the port name from the connection profile
and then use that name to open the port.

Note that other 4-character codes for the physical and virtual ports
will be added in the future. Also note that the port IDs, like creator
IDs, are 4-character constants, not strings. Therefore, they are
enclosed in single quotes (' '), not double quotes (" ").

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion, Volume II: Communications 101

Opening a Port with the Old Serial Manager

If you are using the old Serial Manager, there is only one port, so
you always pass 0 (or the constant serPortLocalHotSync) to
identify the port. The serial library reference number identifies the
connection. To obtain the reference number, call SysLibFind,
passing "Serial Library" for the library name.

The reference number remains the same within one invocation of
the application. You can close and open the library as needed using
the number. Between invocations, the reference number may
change. Because of that, you should call SysLibFind each time
you reopen the Serial Manager.

After the call to SysLibFind, use SerOpen to open the port. Like
SrmOpen, you pass the baud rate along with the reference number.

Listing 5.2 Opening the port (old Serial Manager)

UInt16 refNum = sysInvalidRefNum;
Boolean serPortOpened = false;
Err err;

err = SysLibFind("Serial Library", &refNum);
err = SerOpen(refNum, 0 /* port is always 0*/,
 57600 /* baud */);
if (err == serErrAlreadyOpen) {
 err = SerClose(refNum);
 // display error message here.
}
//record our open status in global.
serPortOpened = true;

Closing a Port
Once an application is finished with the serial port, it must close the
port using the SrmClose function (or SerClose function if you are
using the old Serial Manager). If SrmClose returns no error, it
indicates that the Serial Manager has successfully closed the driver
and deallocated the data structures used for maintaining the port.

To conserve battery power, it is important not to leave the serial port
open longer than necessary. It is generally better to close and reopen

Serial Communication
The Serial Manager

102 Palm OS Programmer’s Companion, Volume II: Communications

the connection multiple times than it is to leave it open
unnecessarily.

Configuring the Port
A newly opened port has the default configuration. The default port
configuration is:

• A receive queue of 512 bytes

• A default CTS timeout (currently 5 seconds) set

• 1 stop bit

• 8 data bits

• Hardware handshaking on input

• Flow control enabled

• For RS-232 connections, the baud rate you specified when
you opened the port.

You can change this configuration if necessary before sending or
receiving data.

Increasing the Receive Queue Buffer Size

The default receive queue size is 512 bytes. If you notice a large
number of hardware overruns or software overruns while running
your application, consider replacing the default receive queue with
a bigger one.

To use a custom receive queue, an application must:

• Allocate a memory chunk for the custom queue. This needs
to be an actual memory chunk, not a global variable or an
offset from the chunk.

• Call SrmSetReceiveBuffer (or SerSetReceiveBuffer
in the old Serial Manager) with the new buffer and the size of
the new buffer as arguments.

• Restore the default queue before closing the port. That way,
any bits sent in have a place to go.

• Deallocate the custom queue after restoring the default
queue. The system only deallocates the default queue.

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion, Volume II: Communications 103

The following code fragment illustrates replacing the default queue
with a custom queue.

Listing 5.3 Replacing the receive queue

#define myCustomSerQueueSize 1024
void *customSerQP;
// Allocate a dynamic memory chunk for our custom receive
// queue.
customSerQP = MemPtrNew(myCustomSerQueueSize);
// Replace the default receive queue.
if (customSerQP) {
 err = SrmSetReceiveBuffer(portId, customSerQP,
 myCustomSerQueueSize);
}

// ... do Serial Manager work

// Now restore default queue and delete custom queue.
// Pass NULL for the buffer and 0 for bufSize to restore the
// default queue.
err = SrmSetReceiveBuffer(portId, NULL, 0);
if(customSerQP) {
 MemPtrFree(customSerQP);
 customSerQP = NULL;
}

Changing Other Configuration Settings

To change the other serial port settings, use SrmControl (or
SerSetSettings in the old Serial Manager API).

Listing 5.4 configures the serial port for 19200 baud, 8 data bits, even
parity, 1 stop bit, and full hardware handshake (input and output)
with a CTS timeout of 0.5 seconds. The CTS timeout specifies the
maximum number of system ticks the serial library will wait to send
a byte when the CTS input is not asserted. The CTS timeout is
ignored if srmSettingsFlagCTSAutoM is not set.

Listing 5.4 Changing the configuration (new Serial Manager)

Err err;
Int32 paramSize;
Int32 baudRate = 19200;

Serial Communication
The Serial Manager

104 Palm OS Programmer’s Companion, Volume II: Communications

UInt32 flags = srmSettingsFlagBitsPerChar8 |
srmSettingsFlagParityOnM | srmSettingsFlagParityEvenM |
srmSettingsFlagStopBits1 | srmSettingsFlagRTSAutoM |
srmSettingsFlagCTSAutoM;
Int32 ctsTimeout = SysTicksPerSecond() / 2;

paramSize = sizeof(baudRate);
err = SrmControl(portId, srmCtlSetBaudRate, &baudRate,
 ¶mSize);

paramSize = sizeof(flags);
err = SrmControl(portId, srmCtlSetFlags, &flags, ¶mSize);

paramSize = sizeof(ctsTimeout);
err = SrmControl(portId, srmCtlSetCtsTimeout, &ctsTimeout,
 ¶mSize);

Listing 5.5 shows how to set up the same configuration in the old
Serial Manager.

Listing 5.5 Changing the configuration (old Serial Manager)

SerSettingsType serSettings;

serSettings.baudRate = 19200;
serSettings.flags = serSettingsFlagBitsPerChar8 |
serSettingsFlagParityOnM | serSettingsFlagParityEvenM |
serSettingsFlagStopBits1 | serSettingsFlagRTSAutoM |
serSettingsFlagCTSAutoM;
serSettings.ctsTimeout = SysTicksPerSecond() / 2;
err = SerSetSettings(refNum, &serSettings);

The settings remain in effect until you change them again or close
the connection. As you configure the Serial Manager, note the
following points:

• Set a CTS timeout if a lack of a CTS signal means a loss of
connection. (Use -1 to specify no timeout.)

• If srmSettingsFlagRTSAutoM is not set, the RTS output
will be permanently asserted. (This flag is set by default.)

• For baud rates above 19200, the use of full hardware
handshaking (srmSettingsFlagRTSAutoM |
SrmSettingsFlagCTSAutoM) is advised.

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion, Volume II: Communications 105

If you want to find out what the current configuration is, pass one of
the srmCtlGet... op codes to the SrmControl function. For
example, to find out the current baud rate, pass
srmCtlGetBaudRate. To find out the current configuration in the
old Serial Manager, use the SerGetSettings function.

Sending Data
To send data, use SrmSend (or SerSend in the old Serial Manager).
Sending data is performed synchronously. To send data, the
application only needs to have an open connection with a port that
has been configured properly and then specify a buffer to send. The
larger the buffer to send, the longer the send function operates
before returning to the calling application. The send function
returns the actual number of bytes that were placed in the UART’s
FIFO. This makes it possible to determine what was sent and what
wasn’t in case of an error.

Listing 5.6 illustrates the use of SrmSend.

Listing 5.6 Sending data

UInt32 toSend, numSent;
Err err;
Char msg[] = "logon\n";
toSend = StrLen(msg);
numSent = SrmSend(portId, msg, toSend, &err);
if (err == serErrTimeOut) {
 //cts timeout detected
}

If SrmSend returns an error, or if you simply want to ensure that all
data has been sent, you can use any of the following functions:

• Use SrmSendWait (SerSendWait in the old Serial
Manager) if you need to wait for all data to leave the device
before performing other actions. The SrmSend function
returns when it has loaded the last byte into the FIFO. The
SrmSendWait function does not return until the FIFO
empties. Like SrmSend, the SrmSendWait call can timeout
if CTS handshaking is on and the CTS timeout value is
reached. Note that the old Serial Manager version of this call,
SerSendWait, takes a timeout parameter, but this

Serial Communication
The Serial Manager

106 Palm OS Programmer’s Companion, Volume II: Communications

parameter is ignored. The new Serial Manager call simply
takes the port ID.

• Use SrmSendCheck (or SerSendCheck) to determine how
many bytes are left in the FIFO. Note that not all serial
devices support this feature.

If the hardware does not provide an exact reading, the
function returns an approximate number: 8 means full, 4
means approximately half-full. If the function returns 0, the
queue is empty.

• The SrmSendFlush (or SerSendFlush) function can be
used to flush remaining bytes in the FIFO that have not been
sent.

Receiving Data
Receiving data is a more involved process because it depends on the
receiving application actually listening for data from the port.

To receive data, an application must do the following:

• Ensure that the code does not loop indefinitely waiting for
data from the receive queue.

The most common way to do this is to pass a timeout value
to EvtGetEvent.

Virtual devices often run in the same thread as applications.
If you don’t specify a timeout for the event loop, it can
prevent the virtual device and other serial related code from
properly handling received data.

If your code is outside of an event loop, you can use the
EvtEventAvail function to see if the system has an event it
needs to process, and if so, call SysHandleEvent.

• To avoid having the system go to sleep while it’s waiting to
receive data, an application should call
EvtResetAutoOffTimer periodically (or call
EvtSetAutoOffTimer). For example, the Serial Link
Manager automatically calls EvtResetAutoOffTimer each
time a new packet is received.

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion, Volume II: Communications 107

TIP: For many applications, the auto-off feature presents no
problem. Use EvtResetAutoOffTimer with discretion;
applications that use it drain the battery.

• To receive the data, call SrmReceive (or SerReceive).
Pass a buffer, the number of bytes you want to receive, and
the inter-byte timeout in system ticks. This call blocks until
all the requested data have been received or an error occurs.
This function returns the number of bytes actually received.
(The error is returned in the last parameter that you pass to
the function.)

• If you want to wait until a certain amount of data is available
before you receive it, call SrmReceiveWait (or
SerReceiveWait) before you call SrmReceive. Specify the
number of bytes to wait for, which must be less than the
current receive buffer size, and the amount of time to wait in
system ticks. If SrmReceiveWait returns errNone, it
means that the receive queue contains the specified number
of bytes. If it returns anything other than errNone, that
number of bytes is not available.

SrmReceiveWait is useful, for example, if you are receiving
data packets. You can use SrmReceiveWait to wait until an
entire packet is available and then read that packet.

• It’s common to want to receive data only when the system is
idle. In this case, have your event loop respond to the
nilEvent, which is generated whenever EvtGetEvent
times out and another event is not available. In response to
this event, call SrmReceiveCheck (or SerReceiveCheck).
Unlike SrmReceiveWait, SrmReceiveCheck does not
block awaiting input. Instead, it immediately returns the
number of bytes currently in the receive queue. If there is
data in the receive queue, call SrmReceive to receive it. If
the queue has no data, your event handler can simply return
and allow the system to perform other tasks.

• Check for and handle error conditions returned by any of the
receive function calls as described in “Handling Errors” on
page 108.

Serial Communication
The Serial Manager

108 Palm OS Programmer’s Companion, Volume II: Communications

IMPORTANT: Always check for line errors. Due to
unpredictable conditions, there is no guaranteed of success. If a
line error occurs, all other Serial Manager calls fail until you clear
the error.

For example code that shows how to receive data, see “Receive Data
Example” on page 110.

In the new Serial Manager, you can directly access the receive queue
using SrmReceiveWindowOpen, and SrmReceiveWindowClose.
These functions allow fast access to the buffer to reduce buffer
copying. These functions are not supported on systems where the
new Serial Manager feature set is not present.

Handling Errors

If an error occurs on the line, all of the receive functions return the
error condition serErrLineErr. This error will continue to be
returned until you explicitly clear the error condition and continue.

To clear line errors, call SrmClearErr (or SerClearErr).

If you want more information about the error, call SrmGetStatus
(or SerGetStatus) before you clear the line.

Listing 5.7 checks whether a framing or parity error have returned
and clears the line errors.

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion, Volume II: Communications 109

Listing 5.7 Handling line errors (new Serial Manager)

void HandleSerReceiveErr(UInt16 portId, Err err) {
 UInt32 lineStatus;
 UInt16 lineErrs;

 if (err == serErrLineErr) {
 SrmGetStatus(portId, &lineStatus, &lineErrs);
 // test for framing or parity error.
 if (lineErrs & serLineErrorFraming |
serLineErrorParity)
 {
 //framing or parity error occurred. Do something.
 }
 SrmClearErr(portId);
 }
}

Listing 5.8 performs the same tasks using the old Serial Manager.
Note that the SerGetStatus call looks a little different from the
SrmGetStatus call.

Listing 5.8 Handling line errors (old Serial Manager)

void HandleSerReceiveErr(UInt16 refNum, Err err) {
 UInt16 lineErrs;
 Boolean ctsOn, dsrOn;

 if (err == serErrLineErr) {
 lineErrs = SerGetStatus(refNum, &ctsOn, &dsrOn);
 // test for framing or parity error.
 if (lineErrs & serLineErrorFraming |
serLineErrorParity)
 {
 //framing or parity error occurred. Do something.
 }
 SerClearErr(refNum);
 }
}

TIP: See “Common Errors” on page 113 for some common
causes of line errors and how to fix them.

Serial Communication
The Serial Manager

110 Palm OS Programmer’s Companion, Volume II: Communications

In some cases, you may want to discard any received data when an
error occurs. For example, if your protocol is packet driven and you
detect data corruption, you should flush the buffer before you
continue. To do so, call SrmReceiveFlush (or
SerReceiveFlush). This function flushes any bytes in the receive
queue and then calls SrmClearErr for you.

SrmReceiveFlush takes a timeout value as a parameter. If you
specify a timeout, it waits that period of time for any other data to
be received in the queue and flushes it as well. If you pass 0 for the
timeout, it simply flushes the data currently in the queue, clears the
line errors, and returns. The flush timeout has to be large enough to
flush out the noise but not so large that it flushes part of the next
packet.

Receive Data Example

Listing 5.9 shows how to receive large blocks of data using the Serial
Manager.

Listing 5.9 Receiving Data Using the Serial Manager

#include <PalmOS.h> // all the system toolbox headers
#include <SerialMgr.h>
#define k2KBytes 2048
/**
*
* FUNCTION: RcvSerialData
*
* DESCRIPTION: An example of how to receive a large chunk of data
* from the Serial Manager. This function is useful if the app
* knows it must receive all this data before moving on. The
* YourDrainEventQueue() function is a chance for the application
* to call EvtGetEvent and handle other application events.
* Receiving data whenever it's available during idle events
* might be done differently than this sample.
*
* PARAMETERS:
* thePort -> valid portID for an open serial port.
* rcvDataP -> pointer to a buffer to put the received data.
* bufSize <-> pointer to the size of rcvBuffer and returns
* the number of bytes read.
*
**/
Err RcvSerialData(UInt16 thePort, UInt8 *rcvDataP, UInt32 *bufSizeP)

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion, Volume II: Communications 111

{
UInt32 bytesLeft, maxRcvBlkSize, bytesRcvd, waitTime, totalRcvBytes = 0;
UInt8 *newRcvBuffer;
UInt16 dataLen = sizeof(UInt32);
Err* error;

 // The default receive buffer is only 512 bytes; increase it if
 // necessary. The following lines are just an example of how to
 // do it, but its necessity depends on the ability of the code
 // to retrieve data in a timely manner.
 newRcvBuffer = MemPtrNew(k2KBytes); // Allocate new rcv buffer.
 if (newRcvBuffer)
 // Set new rcv buffer.
 error = SrmSetReceiveBuffer(thePort, newRcvBuffer, k2KBytes);
 if (error)
 goto Exit;
 else
 return memErrNotEnoughSpace;

 // Initialize the maximum bytes to receive at one time.
 maxRcvBlkSize = k2KBytes;
 // Remember how many bytes are left to receive.
 bytesLeft = *bufSizeP;
 // Only wait 1/5 of a second for bytes to arrive.
 waitTime = SysTicksPerSecond() / 5;

 // Now loop while getting blocks of data and filling the buffer.
 do {
 // Is the max size larger then the number of bytes left?
 if (bytesLeft < maxRcvBlkSize)
 // Yes, so change the rcv block amount.
 maxRcvBlkSize = bytesLeft;
 // Try to receive as much data as possible,
 // but wait only 1/5 second for it.
 bytesRcvd = SrmReceive(thePort, rcvDataP, maxRcvBlkSize, waitTime,
 &error);
 // Remember the total number of bytes received.
 totalRcvBytes += bytesRcvd;
 // Figure how many bytes are left to receive.
 bytesLeft -= bytesRcvd;
 rcvDataP += bytesRcvd; // Advance the rcvDataP.
 // If there was a timeout and no data came through...
 if ((error == serErrTimeOut) && (bytesRcvd == 0))
 goto ReceiveError; // ...bail out and report the error.
 // If there's some other error, bail out.
 if ((error) && (error != serErrTimeOut))
 goto ReceiveError;

Serial Communication
The Serial Manager

112 Palm OS Programmer’s Companion, Volume II: Communications

 // Call a function to handle any pending events because
 // someone might press the cancel button.
 YourDrainEventQueue();
 // Continue receiving data until all data has been received.
 } while (bytesLeft);

 ReceiveError:
 // Clearing the receive buffer can also be done right before
 // the port is to be closed.
 // Set back the default buffer when we're done.
 SrmSetReceiveBuffer(thePort, 0L, 0);

 Exit:
 MemPtrFree(newRcvBuffer); // Free the space.
 *bufSizeP = totalRcvBytes;
 return error;
}

Serial Manager Tips and Tricks
The following tips and tricks help you debug your serial application
and help avoid errors in the first place.

Debugging Tips

The following are some tips to help you track down errors while
debugging.

• Debug first using the Palm OS Emulator. Debug on the
device last.

The Palm OS Emulator supports all Serial Manager functions
and lets you test applications that use the Serial Manager.
You can use the desktop computer’s serial port to connect to
outside devices. For more information on how to set up and
use the emulator to debug serial communications, see the
emulator documentation.

• Track communication errors and the amount of data sent and
received.

In your debug build, maintain individual counts for the
amount of data transferred and for each communication
error of interest. This includes timeouts and retries for
reliable protocols.

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion, Volume II: Communications 113

• Use an easily recognizable start-of-frame signature. This
helps during debugging of packet-based protocols.

• Implement developer back doors for debugging.

Implement a mechanism to trigger one or more debugging
features at runtime without recompiling. For example, you
may want to create a back door to disable the receive timeout
on one side to prevent it from timing out while you are
debugging the other side. Another back door might print
some debugging information to the display. For example,
your application might look for a pen down event in the
upper right corner of the digitizer while the page-up key is
being pressed to trigger one of your back doors.

• Use the HotSync® log for debug-time error logging on the
device.

You may use DlkSetLogEntry to write your debugging
messages to the HotSync log on the device. The HotSync log
will accept up to 2KB of text. You may then switch to the
HotSync application to view the log.

NOTE: Restrict writing to the HotSync log to debugging. Users
will not appreciate having your debugging messages in their
HotSync log.

• If you have a protocol analyzer, use it to examine the data
that is actually sent and received.

Common Errors

Even if you’re careful, errors may crop up. Here are some frequently
encountered problems and their solutions.

• Nothing is being received

Check for a broken or incorrectly wired connection and make
sure the expected handshaking signals are received.

• Garbage is received

Check that baud rate, word length, and/or parity agree.

Serial Communication
The Serial Manager

114 Palm OS Programmer’s Companion, Volume II: Communications

• Baud rate mismatch

If the two sides disagree on the baud rate, it may either show
up as a framing error, or the number of received characters
will be different from the number that was sent.

• Parity error

Parity errors indicate that the data has been damaged. They
can also mean that the sender and receiver have not been
configured to use the same parity or word length.

• Word-length mismatch

Word-length mismatches may show up as a framing error.

• Framing error

Framing errors indicate a mismatch in the number of bits and
are reported when the stop bit is not received when it is
expected. This could indicate damaged data, but frequently it
signals a disagreement in common baud rate, word length, or
parity setting.

• Hardware overrun

The Serial Manager’s receive interrupt service routine cannot
keep up with incoming data. Enable full hardware
handshaking (see “Configuring the Port” on page 102).

• Software overrun

The application is not reading incoming data fast enough.
Read data more frequently, or replace the default receive
queue with a larger one. (see “Configuring the Port” on
page 102).

Writing a Virtual Device Driver
If the new Serial Manager feature set is present, and the Palm OS
version is less than 5.0, the Serial Manager supports the ability to
add virtual device drivers to the system. Virtual serial device
drivers transmit and receive data in blocks instead of a byte at a
time.

A virtual driver is a code resource (ID=0) that is independently
compiled and installed on a Palm device. Virtual driver .prc files are
of file type ‘vdrv’ and their creator type is chosen by the developer
(and must be registered with PalmSource, Inc. in the creator ID

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion, Volume II: Communications 115

database). When the Serial Manager is installed, it searches the
Database Manager for code resources of the ‘vdrv’ type and then
calls the driver’s entry point function to get information about the
features and capabilities of this virtual device. Unlike physical serial
device drivers, virtual device drivers send and receive data in
blocks instead of transferring one byte at a time. Their purpose is to
abstract a level of communication protocol away from serial devices
without forcing applications to work through a different API than
the Serial Manager that may already be used for normal RS-232
serial communication.

NOTE: Creator types with all lowercase letters are reserved by
PalmSource, Inc. For more information about assigning and
registering creator types, see “Assigning a Database Type and
Creator ID” on page 15 of the Palm OS Programmer’s
Companion, vol. I.

Virtual Driver Functions

There are six functions that each virtual driver must minimally
support in order to work with the Serial Manager. These functions
are briefly described in this section. For details on the exact
operations each function must perform, see the function
descriptions in the Palm OS Programmer’s API Reference.

NOTE: Virtual serial ports are not supported on Palm OS
Garnet.

The functions a virtual driver must implement include:

• DrvEntryPointProcPtr must be the first function defined
in a virtual driver code resource and must be marked as the
__Startup__ function of the code resource. When the code
resource is loaded, the Serial Manager jumps to the
beginning of the code resource and begins execution at
DrvEntryPoint. This function is called at system restart,
when the Serial Manager is building a database of installed
drivers and their capabilities, and when a virtual port is
opened.

Serial Communication
The Connection Manager

116 Palm OS Programmer’s Companion, Volume II: Communications

• The VdrvOpenProcPtr and VdrvOpenProcV4Ptr
function is responsible for initializing the virtual device to
begin communication.

• The VdrvCloseProcPtr function must handle all activities
needed to close the virtual device.

• VdrvControlProcPtr extends the SrmControl function
to the level of the virtual device.

• VdrvStatusProcPtr returns a bitfield that describes the
current state of the virtual device.

• VdrvWriteProcPtr writes a block of bytes to the virtual
device.

• The optional VdrvControlCustomProcPtr function can
handle any custom control codes defined specifically for this
virtual driver.

Note that there is no virtual read function in the current
implementation. Virtual devices must save received data by using
the functions provided in the DrvrRcvQType when they are
notified that data is available using some callback mechanism.

For an example of how to implement a virtual serial driver,
download the CryptoDrvr example from the Palm OS Developer
Knowledge Base.

The Connection Manager
The Connection Manager allows applications to access, add, and
delete connection profiles contained in the Connection preferences
panel. Earlier releases of the Palm OS have a Modem preferences
panel. The Connection panel replaces the Modem panel. This
change was made as more connection choices (serial cable, IR,
modem, network and so on) became available to users.

The Connection Manager was introduced at the same time as the
Connection panel to manage connection profiles that save
preferences for various connection types. A connection profile
includes information on the hardware port to be used for a
particular connection, the port details (speed, flow control, modem
initialization string), and any other pertinent information.

Serial Communication
The Connection Manager

Palm OS Programmer’s Companion, Volume II: Communications 117

The Connection Manager is not available on all Palm devices. You
must ensure that it is present before you can make Connection
Manager calls. If the New Serial Manager Feature Set is present,
then at least the basic version of the Connection Manager is
available. If the Connection Manager Feature Set is present, then an
expanded version of the Connection Manager is available. This
expanded Connection Manager allows profiles that specify
communications with mobile phones and profiles that specify
communications with Bluetooth devices. It is also more extensible,
allowing you to create your own profile parameters if necessary.

NOTE: Although the Connection Manager supports Bluetooth
connections, Bluetooth requires additional hardware and software
that is not available as of this writing.

The basic version of the Connection Manager provides functions
that list the saved connection profiles (CncGetProfileList),
return details for a specific profile (CncGetProfileInfo), add a
profile (CncAddProfile), and delete a profile
(CncDeleteProfile).

When you create a profile with the basic Connection Manager, each
profile parameter is passed as a parameter to the CncAddProfile
function. Similarly, when you request profile information, each
profile parameter is passed in an output parameter to
CncGetProfileInfo.

Because the newer, expanded Connection Manager supports more
types of connections than the basic Connection Manager, it also
supports many more types of profile parameters. For this reason,
you now retrieve profile information one parameter at a time using
CncProfileSettingGet. In the new API, constants specify the
predefined profile parameters. (See “General Profile Parameters” on
page 1324 of the Palm OS Programmer’s API Reference.) For example,
to retrieve the connection’s port, you use code similar to that shown
in Listing 5.10.

Listing 5.10 Retrieving port information

UInt16 dataSize;
UInt32 portCreator;

Serial Communication
The Connection Manager

118 Palm OS Programmer’s Companion, Volume II: Communications

dataSize = kCncParamPortSize;
err = CncProfileSettingGet(profileID, kCncParamPort,
 &portCreator, &dataSize);

To create a profile, you first must obtain a unique profile ID and
then set the profile parameters one by one as shown in Listing 5.11.
Note that Listing 5.11 uses CncProfileOpenDB to open the
Connection Manager profile database and CncProfileCloseDB to
close it. These are not required calls. If you don’t explicitly open and
close the database, each Connection Manager function opens the
database, performs its work, and then closes the database. By calling
CncProfileOpenDB in front of a series of Connection Manager
calls and calling CncProfileCloseDB at the end, you save the
overhead of having each function open and close the database.

Listing 5.11 Creating a connection profile

// Open the Connection Manager profile database;
err = CncProfileOpenDB();
// obtain new profile ID.
err = CncProfileCreate(&profileId);

if (!err) {
 // Create a name for the profile.
 err = CncProfileSettingSet(profileId, kCncParamName,
 myProfileName, StrLen(myProfileName)+1);

 // Set some other required parameters.
 port = serPortLocalHotSync;
 err = CncProfileSettingSet(profileId, kCncParamPort,
 &port, kCncParamPortSize);
 baud = 57600;
 err = CncProfileSettingSet(profileId, kCncParamBaud,
 &baud, kCncParamBaudSize);
 deviceKind = kCncDeviceKindSerial;
 err = CncProfileSettingSet(profileId, kCncParamDeviceKind,
 &deviceKind, kCncParamDeviceKindSize);
}

// close the profile database.
err = CncProfileCloseDB();

The expanded Connection Manager API also allows you to create
profile parameters that are unique to your type of connection. You

Serial Communication
The Connection Manager

Palm OS Programmer’s Companion, Volume II: Communications 119

can do so with the CncDefineParamID macro. See its description
in the Palm OS Programmer’s API Reference for more information.

Serial Communication
The Serial Link Protocol

120 Palm OS Programmer’s Companion, Volume II: Communications

The Serial Link Protocol
The Serial Link Protocol (SLP) provides an efficient packet send and
receive mechanism that is used by the Palm desktop software and
debugger. SLP provides robust error detection with CRC-16. SLP is
a best-effort protocol; it does not guarantee packet delivery (packet
delivery is left to the higher-level protocols). For enhanced error
detection and implementation convenience of higher-level
protocols, SLP specifies packet type, source, destination, and
transaction ID information as an integral part of its data packet
structure.

SLP Packet Structures
The following sections describe:

• SLP Packet Format

• Packet Type Assignment

• Socket ID Assignment

• Transaction ID Assignment

SLP Packet Format

Each SLP packet consists of a packet header, client data of variable
size, and a packet footer, as shown in Figure 5.3.

Serial Communication
The Serial Link Protocol

Palm OS Programmer’s Companion, Volume II: Communications 121

Figure 5.3 Structure of a Serial Link Packet

• The packet header contains the packet signature, the
destination socket ID, the source socket ID, packet type,
client data size, transaction ID, and header checksum. The
packet signature is composed of the three bytes 0xBE, 0xEF,
0xED, in that order. The header checksum is an 8-bit
arithmetic checksum of the entire packet header, not
including the checksum field itself.

• The client data is a variable-size block of binary data
specified by the user and is not interpreted by the Serial Link
Protocol.

• The packet footer consists of the CRC-16 value computed
over the packet header and client data.

Serial Communication
The Serial Link Protocol

122 Palm OS Programmer’s Companion, Volume II: Communications

Packet Type Assignment

Packet type values in the range of 0x00 through 0x7F are reserved
for use by the system software. The following packet type
assignments are currently implemented:

Socket ID Assignment

Socket IDs are divided into two categories: static and dynamic. The
static socket IDs are “well-known” socket ID values that are
reserved by the components of the system software. The dynamic
socket IDs are assigned at runtime when requested by clients of SLP.
Static socket ID values in the ranges 0x00 through 0x03 and 0xE0
through 0xFF are reserved for use by the system software. The
following static socket IDs are currently implemented or reserved:

0x00 Remote Debugger, Remote Console, and System Remote
Procedure Call packets.

0x02 PADP packets.

0x03 Loop-back test packets.

0x00 Remote Debugger socket.

0x01 Remote Console socket.

0x02 Remote UI socket.

0x03 Desktop Link Server socket.

0x04 -0xCF Reserved for dynamic assignment.

0xD0 - 0xDF Reserved for testing.

Serial Communication
The Serial Link Protocol

Palm OS Programmer’s Companion, Volume II: Communications 123

Transaction ID Assignment

Transaction ID values are not interpreted by the Serial Link Protocol
and are for the sole benefit of the higher-level protocols. The
following transaction ID values are currently reserved:

Transmitting an SLP Packet
This section provides an overview of the steps involved in
transmitting an SLP packet. The next section describes the
implementation.

Transmission of an SLP packet consists of these steps:

1. Fill in the packet header and compute its checksum.

2. Compute the CRC-16 of the packet header and client data.

3. Transmit the packet header, client data, and packet footer.

4. Return an error code to the client.

Receiving an SLP Packet
Receiving an SLP packet consists of these steps:

1. Scan the serial input until the packet header signature is
matched.

2. Read in the rest of the packet header and validate its
checksum.

3. Read in the client data.

4. Read in the packet footer and validate the packet CRC.

5. Dispatch/return an error code and the packet (if successful)
to the client.

0x00 and 0xFF Reserved for use by the system software.

0x00 Reserved by the Palm OS implementation of SLP to
request automatic transaction ID generation.

0xFF Reserved for the connection manager’s WakeUp
packets.

Serial Communication
The Serial Link Manager

124 Palm OS Programmer’s Companion, Volume II: Communications

The Serial Link Manager
The serial link manager is the Palm OS implementation of the Serial
Link Protocol.

Serial link manager provides the mechanisms for managing
multiple client sockets, sending packets, and receiving packets both
synchronously and asynchronously. It also provides support for the
Remote Debugger and Remote Procedure Calls (RPC).

Using the Serial Link Manager
Before an application can use the services of the serial link manager,
the application must open the manager by calling SlkOpen. Success
is indicated by error codes of 0 (zero) or slkErrAlreadyOpen. The
return value slkErrAlreadyOpen indicates that the serial link
manager has already been opened (most likely by another task).
Other error codes indicate failure.

When you finish using the serial link manager, call SlkClose.
SlkClose may be called only if SlkOpen returned 0 (zero) or
slkErrAlreadyOpen. When the open count reaches zero,
SlkClose frees resources allocated by SlkOpen.

To use the serial link manager socket services, open a Serial Link
socket by calling SlkOpenSocket. Pass a reference number or port
ID (for the Serial Manager) of an opened and initialized
communications library (see SlkClose), a pointer to a memory
location for returning the socket ID, and a Boolean indicating
whether the socket is static or dynamic. If a static socket is being
opened, the memory location for the socket ID must contain the
desired socket number. If opening a dynamic socket, the new socket
ID is returned in the passed memory location. Sharing of sockets is
not supported. Success is indicated by an error code of 0 (zero). For
information about static and dynamic socket IDs, see “Socket ID
Assignment” on page 122.

When you have finished using a Serial Link socket, close it by
calling SlkCloseSocket. This releases system resources allocated
for this socket by the serial link manager.

To obtain the communications library reference number for a
particular socket, call SlkSocketRefNum. The socket must already

Serial Communication
The Serial Link Manager

Palm OS Programmer’s Companion, Volume II: Communications 125

be open. To obtain the port ID for a socket, if you are using the Serial
Manager, call SlkSocketPortID.

To set the interbyte packet receive timeout for a particular socket,
call SlkSocketSetTimeout.

To flush the receive stream for a particular socket, call
SlkFlushSocket, passing the socket number and the interbyte
timeout.

To register a socket listener for a particular socket, call
SlkSetSocketListener, passing the socket number of an open
socket and a pointer to the SlkSocketListenType structure.
Because the serial link manager does not make a copy of the
SlkSocketListenType structure but instead saves the pointer
passed to it, the structure may not be an automatic variable (that is,
allocated on the stack). The SlkSocketListenType structure may
be a global variable in an application or a locked chunk allocated
from the dynamic heap. The SlkSocketListenType structure
specifies pointers to the socket listener procedure and the data
buffers for dispatching packets destined for this socket. Pointers to
two buffers must be specified:

• Packet header buffer (size of SlkPktHeaderType).

• Packet body buffer, which must be large enough for the
largest expected client data size.

Both buffers can be application global variables or locked chunks
allocated from the dynamic heap.

The socket listener procedure is called when a valid packet is
received for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure. The serial link manager does not free the
SlkSocketListenType structure or the buffers when the socket is
closed; freeing them is the responsibility of the application. For this
mechanism to function, some task needs to assume the
responsibility to “drive” the serial link manager receiver by
periodically calling SlkReceivePacket.

To send a packet, call SlkSendPacket, passing a pointer to the
packet header (SlkPktHeaderType) and a pointer to an array of
SlkWriteDataType structures. SlkSendPacket stuffs the
signature, client data size, and the checksum fields of the packet

Serial Communication
The Serial Link Manager

126 Palm OS Programmer’s Companion, Volume II: Communications

header. The caller must fill in all other packet header fields. If the
transaction ID field is set to 0 (zero), the serial link manager
automatically generates and stuffs a new non-zero transaction ID.
The array of SlkWriteDataType structures enables the caller to
specify the client data part of the packet as a list of noncontiguous
blocks. The end of list is indicated by an array element with the
size field set to 0 (zero). Listing 5.12 incorporates the processes
described in this section.

Listing 5.12 Sending a Serial Link Packet

Err err;
//serial link packet header
SlkPktHeaderType sendHdr;
//serial link write data segments
SlkWriteDataType writeList[2];
//packet body(example packet body)
UInt8 body[20];

// Initialize packet body
...

// Compose the packet header. Let Serial Link Manager
// set the transId.
sendHdr.dest = slkSocketDLP;
sendHdr.src = slkSocketDLP;
sendHdr.type = slkPktTypeSystem;
sendHdr.transId = 0;

// Specify packet body
writeList[0].size = sizeof(body); //first data block size
writeList[0].dataP = body; //first data block pointer
writeList[1].size = 0; //no more data blocks

// Send the packet
err = SlkSendPacket(&sendHdr, writeList);
 ...
}

Serial Communication
Summary of Serial Communications

Palm OS Programmer’s Companion, Volume II: Communications 127

Listing 5.13 Generating a New Transaction ID

//
// Example: Generating a new transaction ID given the
// previous transaction ID. Can start with any seed value.
//

UInt8 NextTransactionID (UInt8 previousTransactionID)
{
 UInt8 nextTransactionID;

 // Generate a new transaction id, avoid the
 // reserved values (0x00 and 0xFF)
 if (previousTransactionID >= (UInt8)0xFE)
 nextTransactionID = 1; // wrap around
 else
 nextTransactionID = previousTransactionID + 1;
 // increment

 return nextTransactionID;
}

To receive a packet, call SlkReceivePacket. You may request a
packet for the passed socket ID only, or for any open socket that
does not have a socket listener. The parameters also specify buffers
for the packet header and client data, and a timeout. The timeout
indicates how long the receiver should wait for a packet to begin
arriving before timing out. A timeout value of (-1) means “wait
forever.” If a packet is received for a socket with a registered socket
listener, the packet is dispatched via its socket listener procedure.

Summary of Serial Communications
New and Old Serial Manager Functions

Opening and Closing the Port

SrmOpen
SrmOpenBackground
SerOpen
SerClose

SrmExtOpen
SrmExtOpenBackground
SrmClose

Serial Communication
Summary of Serial Communications

128 Palm OS Programmer’s Companion, Volume II: Communications

Receiving Data

SrmReceive
SrmReceiveCheck
SrmReceiveFlush
SrmReceiveWait
SrmReceiveWindowClose
SrmReceiveWindowOpen

SerReceive
SerReceiveCheck
SerReceiveFlush
SerReceiveWait

Sending Data

SrmSend
SrmSendCheck
SrmSendFlush
SrmSendWait

SerSend
SerSendFlush
SerSendWait

Configuring the Port

SrmSetReceiveBuffer
SrmControl
SrmCustomControl

SerControl
SerSetReceiveBuffer
SerSetSettings
SerGetSettings

Error Checking

SrmClearErr
SrmGetStatus

SerClearErr
SerGetStatus

Obtaining Device Information

SrmGetDeviceCount SrmGetDeviceInfo

Implementing a Wakeup Handler

SrmPrimeWakeupHandler SrmSetWakeupHandler

New and Old Serial Manager Functions

Serial Communication
Summary of Serial Communications

Palm OS Programmer’s Companion, Volume II: Communications 129

Virtual Driver Functions

DrvEntryPointProcPtr
GetSizeProcPtr
GetSpaceProcPtr
VdrvControlProcPtr
VdrvOpenProcPtr
VdrvOpenProcV4Ptr

VdrvStatusProcPtr
VdrvWriteProcPtr
VdrvControlCustomProcPtr
WriteBlockProcPtr
WriteByteProcPtr
SignalCheckPtr

Connection Manager Functions

Basic Connection Manager Functions

CncAddProfile
CncDeleteProfile

CncGetProfileInfo
CncGetProfileList

Extended Connection Manager Functions

CncProfileCreate
CncProfileDelete
CncProfileGetCurrent
CncProfileGetIDFromIndex
CncProfileGetIDFromName
CncProfileGetIndex
CncProfileOpenDB
CncProfileSetCurrent
CncProfileSettingGet
CncProfileSettingSet

CncGetParamType
CncGetSystemFlagBitnum
CncGetTrueParamID
CncIsFixedLengthParamType

CncIsSystemFlags
CncIsSystemRange
CncIsThirdPartiesRange
CncIsVariableLengthParamType
CncProfileCloseDB
CncProfileCount

Serial Link Manager Functions

SlkClose
SlkCloseSocket
SlkFlushSocket
SlkOpen
SlkOpenSocket

SlkReceivePacket
SlkSendPacket
SlkSetSocketListener
SlkSocketPortID
SlkSocketSetTimeout

Serial Communication
Summary of Serial Communications

130 Palm OS Programmer’s Companion, Volume II: Communications

Palm OS Programmer’s Companion, Volume II: Communications 131

6
Bluetooth
The Bluetooth APIs provide developers a way to access the Palm OS
Bluetooth system and write Bluetooth-enabled applications. In
addition to enabling Bluetooth development, the Palm OS Bluetooth
system also provides:

• a user interface for device discovery and connection

• a user interface for passkey entry

• a modified Palm Connection Panel to support Bluetooth

• serial port emulation using the Bluetooth Virtual Serial
Driver

• object exchange support using the Bluetooth Exchange
Library

This documentation covers how to use the Palm OS Bluetooth APIs
but does not provide the basic understanding of Bluetooth concepts
and protocols that you need to write Bluetooth code. For more
information about Bluetooth, refer to the Specification of the Bluetooth
System, available at the Bluetooth Special Interest Group website at
www.bluetooth.com. There are also several third-party books
that you may wish to consult for helpful Bluetooth information.

Palm OS Bluetooth System
The Palm OS Bluetooth system enables a Palm Powered handheld
to:

• access the internet through LAN access points and cell
phones

• exchange objects such as business cards and appointments
over Bluetooth

• perform HotSync operations over Bluetooth

Bluetooth
Palm OS Bluetooth System

132 Palm OS Programmer’s Companion, Volume II: Communications

• communicate with other handhelds for multi-user
applications like games and various collaborative
applications

• send SMS messages and manage your phone’s internal
phone book.

The Palm OS Bluetooth system designers focused their efforts on the
user, recognizing that on the Palm OS technical interoperability is
simply not enough. The user cares about the overall experience. The
user’s “Bluetooth learning curve” should be short. And, as always,
simplicity is key.

Bluetooth System Components
The Palm OS Bluetooth system contains the following components:

• Bluetooth Library

• Bluetooth Virtual Serial Driver

• Bluetooth Exchange Library

• Bluetooth Stack

• Bluetooth Transports

• Bluetooth Extension

Figure 6.1 shows these components and their relationship with each
other.

Bluetooth
Palm OS Bluetooth System

Palm OS Programmer’s Companion, Volume II: Communications 133

Figure 6.1 Overall Palm OS Bluetooth architecture

Bluetooth Library

The Bluetooth Library is a shared library that provides an API for
developers to develop Bluetooth applications. The API provides
functions in the following areas:

• Managing remote devices, piconets, and ACL links

Bluetooth
Palm OS Bluetooth System

134 Palm OS Programmer’s Companion, Volume II: Communications

• Communicating using the L2CAP and RFCOMM protocols

• Advertising services and querying for remote services using
SDP

• Maintaining a list of trusted devices

Bluetooth Virtual Serial Driver

The Bluetooth Virtual Serial Driver allows applications to use the
Palm OS New Serial Manager with Bluetooth’s RFCOMM protocol
as the serial link. As shown in Figure 6.1, the Bluetooth Serial Driver
communicates with the rest of the Bluetooth system through the
Bluetooth Library. The Bluetooth Virtual Serial Driver is used by
PPP, HotSync, and Telephony.

Bluetooth Exchange Library

The Bluetooth Exchange Library allows applications to use the
Palm OS Exchange Manager with Bluetooth as the link. As shown in
Figure 6.1, the Bluetooth Exchange Library communicates with the
rest of the Bluetooth system through the Bluetooth Library.
RFCOMM is used as the sole transport mechanism for the Exchange
Manager.

Bluetooth Stack

The Bluetooth Stack is a shared library that implements the various
protocols of the Bluetooth specification. Palm OS developers don’t
need to access the Bluetooth Stack directly.

Bluetooth Transports

Bluetooth Transports are shared libraries that act as device drivers
for different radios. Palm OS developers cannot access the Bluetooth
Transports.

Bluetooth Extension

The Bluetooth extension oversees and coordinates the multiple
libraries of the Bluetooth system. Palm OS developers cannot access
the Bluetooth extension.

Bluetooth
Palm OS Bluetooth System

Palm OS Programmer’s Companion, Volume II: Communications 135

Implementation Overview
The Bluetooth system is a collection of PRCs that can reside in either
RAM or ROM. A minimum of 4Mb of RAM is required (256k heap).
Incorporation into actual devices is up to the handheld
manufacturers.

The Bluetooth system runs in the UI thread, except when it is used
by the virtual serial driver.

Profiles
Table 6.1 lists the profiles supported by the Palm OS Bluetooth
system.

Table 6.1 Supported Bluetooth profiles

Profile Description

Generic Access Describes the use of the lower
layers of the Bluetooth protocol
stack (LC and LMP), security-
related alternatives, and the
higher layers: L2CAP,
RFCOMM, and OBEX.

Service Discovery Application Defines the protocols and
procedures used by a service
discovery application on a
device to locate services in other
Bluetooth-enabled devices
using the Service Discovery
Protocol (SDP).

Bluetooth
Palm OS Bluetooth System

136 Palm OS Programmer’s Companion, Volume II: Communications

Serial Port Defines the protocols and
procedures used by devices
using Bluetooth for RS-232 (or
similar) serial cable emulation.
The scenario covered by this
profile deals with legacy
applications using Bluetooth as
a cable replacement through a
virtual serial port abstraction
(which in itself is operating
system-dependent).

Dial-up Networking Defines the protocols and
procedures used by devices
implementing the “Internet
Bridge” usage model. This
profile covers the usage of a
cellular phone or modem both
to receive data calls and to
connect to a dial-up Internet
access server or other dial-up
service.

LAN Access Point Defines LAN access using PPP
over RFCOMM.

Table 6.1 Supported Bluetooth profiles (continued)

Profile Description

Bluetooth
Palm OS Bluetooth System

Palm OS Programmer’s Companion, Volume II: Communications 137

The following profiles are not supported by the Palm OS Bluetooth
system:

• Cordless Telephony

• Intercom

• Headset

• Fax

• File Transfer

• Synchronization

Note that although the Bluetooth system does not support the
Bluetooth Synchronization profile, it implements HotSync
operations over Bluetooth using the Serial Port profile. Also note
that network HotSync operations use PPP.

The Bluetooth system can dial and control voice calls on a
Bluetooth-enabled phone as if it were connected through a serial
cable. It does this using AT modem commands and not the Cordless
Telephony profile.

Generic Object Exchange Defines the protocols and
procedures used by the
applications providing the
usage models that need object
exchange capabilities.

Object Push Defines the requirements for the
protocols and procedures used
by applications providing the
object push usage model. This
profile makes use of the generic
object exchange profile to define
the interoperability
requirements for the protocols
needed by applications.

Table 6.1 Supported Bluetooth profiles (continued)

Profile Description

Bluetooth
Palm OS Bluetooth System

138 Palm OS Programmer’s Companion, Volume II: Communications

Usage Scenarios
Bluetooth-enabled Palm Powered handhelds are able to
communicate with a variety of remote Bluetooth devices. The
Bluetooth system uses the profiles defined by the Bluetooth
specification in order to support the following usage scenarios:

Authentication and Encryption
The Bluetooth system handles the generation, utilization, and
storage of authentication and encryption keys at the OS level.

Table 6.2 Profiles required by various usage scenarios

Required Profiles

Feature Handheld
Connects With

G
en

er
ic

 A
cc

es
s

S
er

vi
ce

 D
is

co
ve

ry

S
er

ia
l P

o
rt

D
ia

l-
u

p
 N

et
w

o
rk

in
g

L
A

N
 A

cc
es

s

G
en

er
ic

 O
b

j.
E

xc
h

an
g

e

O
b

je
ct

 P
u

sh

Email and Web
Clipping

Cell phone X X X X

Access point X X X X

Desktop computer X X X X

HotSync Cell phone X X X X

Access point X X X X

Desktop computer X X X

SMS and Mobile
Handset
Management

Cell phone X X X

Beaming Many devices X X X X X

Bluetooth
Palm OS Bluetooth System

Palm OS Programmer’s Companion, Volume II: Communications 139

The Bluetooth system doesn’t support Authorization. Access
concerns beyond authentication are left up to the individual
application, as in a standard networking environment.

The Bluetooth system supports security modes 1 and 2: the “non-
secure” and “service-level enforced security” modes. Security mode
3—”link-level enforced security”—isn’t supported by the Bluetooth
system.

Device Discovery
In a system of Bluetooth devices, ad-hoc networks are established
between the devices. The “inquiry” procedure is used to discover
Bluetooth devices within range. The specification defines two
inquiry modes, “General” and “Limited.” The General mode, which
is supported by the Bluetooth system, is used by devices that need
to discover devices that are made discoverable continuously or for
no specific condition. Limited mode, on the other hand, is used to
devices that need to discover devices that are made discoverable for
only a limited period of time, during temporary conditions, or for a
specific event. The Bluetooth system doesn’t support the Limited
inquiry mode.

Piconet Support
There are two main scenarios in which a piconet can be created, and
the Bluetooth system supports both:

• Master performs inquiry, sees a number of devices, and
proceeds to contact each of them. A variant is that the master
later performs inquiry to find additional slaves. This should
be useful for a game server where the master establishes the
connection to each Palm device that wants to participate in a
game.

• Master sits in page scan mode, and when a device connects to
it, a master/slave switch is performed. The LAN access
profile uses this approach for multi-point LAN access
devices. The Bluetooth system handles the master/slave
negotiation automatically.

The Bluetooth system places existing connections in hold mode
while new links are established. In the first scenario outlined above,
hold times for each connection are determined based upon a list of

Bluetooth
Palm OS Bluetooth System

140 Palm OS Programmer’s Companion, Volume II: Communications

the devices that the user has selected to participate in the piconet.
The Bluetooth system performs the following for each device on the
list:

1. Establish an ACL connection to the device.

2. Place the device in hold mode for a period of time that is a
function of the total number of devices that are to participate
in the piconet.

3. Delay for a set period of time to allow the slave to enter hold
mode.

After all connections have been established, each of the slave hold
timers should expire, and the piconet should be operational.

Radio Power Management
The extended battery life of Palm Powered handhelds is considered
to be a key competitive advantage by many Palm Powered
handheld manufacturers. The Bluetooth system helps preserve
battery life by taking advantage of the Bluetooth power efficiency
modes (hold, park, and sniff) and the internal power management
functionality built into the Bluetooth radio chipset.

Applications don’t explicitly put the radio into the sniff, park, or
standby modes. Instead, power management is under the control of
the Bluetooth system. When participating in a piconet, the Bluetooth
system honors requests from the other members of the piconet to
enter any of the defined power-saving modes.

Some Palm OS devices support Bluetooth sleep and wake
scheduling. This allows the device to be configured to be awakened
by incoming connection attempts only during certain time periods.

You can determine if the device supports sleep and wake
scheduling by checking for the
sysFtrBtSupportsScheduledWakeup feature. Use this
FtrGet() call:

err = FtrGet(sysFtrCreator,
sysFtrBtSupportsScheduledWakeup, &value);

Bluetooth
Developing Bluetooth-Enabled Applications

Palm OS Programmer’s Companion, Volume II: Communications 141

If Bluetooth sleep and wake scheduling is available, the value
parameter will be non-zero and the returned error should also be
zero (for no error).

Developing Bluetooth-Enabled Applications
The Palm OS exposes Bluetooth through multiple interfaces,
allowing you to choose the interface that is best suited for the task at
hand. Bluetooth development is supported through the Serial
Manager using the Virtual Serial Driver, which is discussed in
“Bluetooth Virtual Serial Driver” on page 149. Object transfer is
supported through the Exchange Manager using the Bluetooth
Exchange Library, which is discussed in “Bluetooth Exchange
Library Support” on page 154. Finally, you can program directly
with the Bluetooth Library APIs, which is the subject of this section.

Regardless of which approach you take, your applications should
check if the Bluetooth system is running on the handheld before
using any Bluetooth APIs. To do so, use the following code:

UInt32 btVersion;

// Make sure Bluetooth components are installed
// This check also ensures Palm OS 4.0 or greater
if (FtrGet(btLibFeatureCreator, btLibFeatureVersion,

&btVersion) != errNone)
{

// Alert the user if it's the active application
if ((launchFlags & sysAppLaunchFlagNewGlobals) &&

(launchFlags & sysAppLaunchFlagUIApp))
FrmAlert (MissingBtComponentsAlert);

return sysErrRomIncompatible;
}

Once your application has determined that Bluetooth support is
available, it needs to load the Bluetooth library. This can be done
with code like this:

UInt16 btLibRefNum;
Err error = errNone;

if (SysLibFind(btLibName, &btLibRefNum)) {
error = SysLibLoad(sysFileTLibrary, sysFileCBtLib,

Bluetooth
Developing Bluetooth-Enabled Applications

142 Palm OS Programmer’s Companion, Volume II: Communications

&btLibRefNum);
}

Your application is then ready to open and use the Bluetooth library;
it will use the btLibRefNum value to reference the library.

Overview of the Bluetooth Library
From a programmer’s perspective, the functions of the Bluetooth
library fall into four areas: management, sockets, security, and
utility.

• The management functions deal with the radio and baseband
parts of the Bluetooth specification. You use them to find
nearby devices and establish ACL links.

• The socket functions enable communication with L2CAP,
RFCOMM, and SDP.

• The security functions manage a set of trusted devices—
devices that do not have to authenticate when they create a
secure connection with the handheld.

• The utility functions perform useful data conversions.

Management
Three basic management tasks common among Bluetooth
applications are finding the Bluetooth devices in range, establishing
ACL links, and working with piconets. However, in order for your
code to use any of the functions that do these operations, you need
to create a management callback function.

Management Callback Function

Most management calls are asynchronous. In other words, they start
an operation and return before the operation actually completes.
When the operation completes, the Bluetooth Library notifies the
application by way of a callback function. Such a notification is
called a management event.

In some cases, a management function fails before starting the
asynchronous operation. In this case, the callback function does not
get called. You can tell whether the callback function will be called
or not by looking at the management function’s return code:

Bluetooth
Developing Bluetooth-Enabled Applications

Palm OS Programmer’s Companion, Volume II: Communications 143

btLibErrNoError
The operation has completed and the callback function will
not be called.

btLibErrPending
The operation has started successfully and the callback
function will be called,

any other error code
The operation failed and the callback function will not be
called.

The management callback function has two parameters: a
management event structure, which contains all the information
about the event that has occurred, and a reference context, an
optional UInt32 you can use to establish the context of the event.
The callback function needs to provide the code that handles the
events generated as a result of the operations you perform.

The callback function should not perform any heavyweight
processing; doing so prevents the Bluetooth stack from running.
You can defer processing by generating a custom system event in
the callback function and responding to the event with your event
handling code. For some operations, you must defer the processing.
For example, the callback function cannot close the Bluetooth
library in response to a
btLibManagementEventAclDisconnect event.

As a simple example, consider the task of finding nearby devices,
discussed in the next section. The callback function must respond to
four events: btLibManagementEventInquiryResult,
btLibManagementEventInquiryComplete,
btLibManagementEventInquiryCanceled, and
btLibManagementEventRadioState. The following code is a
skeleton of the callback function you need:

void MyManagementCallback (BtLibManagementEventType *eventP,
UInt32 refcon) {
switch (eventP->event) {

case btLibManagementEventInquiryResult :
// A device has been found. Save it in a list
break;

case btLibManagementEventInquiryComplete :
// The inquiry has finished
break;

Bluetooth
Developing Bluetooth-Enabled Applications

144 Palm OS Programmer’s Companion, Volume II: Communications

case btLibManagementEventInquiryCanceled :
// The inquiry has been canceled
break;

case btLibManagementEventRadioState :
// The radio state has changed
break;

default :
// Unknown event
break;

}

To tell the Bluetooth Library to use your callback function, call
BtLibRegisterManagementNotification. You should always
unregister your callback before closing the Bluetooth Library.

For a list of management events, see “Management Callback
Events” in Chapter 82, “Bluetooth Library: Management.”

Opening the Library

To open the Bluetooth library, use the BtLibOpen function. At this
time, the Bluetooth library starts the radio initialization process.
When initialization successfully finishes, the Bluetooth library
generates a btLibManagementEventRadioState event with a
status of btLibErrRadioInitialized. You must wait for the
initialization to complete successfully before calling any Bluetooth
library function involving the radio.

The exceptions to this rule are the discovery functions,
BtLibDiscoverMultipleDevices and
BtLibDiscoverSingleDevice, which handle the radio
initialization events automatically and can be called directly after
the Bluetooth library is opened.

Finding Nearby Devices

There are two ways to find Bluetooth devices that are within range:

• Use the BtLibDiscoverMultipleDevices and
BtLibDiscoverSingleDevice functions to find nearby
devices. These functions bring up a user interface that allows
the user to choose one or more devices.

• Perform a device inquiry using BtLibStartInquiry. This
is more difficult to do than using one of the discovery
functions, but provides more flexibility.

Bluetooth
Developing Bluetooth-Enabled Applications

Palm OS Programmer’s Companion, Volume II: Communications 145

When you call BtLibStartInquiry, the Bluetooth Library
searches for all devices in range. Whenever it finds a device, it
generates a btLibManagementEventInquiryResult event.
When the inquiry has completed, a
btLibManagementEventInquiryComplete event is generated.
To cancel the inquiry, call BtLibCancelInquiry. The
btLibManagementEventInquiryCanceled event is generated
when the cancellation succeeds.

Creating ACL Links

Once you have the device address of a remote device, you can
attempt to create an ACL link to it using the BtLibLinkConnect
function. This causes the
btLibManagementEventAclConnectOutbound event to be
generated, and the status code within that event indicates whether
or not the link was successfully established.

To disconnect a link, use the BtLibLinkDisconnect function.
This causes the btLibManagementEventAclDisconnect event
to be generated. Note that the same event is generated when the
remote device initiates the disconnection.

Your program must also respond to
btLibManagementEventAclConnectInbound events that
indicate that a remote device has established a link with the
handheld. You can disconnect an inbound link with the
BtLibLinkDisconnect function.

Working With Piconets

Bluetooth supports up to seven slaves in a piconet. The Bluetooth
Library provides simplified APIs to create and destroy piconets.

Note that the Bluetooth 1.1 specification suggests that the upper
software layers place slaves in hold or park mode while new
connections are established. This isn’t well–defined in the
specification, and is difficult to do because of timing. The Bluetooth
Library expects the radio baseband to handle piconet timing.

To create a piconet, the “master” calls BtLibPiconetCreate.
Slaves can then discover the master and join the piconet, or the
master can discover and connect to the slaves. The master stops

Bluetooth
Developing Bluetooth-Enabled Applications

146 Palm OS Programmer’s Companion, Volume II: Communications

advertising once the limit of seven slaves has been reached. Note
that any device should be capable of acting as a slave.

The piconet can be locked to prevent additional slaves from joining.
The master can still discover and add slaves, however. With the
piconet locked, there is a bandwidth improvement of approximately
10%.

In the Bluetooth Library, the following functions support the
management of piconets:

• BtLibPiconetCreate: create a piconet or reconfigure an
existing piconet so the local device is the master.

• BtLibPiconetDestroy: destroy the piconet by
disconnecting links to all devices and removing all
restrictions on whether the local device is a master or a slave.

• BtLibPiconetLockInbound: prevent remote devices from
creating ACL links into the piconet.

• BtLibPiconetUnlockInbound: allow additional slaves to
create ACL links into the piconet.

Remember the following limitations of piconets: Slave-to-slave
communication is not permitted. The master cannot “broadcast” to
slaves.

Sockets
The Bluetooth Library uses the concept of sockets to manage
communication between Bluetooth devices. A socket represents a
bidirectional packet-based link to a remote device. Sockets run over
ACL connections. The Bluetooth library can accommodate up to 16
simultaneous sockets.

Three types of sockets are supported by the Bluetooth Library.
L2CAP and RFCOMM sockets establish data channels and send and
receive arbitrary data over those channels. SDP sockets allow you to
query remote devices about the services those devices provide.

To send a packet of data over an L2CAP or RFCOMM socket, use
the BtLibSocketSend function. The send buffer must not change
until the send completes. In other words, you must not modify the
buffer, free the buffer, or use a local variable for the buffer. The
Bluetooth Library notifies you when the send completes by

Bluetooth
Developing Bluetooth-Enabled Applications

Palm OS Programmer’s Companion, Volume II: Communications 147

generating a btLibSocketEventSendComplete event. You can
only have one outstanding packet on each socket.

The btLibSocketEventData event indicates data has been
received.

L2CAP

L2CAP sockets don’t allow for flow control.

Establishing Inbound L2CAP Connections

To set up for inbound L2CAP connections, you call the following:

1. BtLibSocketCreate: create an L2CAP socket.

2. BtLibSocketListen: set up an L2CAP socket as a listener.

3. BtLibSdpServiceRecordCreate: allocate a memory
chunk that represents an SDP service record.

4. BtLibSdpServiceRecordSetAttributesForSocket:
initialize an SDP memory record so it can represent the
newly-created L2CAP listener socket as a service

5. BtLibSdpServiceRecordStartAdvertising: make an
SDP memory record representing a local SDP service record
visible to remote devices.

When you get a btLibSocketEventConnectRequest event, you
need to respond with a call to
BtLibSocketRespondToConnection. You then receive a
btLibSocketEventConnectedInbound event with an inbound
socket with which you can send and receive data.

The listening socket remains open and will notify you of further
connection attempts. In other words, you can use a single L2CAP
listening socket to spawn several inbound sockets. You cannot close
the listening socket until after you close its inbound sockets.

Establishing Outbound L2CAP Connections

To establish an outbound L2CAP connection, you first establish an
ACL link to the remote device. Then you call:

1. BtLibSocketCreate: create an SDP socket.

2. BtLibSdpGetPSMByUuid: get an available L2CAP PSM
using SDP.

Bluetooth
Developing Bluetooth-Enabled Applications

148 Palm OS Programmer’s Companion, Volume II: Communications

3. BtLibSocketClose: close the SDP socket.

4. BtLibSocketCreate: create an L2CAP socket.

5. BtLibSocketConnect: create an outbound L2CAP
connection.

RFCOMM

RFCOMM emulates a serial connection. It is used by the Bluetooth
Virtual Serial Driver and the Bluetooth Exchange Library.

When using RFCOMM, you can only have one inbound connection
per listener socket. Flow control uses a “credit” system: you need to
advance a credit to the far end before you can receive a data packet.

RFCOMM defines the notions of server and client. A server uses
SDP to advertise its existence and listens for inbound connections. A
client creates an outbound RFCOMM connection to a server.

Establishing Inbound RFCOMM Connections

To set up for inbound RFCOMM connections, call the following:

1. BtLibSocketCreate: create an RFCOMM socket.

2. BtLibSocketListen: set up the RFCOMM socket as a
listener.

3. BtLibSdpServiceRecordCreate: allocate a memory
chunk that represents an SDP service record.

4. BtLibSdpServiceRecordSetAttributesForSocket:
initialize an SDP memory record so it can represent the
newly-created RFCOMM listener socket as a service

5. BtLibSdpServiceRecordStartAdvertising: make the
SDP memory record representing your local SDP service
record visible to remote devices.

When you get a btLibSocketEventConnectRequest event, you
need to respond with a call to
BtLibSocketRespondToConnection. You then receive a
btLibSocketEventConnectedInbound event with an inbound
socket with which you can send and receive data. To send data, use
the BtLibSocketSend function. The btLibSocketEventData
event indicates data has been received.

Bluetooth
Bluetooth Virtual Serial Driver

Palm OS Programmer’s Companion, Volume II: Communications 149

The listening socket will not notify you of further connection
attempts. In other words, a single RFCOMM listening socket can
only spawn a single inbound RFCOMM socket. You cannot close the
listening socket until after you close its inbound socket.

Establishing Outbound RFCOMM Connections

To establish an outbound RFCOMM connection, you first establish
an ACL link to the remote device. Then you call:

1. BtLibSocketCreate: create an SDP socket.

2. BtLibSdpGetServerChannelByUuid: get an available
RFCOMM server channel using SDP.

3. BtLibSocketCreate: create an RFCOMM socket.

4. BtLibSocketConnect: Create an outbound RFCOMM
connection.

Bluetooth Virtual Serial Driver
The Bluetooth system implements the serial port profile with a
Virtual Serial Driver. This driver has the following characteristics:

• Opens a background thread for the Bluetooth stack.

• Supports only one current active serial channel (point-to-
point connection) at a time.

• Is opened explicitly as either a client or a server.

• Is utilized, as a client, by the following Palm OS components:

– PPP

– HotSync

– Telephony

• If opened as a server, advertises a list of services (UUIDs) for
remote clients to query.

• If opened as a client, creates the necessary baseband and
RFCOMM connections, based upon information passed in by
the opener.

An RFCOMM-based virtual serial port is far less symmetrical than a
physical serial port. In a traditional serial port, there is no need to
establish the underlying transport. When establishing a Bluetooth

Bluetooth
Bluetooth Virtual Serial Driver

150 Palm OS Programmer’s Companion, Volume II: Communications

serial port, however, there are roles for a client and a server device
on three different stack levels—ACL, L2CAP, and RFCOMM—as
well as responsibilities for registering with and querying SDP.

Opening the Serial Port
You can use the new SrmExtOpen function to open a Bluetooth
serial port, passing Bluetooth-specific parameters in a custom info
block. You should first verify that the port being opened is in fact a
Bluetooth serial port, since other types of ports may use the block
for other purposes.

For the benefit of certain legacy applications, the driver also
supports being opened by the old SrmOpen function. In that case,
the driver presumes the role of client, performs device discovery
with user interaction, and looks for remote channel advertising the
Serial Port Service Class.

To open an RFCOMM virtual serial port with SrmExtOpen, you
need to create a BtVdOpenParams structure. This structure is
declared as follows:

typedef struct {
 BtVdRole role;
 union {
 BtVdOpenParamsClient client;
 BtVdOpenParamsServer server;
 } u;
 Boolean authenticate;
 Boolean encrypt;
} BtVdOpenParams;

How you populate this structure depends on whether you are
opening the serial port as a client or as a server. A client initiates
baseband and RFCOMM connections, while a server waits for
incoming baseband and RFCOMM connections.

If you are acting as a client, set the structure’s role member to
btVdClient and fill in the client member of the union as
described in “Opening the Port as a Client” on page 151. If you are
acting as a server, set the structure’s role member to btVdServer
and fill in the server member of the union as described in
“Opening the Port as a Server” on page 152.

Bluetooth
Bluetooth Virtual Serial Driver

Palm OS Programmer’s Companion, Volume II: Communications 151

Irrespective of whether you are acting as a client or as a server, set
authenticate to true if you require link authentication.
Similarly, set encrypt to true if you require link encryption. Link
encryption requires link authentication.

Opening the Port as a Client

When playing the client role you must specify the address of the
remote Bluetooth device and the service to connect to on the remote
device. You do this by filling out the client member of the union
in the BtVdOpenParams structure. This member is declared to be a
BtVdOpenParamsClient structure, which looks like this:

typedef struct {
 BtLibDeviceAddressType remoteDevAddr;
 BtVdClientMethod method;
 union {
 BtLibRfCommServerIdType channelId;
 BtVdUuidList uuidList;
 } u;
} BtVdOpenParamsClient;

If you know the address of the Bluetooth device to which you want
to connect, supply the address in remoteDevAddr. Otherwise,
supply an address value of all zeros; this will cause a Bluetooth
device discovery operation to be initiated, allowing the handheld
user to choose the device to connect to.

When connecting to a remote service using RFCOMM, you have
two basic options:

• use SDP to look for one or more UUIDs

• connect to a specific RFCOMM channel ID

You normally specify the service to which to connect by providing a
list of one or more service class UUIDs. Simply set the structure’s
method member to btVdUseUuidList and supply a list of
UUIDs using the uuidList member of the structure’s union. This
will trigger a series of SDP queries, searching for each of the
specified service classes. The first service class that is found on the
remote device will be used. If it suits your application, specify an
empty list of service class UUIDs (set the list count of zero); this

Bluetooth
Bluetooth Virtual Serial Driver

152 Palm OS Programmer’s Companion, Volume II: Communications

causes an SDP query to be made for a default Palm-specific service
class UUID (953D4FBC-8DA3-11D5-AA62-0030657C543C).

The result of a successful SDP query is the RFCOMM server channel
to which to connect on the remote device. To facilitate testing, you
can bypass SDP querying and directly specify the remote RFCOMM
server channel ID. Simply set the structure’s method member to
btVdUseChannelId and set the channelId member of the
structure’s union to the server channel ID.

The call to SrmExtOpen blocks until the RFCOMM connection is
established or it is determined that the connection cannot be
established. The driver displays a progress dialog, giving the user
the opportunity to cancel the connection attempt.

SrmExtOpen returns zero if and only if the RFCOMM connection
was successfully established.

Opening the Port as a Server

Relative to the process of opening the serial port as a client, opening
the port as a server is pretty simple. When playing the server role,
you need only specify the UUID of the service you wish to
advertise. Optionally, you can also specify a user-readable name for
that service.

Specify the service UUID and user-readable name by filling out the
server member of the union in the BtVdOpenParams structure.
This member is a BtVdOpenParamsServer structure, which is
declared as follows:

typedef struct {
 BtLibSdpUuidType uuid;
 const Char *name;
} BtVdOpenParamsServer;

As a convenience, you can specify a null UUID (all binary zeros), in
which case the default Palm-specific service class UUID will be
advertised. (953D4FBC-8DA3-11D5-AA62-0030657C543C).

The call to SrmExtOpen returns immediately, without waiting for
an incoming RFCOMM connection. To wait for incoming data,
periodically call either SrmReceive, SrmReceiveWait, or
SrmReceiveCheck.

Bluetooth
Bluetooth Virtual Serial Driver

Palm OS Programmer’s Companion, Volume II: Communications 153

Example

The following code excerpt illustrates a call to SrmExtOpen that,
acting as a client, creates an RFCOMM virtual serial port and
connects to a known RFCOMM channel on a remote device:

Err err;
SrmOpenConfigType config;
BtVdOpenParams btParams;
UInt16 btPortId;

config.function = 0; // must be zero
config.drvrDataP = (MemPtr)&btParams;
config.drvrDataSize = sizeof(BtVdOpenParams);

btParams.role = btVdClient; // we are the client side
btParams.u.client.remoteDevAddr.address[0] = ...; // remote device addr byte 1
 ...
btParams.u.client.remoteDevAddr.address[5] = ...; // remote device addr byte 6
btParams.u.client.method = btVdUseChannelId;
btParams.u.client.u.channelId = 0x53;

err = SrmExtOpen(
 sysFileCVirtRfComm, // type of port == RFCOMM
 &config, // port configuration params
 sizeof(config), // size of port config params
 &btPortId // receives the id of this virtual serial port instance
);

Note that this code excerpt will not compile as-is; the remote
Bluetooth device address has not been properly specified.

Palm-to-Palm Communication
Most applications act as clients only. However, in the case of Palm-
to-Palm applications, they may need to act as both clients and
servers. In this case, the virtual serial driver should initially be
configured as a server to advertise its services to the other remote
device. At this point, both devices are acting as servers, advertising
their services. When a user-initiated action causes one of the devices
to reopen the virtual serial driver as a client, it can then discover the
remote device and its advertised service—advertised through a
predefined, agreed-upon UUID—so that a channel can be opened
between the two devices.

Bluetooth
Bluetooth Exchange Library Support

154 Palm OS Programmer’s Companion, Volume II: Communications

How Palm OS Uses the Bluetooth Virtual Serial
Driver
Within the Palm OS, HotSync, PPP, and the Telephony Manager can
all use Bluetooth, although they can only act as clients.

For these clients, the user performs device discovery and device
pairing, if appropriate, from within the Connection Panel. These
clients can then consult the Connection Panel to determine the
address of the remote device, the link key, and the service class to
look for on the remote device. For example, if PPP is using the
connection profile that indicates that the remote device is a phone or
a modem, it looks for the Dialup Networking Service Class UUID.
But if the profile indicates that the remote device is a PC or a LAN
access point, it looks for the LAN Access Using PPP Service Class
UUID.

Bluetooth Exchange Library Support
Accompanying the Bluetooth Library is the Bluetooth Exchange
Library, a shared library that allows applications to support
Bluetooth using the standard Exchange Manager APIs. The
Bluetooth Exchange Library conforms to the Object Push and
Generic Object Exchange profiles.

For more information about the Exchange Manager, see the “Object
Exchange” chapter of the Palm OS Programmer’s Companion.

Detecting the Bluetooth Exchange Library
To check for the presence of the Bluetooth Exchange Library, you
use FtrGet:

err = FtrGet(btexgFtrCreator,
btexgFtrNumVersion, &btExgLibVersion);

If the Bluetooth Exchange Library is present, FtrGet returns
errNone. In this case, the value pointed to by btExgLibVersion
contains the version number of the Bluetooth Exchange Library. The
format of the version number is 0xMMmfsbbb, where MM is the
major version, m is the minor version, f is the bug fix level, s is the

Bluetooth
Bluetooth Exchange Library Support

Palm OS Programmer’s Companion, Volume II: Communications 155

stage, and bbb is the build number. Stage 3 indicates a release
version of the library. Stage 2 indicates a beta release, stage 1
indicates an alpha release, and stage 0 indicates a development
release. So, for example, a value of 0x01013000 would correspond
to the released version 1.01 of the Bluetooth Exchange Library.

Using the Exchange Manager With Bluetooth
Using the Exchange Manager with Bluetooth is almost exactly like
using it with IRDA and SMS. The differences are as follows:

• The URL you use when you send an object has some special
fields specific to Bluetooth.

• Your application may want to know the URL of the device or
devices with which it is communicating. The Exchange
Manager provides a way to get this information.

• The ExgGet and ExgRequest functions are not supported
with Bluetooth.

These differences are discussed further in the following sections.

Bluetooth Exchange URLs

If you send objects using the Bluetooth Exchange Library and use a
URL, you can send the objects to single or multiple devices at the
same time depending on the way the URL is formed. A Bluetooth
Exchange Library URL can have one of the following forms:

_btobex:filename

_btobex://filename

_btobex://?_multi/filename
Performs a device inquiry, presents the available devices to
the user, and allows the user to choose one or more devices.
Sends the object to all selected devices.

_btobex://?_single/filename
Performs a device inquiry, presents the available devices to
the user, and allows the user to choose only one device.
Sends the object to that device.

Bluetooth
Bluetooth Exchange Library Support

156 Palm OS Programmer’s Companion, Volume II: Communications

_btobex://address1[,address2, ...]/filename
Sends the object to the device(s) with the specified Bluetooth
device address(es). The addresses are in the form
“xx:xx:xx:xx:xx:xx”.

Do not combine these URL forms. Doing so may give unintended
results.

Obtaining the URL of a Remote Device

For some applications you need to know the URL that addresses the
remote device from which you receive data. This is especially useful
for games. You can get the URL after calling ExgAccept using a
ExgControl function code as shown in the following code:

ExgCtlGetURLType getUrl;
UInt16 getUrlLen;

// First get the size of the URL
getUrl.socketP = exgSocketP;
getUrl.URLP = NULL;
getUrl.URLSize = 0;
getUrlLen = sizeof(getUrl);
ExgControl(exgSocketP, exgLibCtlGetURL, &getUrl, &getUrlLen);

// Now get the URL
getUrl.URLP = MemPtrNew(getUrl.URLSize);
ExgControl(exgSocketP, exgLibCtlGetURL, &getUrl, &getUrlLen);

// getUrl.URLP points to a null-terminated URL string
// describing the remote device, for example,
// “_btobex://01:23:45:67:89:ab/”
...
// Free the URL after you’re done with it
MemPtrFree(getUrl.URLP);

ExgGet and ExgRequest
The Bluetooth Exchange Library does not support the pull functions
provided by ExgGet and ExgRequest. If you want to perform
these functions, you must use the general Bluetooth Library APIs.
See “Developing Bluetooth-Enabled Applications”.

Palm OS Programmer’s Companion, Volume II: Communications 157

7
Network
Communication
Two different Palm OS® libraries provide network services to
applications:

• The net library provides basic network services using TCP
and UDP via a socket API. This library is discussed in the
section Net Library.

• The Internet library builds on the net library to provide a
socket-like API to high-level Internet protocols such as
HTTP. This library is discussed in the section Internet
Library.

Net Library
The net library allows Palm OS applications to easily establish a
connection with any other machine on the Internet and transfer data
to and from that machine using the standard TCP/IP protocols.

The basic network services provided by the net library include:

• Stream-based, guaranteed delivery of data using TCP
(Transmission Control Protocol).

• Datagram-based, best-effort delivery of data using UDP
(User Datagram Protocol).

You can implement higher-level Internet-based services (file
transfer, e-mail, web browsing, etc.) on top of these basic delivery
services.

IMPORTANT: Applications cannot directly use the net library to
make wireless connections. Use the Internet library for wireless
connections.

Network Communication
Net Library

158 Palm OS Programmer’s Companion, Volume II: Communications

This section describes how to use the net library in your application.
It covers:

• About the Net Library

• Net Library Usage Steps

• Obtaining the Net Library’s Reference Number

• Setting Up Berkeley Socket API

• Setup and Configuration Calls

• Opening the Net Library

• Closing the Net Library

• Version Checking

• Network I/O and Utility Calls

• Berkeley Sockets API Functions

• Extending the Network Login Script Support

About the Net Library
The net library consists of two parts: a netlib interface and a net
protocol stack.

The netlib interface is the set of routines that an application calls
directly when it makes a net library call. These routines execute in
the caller’s task like subroutines of the application. They are not
linked in with the application, however, but are called through the
library dispatch mechanism.

With the exception of functions that open, close, and set up the net
library, the net library’s API maps almost directly to the Berkeley
UNIX sockets API, the de facto standard API for Internet
applications. You can compile an application written to use the
Berkeley sockets API for the Palm OS with only slight changes to the
source code.

The net protocol stack runs as a separate task in the operating
system. Inside this task, the TCP/IP protocol stack runs, and
received packets are processed from the network device drivers.
The netlib interface communicates with the net protocol stack
through an operating system mailbox queue. It posts requests from

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 159

applications into the queue and blocks until the net protocol stack
processes the requests.

Having the net protocol stack run as a separate task has two big
advantages:

• The operating system can switch in the net protocol stack to
process incoming packets from the network even if the
application is currently busy.

• Even if an application is blocked waiting for some data to
arrive off the network, the net protocol stack can continue to
process requests for other applications.

One or more network interfaces run inside the net protocol stack
task. A network interface is a separately linked database containing
code necessary to abstract link-level protocols. For example, there
are separate network interface databases for PPP and SLIP. A
network interface is generally specified by the user in the Network
preference panel. In rare circumstances, interfaces can also be
attached and detached from the net library at runtime as described
in the section “Settings for Interface Selection” later in this chapter.

Constraints

Because it’s unclear whether all future platforms will need or want
network support (especially devices with very limited amounts of
memory), network support is an optional part of the operating
system. For this reason, the net library is implemented as a system
library that is installed at runtime and doesn’t have to be present for
the system to work properly.

When the net library is present and running, it requires an estimated
additional 32 KB of RAM. This in effect doubles the overall system
RAM requirements, currently 32 KB without the net library. It’s
therefore not practical to run the net library on any platform that
has 128 KB or less of total RAM available since the system itself will
consume 64 KB of RAM (leaving only 64 KB for user storage in a 128
KB system).

Because of the RAM requirements, the net library is supported only
on PalmPilot Professional and newer devices running Palm OS 2.0
and later.

Network Communication
Net Library

160 Palm OS Programmer’s Companion, Volume II: Communications

All applications written for Palm OS must pay special attention to
memory and CPU usage because Palm OS runs on small devices
with limited amounts of memory and other hardware resources.
Applications that use the net library, therefore, must pay even more
attention to memory usage. After opening the net library, the total
remaining amount of RAM available to an application is
approximately 12 KB on a PalmPilot Professional and 36KB on a
Palm III™.

Palm OS Garnet versions 5.4 and higher no longer impose a
maximum stack size for the Net Library nor a maximum number of
active, simultaneous network sockets. Individual manufacturers of
Palm OS devices decide on the appropriate stack size and number
of active sockets.

The Programmer’s Interface

There are essentially two sets of API into the net library: the net
library’s native API, and the Berkeley sockets API. The two APIs
map almost directly to each other. You can use the Berkeley sockets
API with no performance penalty and little or no modifications to
any existing code that you have.

The header file <unix/sys_socket.h> contains a set of macros
that map Berkeley sockets calls directly to net library calls. The main
difference between the net library API and the Berkeley sockets API
is that most net library API calls accept additional parameters for:

• A reference number. All library calls in the Palm OS must
have the library reference number as the first parameter.

• A timeout. In consumer systems such as the Palm Powered
handheld, infinite timeouts don’t work well because the end
user can’t “kill” a process that’s stuck. The timeout allows the
application to gracefully recover from hung connections. The
default timeout is 2 seconds.

• An error code. The sockets API by convention returns error
codes in the application’s global variable errno. The net
library API doesn’t rely on any application global variables.
This allows system code (which cannot have global
variables) to use the net library API.

The macros in sys_socket.h do the following:

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 161

For example, consider the Berkeley sockets call socket, which is
declared as:

Int16 socket(Int16 domain, Int16 type,
Int16 protocol);

The equivalent net library call is NetLibSocketOpen, which is
declared as:

NetSocketRef NetLibSocketOpen(UInt16 libRefnum,
NetSocketAddrEnum domain,
NetSocketTypeEnum type, Int16 protocol,
Int32 timeout, Err* errP)

The macro for socket is:

#define socket(domain,type,protocol) \
NetLibSocketOpen(AppNetRefnum, domain, type,
protocol, AppNetTimeout, &errno)

Net Library Usage Steps
In general, using the net library involves the steps listed below. The
next several sections describe some of the steps in more detail.

For an example of using the net library, see the example application
NetSample in the Palm OS Examples directory. It exercises many
of the net library calls.

1. Obtain the net library’s reference number.

Because the net library is a system library, all net library calls
take the library’s reference number as the first parameter. For
this reason, your first step is to obtain the reference number

For... The macros pass...

reference
number

AppNetRefnum (application global variable).

timeout AppNetTimeout (application global variable).

error code Address of the application global errno.

Network Communication
Net Library

162 Palm OS Programmer’s Companion, Volume II: Communications

and save it. See “Obtaining the Net Library’s Reference
Number.”

Set up for using Berkeley sockets API.

You can either use the net library’s native API or the Berkeley
sockets API for the majority of what you do with the net
library. If you’re already familiar with Berkeley sockets API,
you’ll probably want to use it instead of the native API. If so,
follow the steps in “Setting Up Berkeley Socket API.”

2. If necessary, configure the net library the way you want it.

Typically, users set up their networking services by using the
Network preferences panel. Most applications don’t set up
the networking services themselves; they simply access them
through the net library preferences database. In rare
instances, your application might need to perform some
network configuration, and it usually should do so before the
net library is open. See “Setup and Configuration Calls.”

3. Open the net library right before the first network access.

Because of the limited resources in the Palm OS environment, the
net library was designed so that it only takes up extra memory from
the system when an application actually needs to use its services.
An Internet application must therefore inform the system when it
needs to use the net library by opening the net library when it starts
up and by closing it when it exits. See “Opening the Net Library.”

4. Make calls to access the network.

Once the net library has been opened, sockets can be opened and
data sent to and received from remote hosts using either the
Berkeley sockets API or the native net library API. See “Network I/
O and Utility Calls.”

5. Close the net library when you’re finished with it.

Closing the net library frees up the resources. See “Closing
the Net Library.”

Obtaining the Net Library’s Reference Number
To determine the reference number, call SysLibFind, passing the
name of the net library, "Net.lib". In addition, if you intend to use
Berkeley sockets API, save the reference number in the application
global variable AppNetRefnum.

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 163

err = SysLibFind("Net.lib", &AppNetRefnum);
if (err) {/* error handling here */}

Remember that the net library requires Palm OS version 2.0 or later.
If the SysLibFind call can’t find the net library, it returns an error
code.

Setting Up Berkeley Socket API
To set up the use of Berkeley sockets API, do the following:

• Include the header file <unix/sys_socket.h>, provided
with the Palm OS SDK.

• Link your project with the module NetSocket.c, which
declares and initializes three required global variables:
AppNetTimeout, AppNetRefnum, and errno.
NetLibSocket.c also contains the glue code necessary for
a few of the Berkeley sockets functions.

• As described in the previous section, assign the net library’s
reference number to the variable AppNetRefnum.

• Adjust AppNetTimeout’s value if necessary.

This value represents the maximum number of system ticks
to wait before a net library call expires. Most applications
should adjust this timeout value and possibly adjust it for
different sections of code. The following example sets the
timeout value to 10 seconds.

 AppNetTimeout = SysTicksPerSecond() * 10;

Setup and Configuration Calls
The setup and configuration API calls of the net library are normally
only used by the Network preferences panel. This includes calls to
set IP addresses, host name, domain name, login script, interface
settings, and so on. Each setup and configuration call saves its
settings in the net library preferences database in nonvolatile
storage for later retrieval by the runtime calls.

In rare instances, an application might need to perform setup and
configuration itself. For example, some applications might allow

Network Communication
Net Library

164 Palm OS Programmer’s Companion, Volume II: Communications

users to select a particular “service” before trying to establish a
connection. Such applications present a pick list of service names
and allow the user to select a service name. This functionality is
provided via the Network preferences panel. The panel provides
launch codes (defined in SystemMgr.h) that allow an application
to present a list of possible service names to let the end user pick
one. The preferences panel then makes the necessary net library
setup and configuration calls to set up for that particular service.

Usually, the setup and configuration calls are made while the library
is closed. A subset of the calls can also be issued while the library is
open and will have real-time effects on the behavior of the library.
Chapter 66, “Net Library,” in Palm OS Programmer’s API Reference,
describes the behavior of each call in more detail.

Settings for Interface Selection

As you learned in the section “About the Net Library,” the net
library uses one or more network interfaces to abstract low-level
networking protocols. The user specifies which network interface to
use in the Network preference panel.

You can also use net library calls to specify which interface(s)
should be used:

• NetLibIFAttach attaches an interface to the library so that
it will be used when and if the library is open.

• NetLibIFDetach detaches an interface from the library.

• NetLibIFGet returns an interface’s creator and instance
number.

Unlike most net library functions, these functions can be called
while the library is open or closed. If the library is open, the specific
interface is attached or detached in real time. If the library is closed,
the information is saved in the active configuration. See “Network
Configurations” on page 168 for more information about
configurations.

Each interface is identified by a creator and an instance number. You
need these values if you want to attach or detach an interface or to
query or set interface settings. You use NetLibIFGet to obtain this
information. NetLibIFGet takes four parameters: the net library’s
reference number, an index into the library’s interface list, and

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 165

addresses of two variables where the creator and instance number
are returned.

The creator is one of the following values:

• netIFCreatorLoop (Loopback network)

• netIFCreatorSLIP (SLIP network)

• netIFCreatorPPP (PPP network)

If you know which interface you want to obtain information about,
you can iterate through the network interface list, calling
NetLibIFGet with successive index values until the interface with
the creator value you need is returned.

Interface Specific Settings

The net library configuration is structured so that network interface-
specific settings can be specified for each network interface
independently. These interface specific settings are called IF settings
and are set and retrieved through the NetLibIFSettingGet and
NetLibIFSettingSet calls.

• The NetLibIFSettingGet call takes a setting ID as a
parameter along with a buffer pointer and buffer size for the
return value of the setting. Some settings, like login script,
are of variable size so the caller must be prepared to allocate
a buffer large enough to retrieve the entire setting.
(NetLibIFSettingGet returns the required size if you
pass NULL for the buffer. See the NetLibIFSettingGet
description in the reference documentation for more
information.)

• The NetLibIFSettingSet call also takes a setting ID as a
parameter along with a pointer to the new setting value and
the size of the new setting.

If you’re using NetLibIFSettingSet to set the login
script, see the next section.

For an example of using these functions, see the NetSample
example application in the Palm OS Examples directory. The
function CmdSettings in the file CmdInfo.c, for example, shows
how to loop through and obtain information about all of the
network interfaces.

Network Communication
Net Library

166 Palm OS Programmer’s Companion, Volume II: Communications

Setting an Interface’s Login Script

The netIFSettingLoginScript setting is used to store the login
script for an interface. The login script is generated either from the
script that the user enters in the Network preferences panel or from
a script file that is downloaded onto the handheld during a
HotSync® operation. The format of the script is rigid; if a
syntactically incorrect login script is presented to the net library, the
results are unpredictable. The basic format is a series of null-
terminated command lines followed by a null byte at the end of the
script. Each command line has the format:

<command-byte> [<parameter>]

where the command byte is the first character in the line and there is
1 and only 1 space between the command byte and the parameter
string. Table 7.1 lists the possible commands.

Table 7.1 Login Script Commands

Function Command Parameter Example

Send s string s go PPP

Wait for w string w password:

Delay d seconds d 1

Get IP g g

Prompt a string a Enter Name:

Wait for
prompt

f string f ID:

Send CR s string s ^M

Send User
ID

s string s jdoe

Send
Password

s string s mypassword

Plugin
command1

sp string sp plugin:cmd:arg

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 167

The parameter string to the send (s) command can contain the
escape sequences shown in Table 7.2.

Note also that login scripts can be created on a desktop computer
and then installed onto the handheld during synchronization. The
script commands are inspired by the Windows dial-up scripting
command language for dial-up networking. For documentation
from Microsoft, search for the file Script.doc in the Windows
folder. The Network preferences panel on Palm OS supports the
following subset of commands:

set serviceName
set userID
set password
set phoneNumber
set connection
set ipAddr

1. See “Extending the Network Login Script Support.”

Table 7.2 Send Command Escape Sequences

$USERID substitutes user name

$PASSWORD substitutes password

$DBUSERID substitutes dialback user name

$DBPASSWORD substitutes dialback password

 ^c if c is ‘@’ -> ‘_’, then byte value 0 -> 31
else if c is ‘a’ -> ‘z’, then byte value 1 -> 26
else c

<cr> carriage return (0x0D)

<lf> line feed (0x0A)

\" "

 \^ ^

 \< <

 \\ \

Network Communication
Net Library

168 Palm OS Programmer’s Companion, Volume II: Communications

set dynamicIP
set primaryDNS
set secondaryDNS
set queryDNS
set closewait
set inactivityTimeout
set establishmentTimeout
set protocol
waitfor
transmit
getip
delay
prompt
waitforprompt
plugin "pluginname:cmd[:arg]"

The plugin command is a Palm OS-specific extension used to
perform a command defined in a plugin. See “Extending the
Network Login Script Support” for more information on plugins.

Create a script file with the extension .pnc or .scp and place it in
the user’s install directory. The network conduit will download it to
the handheld during the next HotSync operation. Each script file
should contain only one service definition.

General Settings

In addition to the interface-specific settings, there’s a class of
settings that don’t apply to any one particular interface. These
general settings are set and retrieved through the
NetLibSettingGet and NetLibSettingSet calls. These calls
take setting ID, buffer pointer, and buffer size parameters.

Network Configurations

Palm OS 3.2 and later supports network configurations. A
configuration captures a particular way the user can connect to the
internet. The net library maintains an array of configurations. When
the net library is opened, the network settings for the connection are
supplied by one of the configurations in the array.

A configuration contains the following information:

• the network interfaces used by the net library. When the net
library is opened, it brings up these network interfaces.

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 169

• general net library settings. These are the settings accessed by
the NetLibSettingGet and NetLibSettingSet
functions.1

The configuration array is unchanged after a soft reset. It is erased
and reinitialized after a hard reset. See Figure 7.1 on page 169 for a
diagram of the configuration array.

Figure 7.1 Configuration architecture

1. Except the trace settings. These settings are global—they are not different for dif-
ferent configurations.

Network Communication
Net Library

170 Palm OS Programmer’s Companion, Volume II: Communications

A configuration can be an alias. An alias does not contain any
configuration information. Instead, it points to another
configuration. The net library defines an alias for each of the
following configurations:

• A default configuration for general use

• Wireline configuration for general use

• Wireless configuration for general use

• Wireline configuration for use with the Palm.net proxy
server

• Wireless configuration for use with the Palm.net proxy
server

You can specify an alias anywhere in the API you would specify a
configuration.

An example of an alias is the first configuration in the configuration
array, called the default configuration. When you call NetLibOpen
to open the net library, the net library gets its connection settings
from this configuration. The default configuration typically points
to the sixth configuration, called “NetPanel” that actually contains
the settings. Therefore, when you call NetLibOpen, the net library
gets its settings from the “NetPanel” configuration. See “Opening
the Net Library.”

The net library maintains another special configuration called the
active configuration. This configuration is a copy of the
configuration used when the net library was last opened. When you
attach or detach network interfaces or modify general net library
settings, you modify the active configuration. Changing the active
configuration this way does not affect any stored configurations.

NOTE: You cannot open the net library according to the settings
in the active configuration. You need to save the active
configuration before you can use its settings to open the net
library.

The net library provides functions to manage configurations. These
functions have names beginning with NetLibConfig.

• NetLibConfigList returns a list of all configurations by
name. You could use this to display a list of available

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 171

configurations to your users and allow them to choose which
one should be used.

• NetLibConfigIndexFromName obtains a configuration’s
index number from its name. Most configuration functions
use the index number to refer to an configuration instead of
its name.

• NetLibConfigAliasGet obtains the value of a
configuration alias.

• NetLibConfigAliasSet sets the configuration alias to
point to a specific configuration.

• NetLibConfigSaveAs defines a new configuration and
saves it by name.

• NetLibConfigDelete deletes a configuration from the list.

WARNING! The Network Panel may interfere with your
configuration. When the user exits after making a modification to
a service in the Network Panel, the Network Panel overwrites the
“NetPanel” configuration and resets the default configuration
alias to point to the “NetPanel” configuration.

Suppose your application requires the use of wireless
communications. It could obtain access to the user’s default wireless
setup and use it to initialize the net library in the following way (the
constant netCfgNameDefWireless defines the name of the
default wireless configuration alias):

UInt16 configIndex, ifErr;
Err err;

err = NetLibConfigIndexFromName(ref,
netCfgNameDefWireless, &configIndex);

if (!err)
err = NetLibOpenConfig(ref, configIndex, 0,

&ifErr);

Listing 7.1 shows another example of using the configuration
functions. It demonstrates how to create a configuration that uses a
custom network interface. The code also points the default
configuration alias to the new configuration so NetLibOpen will
open the library according to the settings in the new configuration.

Network Communication
Net Library

172 Palm OS Programmer’s Companion, Volume II: Communications

Listing 7.1 Creating a configuration

#define myNetIFCreator ‘....’ // Set this value

Err CreateMyConfig () {
Err err;
UInt16 instance;
UInt32 creator;
UInt16 netLibRefNum;
UInt16 index;
NetConfigNameType myConfigName = { "..." }; // Set this too

// Find the reference number of the Net Library
err = SysLibFind("Net.lib",&netLibRefNum);
if (err) return err;

// Activate the default configuration
err = NetLibConfigMakeActive(netLibRefNum,0);
if (err) return err;

// Detach all network interfaces
while (true) {

err = NetLibIFGet(netLibRefNum,0,&creator,&instance);
if (err) break;
err = NetLibIFDetach(netLibRefNum,creator,instance,1000L);
if (err) return err;

}

// Attach the custom network interface
err = NetLibIFAttach(netLibRefNum,myNetIFCreator,0,1000L);
if (err) return err;

// Save the configuration so you can use it to open the Net Library
err = NetLibConfigSaveAs(netLibRefNum,&myConfigName);
if (err) return err;

// Get the index of the new configuration
err = NetLibConfigIndexFromName(netLibRefNum,&myConfigName,&index);
if (err) return err;

// Point the default configuration alias to the new configuration
err = NetLibConfigAliasSet(netLibRefNum,0,index);
return err;

}

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 173

Opening the Net Library
Call NetLibOpen to open the net library, passing the reference
number you retrieved through SysLibFind. Before the net library
is opened, most calls issued to it fail with a netErrNotOpen error
code.

err = NetLibOpen(AppNetRefnum, &ifErrs);
if (err || ifErrs) {/* error handling here */}

Multiple applications can have the library open at a time, so the net
library may already be open when NetLibOpen is called. If so, the
function increments the library’s open count, which keeps track of
how many applications are accessing it, and returns immediately.
(You can retrieve the open count with the function
NetLibOpenCount.)

If the net library is not already open, NetLibOpen starts up the net
protocol stack task, allocates memory for internal use by the net
library, and brings up the network connection. Most likely, the user
has configured the Palm Powered handheld to establish a SLIP or
PPP connection through a modem and in this type of setup,
NetLibOpen dials up the modem and establishes the connection
before returning.

If any of the attached network interfaces (such as SLIP or PPP) fail to
come up, the final parameter (ifErrs in the example above)
contains the error number of the first interface that encountered a
problem.

It’s possible, and quite likely, that the net library will be able to open
even though one or more interfaces failed to come up (due to bad
modem settings, service down, etc.). Some applications may
therefore wish to close the net library using NetLibClose if the
interface error parameter is non-zero and display an appropriate
message for the user. If an application needs more detailed
information, e.g. which interface(s) in particular failed to come up, it
can loop through each of the attached interfaces and ask each one if
it is up or not. For example:

UInt16 index, ifInstance;
UInt32 ifCreator;
Err err;

Network Communication
Net Library

174 Palm OS Programmer’s Companion, Volume II: Communications

UInt8 up;
Char ifName[32];
...
for (index = 0; 1; index++) {
 err = NetLibIFGet(AppNetRefnum, index,
 &ifCreator, &ifInstance);
 if (err) break;

 settingSize = sizeof(up);
 err = NetLibIFSettingGet(AppNetRefnum,
 ifCreator, ifInstance, netIFSettingUp, &up,
 &settingSize);
 if (err || up) continue;
 settingSize = 32;
 err = NetLibIFSettingGet(AppNetRefnum,
 ifCreator, ifInstance, netIFSettingName,
 ifName, &settingSize);
 if (err) continue;

 //display interface didn’t come up message
}
NetLibClose(AppNetRefnum, true);

On Palm OS 3.2 or later, you can open the net library with a specific
network configuration (see “Network Configurations”) with the
function NetLibOpenConfig. Typically, you’d specify one of the
configuration aliases. For example, your application might require a
wireline network, so you would open the net library with the
configuration netCfgNameDefWireline to specify the user’s
default wireline connection. On Palm OS 3.2 or later, NetLibOpen
simply calls NetLibOpenConfig specifying the user’s default
configuration.

Closing the Net Library
Before an application quits, or if it no longer needs to do network
I/O, it should call NetLibClose.

err = NetLibClose(AppNetRefnum, false);

NetLibClose simply decrements the open count. The false
parameter specifies that if the open count has reached 0, the net
library should not immediately close. Instead, NetLibClose

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 175

schedules a timer to shut down the net library unless another
NetLibOpen is issued before the timer expires. When the net
library’s open count is 0 but its timer hasn’t yet expired, it’s referred
to as being in the close-wait state.

Just how long the net library waits before closing is set by the user
in the Network preferences panel. This timeout value allows users
to quit from one network application and launch another
application within a certain time period without having to wait for
another network connection establishment.

If NetLibOpen is called before the close timer expires, it simply
cancels the timer and marks the library as fully open with an open
count of 1 before returning. If the timer expires before another
NetLibOpen is issued, all existing network connections are brought
down, the net protocol stack task is terminated, and all memory
allocated for internal use by the net library is freed.

It’s recommended that you allow the net library to enter the close-
wait state. However, if you do need the net library to close
immediately, you can do one of two things:

• Set NetLibClose’s second parameter to true. This
parameter specifies whether the library should close
immediately or not.

• Call NetLibFinishCloseWait. This function checks the
net library to see if it’s in the close-wait state and if so,
performs an immediate close.

Version Checking
Besides using SysLibFind to determine if the net library is
installed, an application can also look for the net library version
feature. This feature is only present if the net library is installed.
This feature can be used to get the version number of the net library
as follows:

UInt32* version;
err = FtrGet(netFtrCreator, netFtrNumVersion,
 &version);

If the net library is not installed, FtrGet returns a non-zero result
code.

Network Communication
Net Library

176 Palm OS Programmer’s Companion, Volume II: Communications

The version number is encoded in the format 0xMMmfsbbb, where:

For example:

V1.1.2b3 would be encoded as 0x01122003

V2.0a2 would be encoded as 0x02001002

V1.0.1 would be encoded as 0x01013000

This document describes version 2.01 of the net library
(0x02013000).

Network I/O and Utility Calls
For the network I/O and utility calls, you can either make calls
using Berkeley sockets API or using the net library’s native API.

Several books have been published that describe how to use
Berkeley sockets API to perform network communication. Net
library API closely mirrors Berkeley sockets API in this regard.
However, you should keep in mind these important differences
between using networking I/O on a typical computer and using net
library on a Palm Powered handheld:

• You can open a maximum of four sockets at once in the net
library. This is to keep net library’s memory requirements to
a minimum.

• When you try to send a large block of data, the net library
automatically buffers only a portion of that block because of
the limited available dynamic memory. The function call
returns the number of bytes of data that it actually
transmitted. You must check the return value and if there’s
more data to send, call the function again until the
transmission is finished.

MM major version

m minor version

 f bug fix level

 s stage: 3-release, 2-beta, 1-alpha, 0-development

bbb build number for non-releases

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 177

• If you expect to also receive data during a large transmission,
you should send a smaller block, then read back whatever is
available to read before sending the next block. In this way,
the amount of memory in the dynamic heap that must be
used to buffer data waiting to send out and data waiting to
be read back in by the application is kept to a minimum.

For more information, see the following:

• The next section, “Berkeley Sockets API Functions,” provides
tables that list the supported Berkeley sockets calls, the
corresponding native net library call, and gives a brief
description of what each call does.

• Chapter 66, “Net Library,” of the Palm OS Programmer’s API
Reference provides detailed descriptions of each net library
call. Where applicable, it gives the equivalent sockets API call
for each net library native call.

• The NetSample example application in the Palm OS
Examples directory shows how to use the Berkeley sockets
API in Palm OS applications.

Berkeley Sockets API Functions
This section provides tables that list the functions in the Berkeley
sockets API that are supported by the net library. In some cases, the
calls have limited functionality from what’s found in a full
implementation of the sockets API and these limitations are
described here.

Socket Functions

Berkeley
Sockets
Function

Net Library Function Description

accept NetLibSocketAccept Accepts a connection from a stream-
based socket.

bind NetLibSocketBind Binds a socket to a local address.

close NetLibSocketClose Closes a socket.

Network Communication
Net Library

178 Palm OS Programmer’s Companion, Volume II: Communications

connect NetLibSocketConnect Connects a socket to a remote
endpoint to establish a connection.

fcntl NetLibSocketOptionSet

NetLibSocketOptionGet
(...,netSocketOptSock
NonBlocking,...)

Supported only for socket refnums
and the only commands it supports
are F_SETFL and F_GETFL. The
commands can be used to put a
socket into non-blocking mode by
setting the FNDELAY flag in the
argument parameter appropriately
— all other flags are ignored. The
F_SETFL, F_GETFL, and FNDELAY
constants are defined in <unix/
unix_fcntl.h>.

getpeername NetLibSocketAddr Gets the remote socket address for a
connection.

getsockname NetLibSocketAddr Gets the local socket address of a
connection.

getsockopt NetLibSocketOptionGet Gets a socket’s control options. Only
the following options are
implemented:

• TCP_NODELAY

Allows the application to
disable the TCP output
buffering algorithm so that
TCP sends small packets as
soon as possible. This
constant is defined in <unix/
netinet_tcp.h>.

Berkeley
Sockets
Function

Net Library Function Description

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 179

• TCP_MAXSEG

Get the TCP maximum
segment size. This constant is
defined in <unix/
netinet_tcp.h>.

• SO_KEEPALIVE

Enables periodic transmission
of probe segments when there
is no data exchanged on a
connection. If the remote
endpoint doesn’t respond, the
connection is considered
broken, and so_error is set
to ETIMEOUT.

• SO_LINGER

Specifies what to do with the
unsent data when a socket is
closed. It uses the linger
structure defined in <unix/
sys_socket.h>.

• SO_ERROR

Returns the current value of
the variable so_error,
defined in <unix/
sys_socketvar.h>

• SO_TYPE

Returns the socket type to the
caller.

listen NetLibSocketListen Sets up the socket to listen for
incoming connection requests. The
queue size is quietly limited to 1.
(Higher values are ignored.)

Berkeley
Sockets
Function

Net Library Function Description

Network Communication
Net Library

180 Palm OS Programmer’s Companion, Volume II: Communications

read, recv,
recvmsg,
recvfrom

NetLibReceive
NetLibReceivePB

Read data from a socket. The recv,
recvmsg, and recvfrom calls
support the MSG_PEEK flag but not
the MSG_OOB or MSG_DONTROUTE
flags.

select NetLibSelect Allows the application to block on
multiple I/O events. The system will
wake up the application process
when any of the multiple I/O events
occurs.

This function uses the timeval
structure defined in <unix/
sys_time.h> and the fd_set
structure defined in sys/types.h.

Also associated with this function
are the following four macros
defined in <unix/sys_types.h>:

• FD_ZERO

• FD_SET

• FD_CLR

• FD_ISSET

Besides socket descriptors, this
function also works with the “stdin”
descriptor, sysFileDescStdIn.
This descriptor is marked as ready
for input whenever a user or system
event is available in the event queue.
This includes any event that would
be returned by EvtGetEvent. No
other descriptors besides
sysFileDescStdIn and socket
refnums are allowed.

Berkeley
Sockets
Function

Net Library Function Description

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 181

send,
sendmsg,
sendto

NetLibSend
NetLibSendPB

These functions write data to a
socket. These calls, unlike the recv
calls, do support the MSG_OOB flag.
The MSG_PEEK flag is not applicable
and the MSG_DONTROUTE flag is not
supported.

setsockopt NetLibSocketOptionSet This function sets control options of
a socket. Only the following options
are allowed:

• TCP_NODELAY

• SO_KEEPALIVE

• SO_LINGER

shutdown NetLibSocketShutdown Similar to close(); however, it
gives the caller more control over a
full-duplex connection.

socket NetLibSocketOpen Creates a socket for
communication.The only valid
address family is AF_INET. The only
valid socket types are
SOCK_STREAM, SOCK_DGRAM, and
in Palm OS version 3.0 and higher,
SOCK_RAW. The protocol parameter
should be set to 0.

write NetLibSend Writes data to a socket.

Berkeley
Sockets
Function

Net Library Function Description

Network Communication
Net Library

182 Palm OS Programmer’s Companion, Volume II: Communications

Supported Network Utility Functions

Berkeley
Sockets
Function

Net Library Function Description

getdomainname NetLibSocketOptionGet
(..,
netSettingDomainName,
...)

Returns the domain name of the
local host.

gethostbyaddr NetLibGetHostByAddr Looks up host information given
the host’s IP address. It returns a
hostent structure, as defined in
<netdb.h>.

gethostbyname NetLibGetHostByName Looks up host information given
the host’s name. It returns a
hostent structure which is
defined in <netdb.h>.

gethostname NetLibSettingGet(..,
netSettingHostName,
...)

Returns the name of the local host.

getservbyname NetLibGetServByName Returns a servent structure,
defined in <netdb.h> given a
service name.

gettimeofday glue code using
TimGetSeconds

Returns the current date and time.

setdomainname NetLibSettingSet(..,
netSettingDomainName,
...)

Sets the domain name of the local
host.

sethostname NetLibSettingSet(..,
netSettingHostName,
...)

Sets the name of the local host.

settimeofday glue code using
TimSetSeconds

Sets the current date and time.

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 183

Supported Byte Ordering Macros

The byte ordering macros are defined in <unix/netinet_in.h>.
They convert an integer between network byte order and the host
byte order.

Supported Network Address Conversion Functions

The network address conversion functions are declared in the
<unix/arpa_inet.h> header file. They convert a network
address from one format to another, or manipulate parts of a
network address.

Berkeley
Sockets
Macro

Description

htonl Converts a 32-bit integer from host byte order to network byte order.

htons Converts a 16-bit integer from host byte order to network byte order.

ntohl Converts a 32-bit integer from network byte order to host byte order.

ntohs Converts a 16-bit integer from network byte order to host byte order.

Berkeley
Sockets
Function

Net Library
Function

Description

inet_addr NetLibAddrAToIN Converts an IP address from dotted
decimal format to 32-bit binary format.

inet_network glue code Converts an IP network number from a
dotted decimal format to a 32-bit binary
format.

inet_makeaddr glue code Returns an IP address in an in_addr
structure given an IP network number and
an IP host number in 32-bit binary format.

inet_lnaof glue code Returns the host number part of an IP
address.

Network Communication
Net Library

184 Palm OS Programmer’s Companion, Volume II: Communications

Extending the Network Login Script Support
Beginning in Palm OS 3.3, you can write a plugin that extends the
list of available script commands in the Network preferences panel.
You might do so, for example, if:

• You are a corporate IT shop, system integrator, or a token
card vendor and want the login script to properly respond to
a range of different connection scenarios defined by the
authentication server.

• You are a token card vendor and you want to create the Palm
OS version of your password generator.

• You want to perform conditional tests and branching during
the execution of the script.

The login script enhancement can also be installed on any Palm
Powered handheld that already has network library support (that is,
PalmPilot™ Professional and newer devices running Palm OS 2.0 or
higher). To do so, you install a file named Network.prc along with
a PRC file for the network interface you use (i.e., PPP or SLIP).
These files provide the new Network preferences panel, which
contains support for some new commands and support for the
ability to write script plugins.

The sections below describe the basics of how to write a login script
plugin. For more detailed information on the API you use to write a
plugin, see the chapter “Script Plugin” on page 1555 in the Palm OS
Programmer’s API Reference.

Writing the Login Script Plugin

To write a login script plugin, you create a project like you normally
would; however, specify 'scpt' as the database type instead of

inet_netof glue code Returns the network number part of an IP
address.

inet_ntoa NetLibAddrINToA Converts an IP address from 32-bit format
to dotted decimal format.

Berkeley
Sockets
Function

Net Library
Function

Description

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 185

'appl'. (If you’re using Metrowerks CodeWarrior, you specify the
database type in the PalmRez post linker panel.)

In the PilotMain function, the plugin should respond to two
launch codes:

• scptLaunchCmdListCmds to inform the Network
preferences panel of the commands your plugin implements.

• scptLaunchCmdExecuteCmd to execute one of your
commands.

Responding to scptLaunchCmdListCmds

The Network preferences panel sends the
scptLaunchCmdListCmds launch code when it is constructing the
pull-down list of available commands that it displays in its script
view. The panel sends this launch code to all PRCs of type 'scpt'.
It passes an empty structure of type PluginInfoType as its
parameter block. Your plugin should respond by filling in the
structure with the following information:

– The name of your plugin (the name of the PRC file)

– The number of commands your plugin implements. No
more than pluginMaxNumOfCmds is allowed.

– An array containing the name of each command your
plugin implements and a Boolean value that indicates
whether your plugin takes an argument.

A given handheld might have multiple plugins installed. If so, the
resulting pull-down list contains the union of all commands
supported by all of the plugins installed on the handheld. For this
reason, you should make sure the command names you supply are
unique. You also should make sure the names are as brief as
possible, as only 15 characters are allowed for the name.

Responding to scptLaunchCmdExecuteCmd

The scptLaunchCmdExecuteCmd launch code is sent when the
login script is being executed. That is, the user has attempted to
connect to the network service specified in the Network preferences
panel, and the panel is executing the script to perform
authentication.

Network Communication
Net Library

186 Palm OS Programmer’s Companion, Volume II: Communications

The scptLaunchCmdExecuteCmd parameter block is a structure
of type PluginExecCmdType. It contains:

• The name of the command to be executed

• The command argument, if it takes one

• A pointer to a network interface function

• A handle to information specific to the current connection

Your plugin should execute the specified command. When a plugin
is launched with this code, it is launched as a subroutine and as
such does not have access to global variables. Also keep in mind
that the network library and a connection application (such as the
HotSync application) are already running when the plugin is
launched. Thus, available memory and stack space are extremely
limited.

To perform most of its work, the plugin command probably needs
access to the network interface (such as SLIP or PPP) specified for
the selected network service. For this reason, the plugin is passed a
pointer to a callback function defined by the network interface. The
plugin should call this function when it needs to perform the
following tasks:

• Read a number of bytes from the network

• Write a number of bytes to the network

• Get the user’s name and password information

• Write a string to the connection log

• Prompt the user for information

• Check to see if the user pressed the Cancel button

• Display a form

• Obtain access to the serial library

The callback’s prototype is defined by
ScriptPluginSelectorProc. It takes as arguments the handle
to the connection-specific data passed in with the launch code, the
task that the network interface should perform (specified as a
pluginNetLib... constant), followed by a series of parameters
whose interpretations depend on which task is to be performed.

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 187

For example, the following code implements the command “Send
Uname”, which sends the user’s name to the host computer.

Listing 7.2 Simple Script Plugin Command

#define pluginSecondCmd "Send Uname"

UInt32 PilotMain(UInt16 cmd, void *cmdPBP,
UInt16 launchFlags) {
PluginExecCmdPtr execPtr;
UInt32 error = success;
Int16 dataSize = 0;
Char* dataBuffer = NULL;
ScriptPluginSelectorProcPtr selectorTypeP;

if (cmd == scptLaunchCmdExecuteCmd) {
 execPtr = (PluginExecCmdPtr)cmdPBP;
 selectorTypeP = execPtr->procP->selectorProcP;

 dataBuffer = MemPtrNew(pluginMaxLenTxtStringArg+1);
 if (!dataBuffer) {
 return failure;
 }
 MemSet(dataBuffer,pluginMaxLenTxtStringArg+1,0);

 if (!StrCompare(execPtr->commandName, pluginSecondCmd)) {

 /* get the user name from the network interface */
 error = (selectorTypeP)(execPtr->handle,
 pluginNetLibGetUserName, (void*)dataBufferP,
&dataSize, 0,
 NULL);
 if (error) goto Exit;

 dataSize = StrLen((Char*)dataBufferP);

/* have the network interface send the user name to the host
*/
 error = (selectorTypeP)(execPtr->handle,
 pluginNetLibWriteBytes, (void*)dataBufferP,
&dataSize, 0,
 NULL);

 return error;
 }
}

Network Communication
Net Library

188 Palm OS Programmer’s Companion, Volume II: Communications

If your command needs to interact with the user, it must do so
through the network interface. When the connection attempt is
taking place, the user sees either the Network preferences panel or
the HotSync application. Your plugin does not have control of the
screen, so you cannot simply display a form. You have two options:

• The network interface can display a prompt for you and
return the value that the user enters in response. It can also
query the Network preferences panel to see if the user
cancelled the connection attempt.

• If you want to do more than simply display a prompt or
check the cancel status, you can use the command
pluginNetLibCallUIProc to display a form and call your
own user interface routine.

To use pluginNetLibCallUIProc, you must do the following:

1. Initialize the form using a form resource that you’ve created.

2. Create a struct that contains your form’s handle and any
other values that you are going to need in your user interface
routine.

3. Call the network interface’s callback function with the
pluginNetLibCallUIProc command, the structure with
the form’s handle and other pertinent information, and the
address of a function in your plugin that will perform the
user interface routine. This function should take one
argument—the struct you’ve passed to the network
interface—and return void.

4. When the call to the network interface returns, close the
form.

For an example of using pluginNetLibCallUIProc, see the
functions WaitForData and promptUser in the example code
ScriptPlugin.c.

Socket Notices
Palm OS Garnet version 5.4 introduces a mechanism that allows an
application to respond when a socket changes state—for instance,
when a socket is closed or when the socket receives TCP data. This
mechanism is called a socket notice. Your application registers for a
socket notice by calling NetLibSocketOptionSet() and passing

Network Communication
Net Library

Palm OS Programmer’s Companion, Volume II: Communications 189

in the condition (the socket state changes you are interested in) and
the notice type (the means by which Palm OS communicates with
your application—for instance, by sending a notification).

NOTE: In Palm OS Garnet version 5.4, socket notices can
communicate with your application only through notifications. No
other means of receiving socket notices is currently supported.

Socket Notifications

The short-hand term for “socket notices that send notifications” is
socket notifications. This section describes how to use socket
notifications in your application:

1. Define a socket notification constant—the notify type. This
constant must be unique to your application.

2. Register for the notification by calling
SysNotifyRegister() and passing in your socket
notification constant and any data your application will need
to handle the notification. The other parameters you pass in
are determined by whether you are registering to receive a
notification through a sysAppLaunchCmdNotify launch
code or a callback function.

3. Prime the socket notice system by calling
NetLibSocketOptionSet(). Among other parameters,
you pass in a pointer to an option value whose type is
NetSocketNoticeType. This structure tells Net Library
the following information:

a. Notice type. Use the constant
netSocketNoticeNotify to identify a socket notice
that uses notifications. This constant is defined in
NoticeTypeEnum)

b. Notify type. This is the socket notification constant you
defined for your application.

c. Conditions. These are flags that indicate which socket
changes you are interested in. If you are interested in all
socket conditions, use the value 0xFFFFFFFF. See
“Socket Notice Trigger Conditions” on page 1468 of Palm
OS Programmer’s API Reference.

Network Communication
Net Library

190 Palm OS Programmer’s Companion, Volume II: Communications

4. Handle the notification.

a. Cast the incoming parameter block as a
SysNotifyNetSocketType. (For details on this type,
see “Socket Notification Specific Data” on page 87 of Palm
OS Programmer’s API Reference).

b. Find out what condition(s) triggered the notification. Do
this by checking the condition field of the
SysNotifyNetSocketType structure.

c. Perform the appropriate actions.

5. Re-prime the socket notice system in order to receive the next
notification. Normally, you do that by calling
NetLibSocketOptionSet() in your notification handler.

Notice vs. Notification

The terms notices and notifications refer to related, but distinct
things. A socket notice is net library functionality that
communicates to an application when a socket condition has
changed. There are various means by which this communication
might take place, not all of which are currently implemented.
Currently, net library causes the system to send a notification to
your application. In future, however, Net Library might be able to
post an event to the event queue or to send a message to a specified
mailbox ID.

Unsupported Code in NetMgr.h

If you are perusing NetMgr.h, you may encounter code that is
currently not supported but that may be supported in future
versions of Palm OS. For the present, you may ignore such code,
including:

• Most of the NoticeTypeEnum definition. Only
netSocketNoticeNotify can currently be used. The other
enum constants—such as netSocketNoticeEvent and
netSocketNoticeCallback—are not available in Palm
OS Garnet version 5.4.

Network Communication
Internet Library

Palm OS Programmer’s Companion, Volume II: Communications 191

NOTE: The socket notice callback is not supported in Palm OS
Garnet version 5.4. Do not confuse it with the notification callback,
which is implemented as indicated in “Socket Notifications” on
page 189.

• The NetSocketNoticeEventType,
NetSocketNoticeMailboxType,
NetSocketNoticeCallbackPtr definitions. These are not
currently supported.

• Most of the notice union in NetSocketNoticeType.
Only the notify structure of that union is supported. The
event, mailbox, callback, and wake structures are not
supported.

Related Sections

In order to make socket notifications work, you will need to
understand how regular notifications work. For that purpose,
consult the following:

• “Notifications”section in Chapter 2, “Application Startup
and Stop,” of Palm OS Programmer’s Companion, vol. I

• Chapter 3, “Notifications,” in Palm OS Programmer’s API
Reference.

• Chapter 43, “Notification Manager,” in Palm OS
Programmer’s API Reference.

Internet Library
The Internet library provides Palm OS applications easy access to
World Wide Web documents. The Internet library uses the net
library for basic network access and builds on top of the net library's
socket concept to provide a socket-like API to higher level internet
protocols like HTTP and HTTPS.

Using the Internet library, an application can access a web page with
as little as three calls (INetLibURLOpen, INetLibSockRead, and
INetLibSockClose). The Internet library also provides a more
advanced API for those applications that need finer control.

Network Communication
Internet Library

192 Palm OS Programmer’s Companion, Volume II: Communications

NOTE: The information in this section applies only to version 3.2
or later of the Palm OS on Palm VII devices. These features are
implemented only if the Wireless Internet Feature Set is present.

WARNING! In future OS versions, PalmSource, Inc. does not
intend to support or provide backward compatibility for the
Internet library API.

The Internet library is implemented as a system library that is
installed at runtime and doesn’t have to be present for the system to
work properly.

This section describes how to use the Internet library in your
application. It covers:

• System Requirements

• Initialization and Setup

• Accessing Web Pages

• Asynchronous Operation

• Using the Low Level Calls

• Cache Overview

• Internet Library Network Configurations

System Requirements
The Internet library is available only on version 3.2 or later of the
Palm OS on Palm VII devices. Before making any Internet library
calls, ensure that the Internet library is available. You can be sure it
is available by using the following FtrGet call:

err = FtrGet(inetLibFtrCreator,
inetFtrNumVersion, &value);

If the Internet library is installed, the value parameter will be non-
zero and the returned error will be zero (for no error).

When the Internet library is present and running, it requires an
estimated additional 1 KB of RAM, beyond the net library. More

Network Communication
Internet Library

Palm OS Programmer’s Companion, Volume II: Communications 193

additional memory is used for the security library, if that is used
(when accessing secure sites), and for opening a cache database, if
that is used.

Initialization and Setup
Before using the Internet library, an application must call
SysLibFind to obtain a library reference number, as follows:

err = SysLibFind("INet.lib", &libRefNum)

Next, it must call INetLibOpen to allocate an inetH handle. The
inetH handle holds all application specific environment settings
and each application that uses the Internet library gets its own
private inetH handle. Any calls that change the default behavior of
the Internet library affect environment settings stored in the
application's own inetH structure, so these changes will not affect
other applications that might be using the Internet library at the
same time.

INetLibOpen also opens the net library for the application. In
addition, the application can tell INetLibOpen the type of network
service it prefers: wireline or wireless. INetLibOpen queries the
available network interfaces and attaches the appropriate one(s) for
the desired type of service. When the application calls
INetLibClose, the previous interface configuration is restored.
For more information on configurations, see the section “Internet
Library Network Configurations” on page 197.

The Internet library gets some of its default behavior from the
system preferences database, and some of these preference settings
are made by the user via the Wireless preferences panel. The
preferences set by this panel include the proxy server to use and a
setting that determines whether or not the user is warned when the
device ID is sent. Other settings stored in the preferences database
come from Internet library network configurations (see “Internet
Library Network Configurations” on page 197). All these settings
can be queried and/or overridden by each application through the
INetLibSettingGet and INetLibSettingSet calls. However,
any changes made by an application are not stored into the system
preferences, but only take effect while that inetH handle is open.

Network Communication
Internet Library

194 Palm OS Programmer’s Companion, Volume II: Communications

Accessing Web Pages
In the Palm.Net environment, all HTML documents are
dynamically compressed by the Palm Web Clipping Proxy server
before being transmitted to the Palm Powered handheld.

The procedure for reading a page from the network operates as
follows. First, the application passes the desired URL to the
INetLibURLOpen routine, which creates a socket handle to access
that web page. This routine returns immediately before performing
any required network I/O. Then the application calls
INetLibSockRead to read the data, followed by
INetLibSockClose to close down the socket.

Note that if no data is available to read immediately,
INetLibSockRead blocks until at least one byte of data is
available to be read. To implement asynchronous operation using
events, see the next section, Asynchronous Operation.

If an application requires finer control over the operation, it can
replace the call to INetLibURLOpen with other lower-level Internet
library calls (INetLibSockOpen, INetLibSockSettingSet,
etc.) that are described in the section “Using the Low Level Calls”
on page 196.

Asynchronous Operation
A major challenge in writing an Internet application is handling the
task of accessing content over a slow network while still providing
good user-interface response. For example, a user should be able to
scroll, select menus, or tap the Cancel button in the middle of a
download of a web page.

To easily enable this type of functionality, the Internet library
provides the INetLibGetEvent call. This call is designed to
replace the EvtGetEvent call that all traditional, non-network
Palm OS applications use. The INetLibGetEvent call fetches the
next event that needs to be processed, whether that event is a user-
interface event like a tap on the screen, or a network event like some
data arriving from the remote host that needs to be read. If no events
are ready, INetLibGetEvent automatically puts the Palm
Powered handheld into low-power mode and blocks until the next
event occurs.

Network Communication
Internet Library

Palm OS Programmer’s Companion, Volume II: Communications 195

Using INetLibGetEvent is the preferred way of performing
network I/O since it maximizes battery life and user-interface
responsiveness.

With INetLibGetEvent, the process of accessing a web page
becomes only slightly more complicated. Instead of calling
INetLibSockRead immediately after INetLibURLOpen, the
application should instead return to its event loop and wait for the
next event. When it gets a network event that says data is ready at
the socket, then it should call INetLibSockRead.

There are two types of network events that INetLibGetEvent can
return in addition to the standard user-interface events. The first
event is a status change event (inetSockStatusChangeEvent).
This event indicates that the status of a socket has changed and the
application may want to update its user interface. For example,
when calling INetLibURLOpen to access an HTTP server, the
status on the socket goes from “finding host,” to “connecting with
host,” to “waiting for data,” to “reading data,” etc. The event
structure associated with an event of this type contains both the
socket handle and the new status so that the application can update
the user interface accordingly.

The second type of event that INetLibGetEvent can return is a
data-ready event (inetSockReadyEvent). This event is returned
when data is ready at the socket for reading. This event tells the
application that it can call INetLibSockRead and be assured that
it will not block while waiting for data to arrive.

The general flow of an application that uses the Internet library is to
open a URL using INetLibURLOpen, in response to a user
command. Then it repeatedly calls INetLibGetEvent to process
events from both the user interface and the newly created socket
returned by INetLibURLOpen. In response to
inetSockStatusChangeEvent events, the application should
update the user interface to show the user the current status, such as
finding host, connecting to host, reading data, etc. In response to
inetSockReadyEvent events, the application should read data
from the socket using INetLibSockRead. Finally, when all
available data has been read (INetLibSockRead returns 0 bytes
read), the application should close the socket using
INetLibSockClose.

Network Communication
Internet Library

196 Palm OS Programmer’s Companion, Volume II: Communications

Finally, the convenience call INetLibSockStatus is provided so
that an application can query the status of a socket handle. This call
never blocks on network I/O so it is safe to call at any time. It not
only returns the current status of the socket but also whether or not
it is ready for reading and/or writing. It essentially returns the same
information as conveyed via the events inetSockReadyEvent
and inetSockStatusChangeEvent. Applications that don't use
INetLibGetEvent could repeatedly poll INetLibSockStatus
to check for status changes and readiness for I/O, though polling is
not recommended.

Using the Low Level Calls
Applications that need finer control than INetLibURLOpen
provides can use the lower level calls of the Internet library. These
include INetLibSockOpen, INetLibSockConnect,
INetLibSockSettingSet, INetLibSockHTTPReqCreate,
INetLibSockHTTPAttrGet, INetLibSockHTTPAttrSet, and
INetLibSockHTTPReqSend.

A single call to INetLibURLOpen for an HTTP resource is
essentially equivalent to this sequence: INetLibSockOpen,
INetLibSockConnect, INetLibSockHTTPReqCreate, and
INetLibSockHTTPReqSend. These four calls provide the
capability for the application to access non-standard ports on the
server (if allowed), to modify the default HTTP request headers,
and to perform HTTP PUT and POST operations. The only calls here
that actually perform network I/O are INetLibSockConnect,
which establishes a TCP connection with the remote host, and
INetLibSockHTTPReqSend, which sends the HTTP request to the
server.

INetLibSockHTTPAttrSet is provided so that the application
can add or modify the default HTTP request headers that
INetLibSockHTTPReqCreate creates.

INetLibSockSettingSet allows an application finer control
over the socket settings.

Finally, the routine IINetLibURLCrack is provided as a
convenient utility for breaking a URL into its component parts.

Network Communication
Internet Library

Palm OS Programmer’s Companion, Volume II: Communications 197

Cache Overview
The Internet library maintains a cache database of documents that
have been downloaded. This is an LRU (Least Recently Used) cache;
that is, the least recently used items are flushed when the cache fills.
Whether or not a retrieved page is cached is determined by a flag
(inetOpenURLFlagKeepInCache) set in the socket or by
INetLibURLOpen. Another flag
(inetOpenURLFlagLookInCache) determines if the Internet
library should check the cache first when retrieving a URL.

The same cache database can be used by any application using the
Internet library, so that every application can share the same pool of
prefetched documents. Alternately, an application can use a
different cache database. The cache database to use is specified in
the INetLibOpen call.

Generally, a cached item is stored in one or more database records in
the same format as it arrives from the server.

In the cache used by the Web Clipping Application Viewer
application, each record includes a field that contains the “master”
URL of the item. This field is set to the URL of the active PQA, so all
pages linked from one PQA have the same master URL. This
facilitates finding all pages in a hierarchy to build a history list.

The Internet library maintains a list of items in the cache. You can
retrieve items in this list, or iterate over the whole list, by calling
INetLibCacheList. You can retrieve a cached document directly
by using INetLibCacheGetObject.

You can check if a URL is cached by calling INetLibURLGetInfo.

Internet Library Network Configurations
The Internet library supports network configurations. A
configuration is a specific set of values for several of the Internet
library settings (from the INetSettingEnum type).

The Internet library keeps a list of available configurations and
aliases to them. There are three built-in configurations:

• A wireless configuration that uses the Palm.Net wireless
system and the Palm Web Clipping Proxy server.

Network Communication
Internet Library

198 Palm OS Programmer’s Companion, Volume II: Communications

• A wireline configuration that uses the wireline network
configuration specified in the Network preferences panel and
the Palm Web Clipping Proxy server.

• A generic configuration that uses the wireline network
configuration specified in the Network preferences panel and
no proxy server.

You can also define your own configuration by modifying an
existing one and saving it under a different name.

The Internet library also defines several configuration aliases (see
“Configuration Aliases” on page 1892 in the Palm OS Programmer’s
API Reference). An alias is a configuration name that simply points to
another configuration. You can specify an alias anywhere in the API
you would specify a configuration. This facilitates easy re-
assignment of the built-in configurations and eliminates having
duplicate settings. You assign an alias by using
INetLibConfigAliasSet and can retrieve an alias by using
INetLibConfigAliasGet.

For example, to change the default configuration used by the
Internet library for a particular kind of connection, you can set up
the appropriate values for a connection, save the configuration, and
then set the Internet library’s default alias configuration to point to
your custom configuration. When an application specifies which
configuration it wants to use, if it specifies the alias, it will use the
custom settings.

If you use configurations at all, it will probably be to specify a
specific configuration when opening the Internet library via
INetLibOpen. The Internet library also contains an API to allow
you to manipulate configurations in your application, but doing so
is rare. You can list the available configurations
(INetLibConfigList), get a configuration index
(INetLibConfigIndexFromName), select
(INetLibConfigMakeActive) the Internet library network
configuration you would prefer to use (wireless, wireline, etc.),
rename existing configurations (INetLibConfigRename), and
delete configurations (INetLibConfigDelete).

The configuration functions are provided primarily for use by
Preferences panels while editing and saving configurations. The
general procedure is to make the configuration active that you want

Network Communication
Summary of Network Communication

Palm OS Programmer’s Companion, Volume II: Communications 199

to edit, set the settings appropriately, then save the configuration
using INetLibConfigSaveAs. Note that configuration changes
are not saved after the Internet library is closed, unless you call
INetLibConfigSaveAs.

Summary of Network Communication
Net Library Functions

Library Open and Close

NetLibClose
NetLibConnectionRefresh
NetLibFinishCloseWait

NetLibOpen
NetLibOpenCount

Socket Creation and Deletion

NetLibSocketClose NetLibSocketOpen

Socket Options

NetLibSocketOptionGet NetLibSocketOptionSet

Socket Connections

NetLibSocketAccept
NetLibSocketAddr
NetLibSocketBind

NetLibSocketConnect
NetLibSocketListen
NetLibSocketShutdown

Send and Receive Routines

NetLibDmReceive
NetLibReceive
NetLibReceivePB

NetLibSend
NetLibSendPB

Utilities

NetHToNL
NetHToNS
NetLibAddrAToIN
NetLibAddrINToA
NetLibGetHostByAddr
NetLibGetHostByName
NetLibGetMailExchangeByName

NetLibGetServByName
NetLibMaster
NetLibSelect
NetLibTracePrintF
NetLibTracePutS
NetNToHL
NetNToHS

Setup

NetLibIFAttach
NetLibIFDetach
NetLibIFDown
NetLibIFGet
NetLibIFSettingGet

NetLibIFSettingSet
NetLibIFUp
NetLibSettingGet
NetLibSettingSet

Network Utilities

NetUReadN NetUTCPOpen
NetUWriteN

Internet Library Functions

Library Open and Close

INetLibClose INetLibOpen

Settings

INetLibSettingGet INetLibSettingSet

Event Management

INetLibGetEvent

High-Level Socket Calls

INetLibSockClose
INetLibSockRead

INetLibURLOpen

Low-Level Socket Calls

INetLibSockConnect
INetLibSockOpen
INetLibSockSettingGet

INetLibSockSettingSet
INetLibSockStatus

Net Library Functions

Network Communication
Summary of Network Communication

Palm OS Programmer’s Companion, Volume II: Communications 201

HTTP Interface

INetLibSockHTTPAttrGet
INetLibSockHTTPAttrSet

INetLibSockHTTPReqCreate
INetLibSockHTTPReqSend

Utilities

INetLibCheckAntennaState
IINetLibURLCrack
INetLibURLGetInfo

INetLibURLsAdd
INetLibWiCmd

Cache Interface

INetLibCacheGetObject INetLibCacheList

Configuration

INetLibConfigAliasGet
INetLibConfigAliasSet
INetLibConfigDelete
INetLibConfigIndexFromName

INetLibConfigList
INetLibConfigMakeActive
INetLibConfigRename
INetLibConfigSaveAs

Internet Library Functions

Network Communication
Summary of Network Communication

202 Palm OS Programmer’s Companion, Volume II: Communications

Palm OS Programmer’s Companion, Volume II: Communications 203

8
Secure Sockets
Layer (SSL)

SSL Library Architecture
The SslLib library is an implementation of the SSL protocol for use
under Palm OS. The API implements an interface that can be used
to perform SSL and non-SSL network I/O. Figure 8.1 is intended to
help show the relationship between the different components of
SslLib and how they interact with the user’s application.

Secure Sockets Layer (SSL)
SSL Library Architecture

204 Palm OS Programmer’s Companion, Volume II: Communications

Figure 8.1 SSL Library architecture

In this diagram, the following items are labeled.

• Application – This is the user’s application that will be using
the SslLib library to secure its network connections.

Secure Sockets Layer (SSL)
SSL Library Architecture

Palm OS Programmer’s Companion, Volume II: Communications 205

• NetLib API – This is the Palm OS Net Library API. This box
represents calls into that library.

• SslLib API – This is the Palm OS SslLib API. This box
represents calls into that library via it’s public interfaces.

• SSL – The SSL protocol which is under the SslLib API. This
represents the code that performs the SSL encapsulation of
the application’s data.

• Handshake – The SSL protocol, during the initial connection,
performs a message exchange with the remote SSL server.
This box represents the part of the SSL protocol that
implements this exchange.

• Certificate Verification – As part of the SSL handshake,
certificates need to be verified. This box represents the logic
that performs the certificate verification.

• Read/Write Records – The SSL protocol sends and receives
SSL records. This box represents the data structures used to
keep track of the last record read and the next record to be
written.

• Read/Write Buffers – SslLib buffers incoming and outgoing
data. This box represents the data structures used to hold this
data.

• IO Interface – This is the code that sends data from a write
buffer to the network, or the code that reads data from the
network and puts it in the read buffer.

The application will call NetLib directly to configure and establish a
network connection (a NetSocketRef). Once the NetSocketRef
has been configured, it is passed into SslLib by associating the
socket with an SslContext (SslContextSet_Socket()). When a
read or write call is made to SslLib, depending on the mode of
operation the SslContext is configured to operate in
(SslContextSet_Mode()), either the data bytes will be directly
sent, or they will under go SSL processing to encrypt and MAC the
data. The diagram shows how the data bytes always go via the
SslContext’s read/write buffers. These buffers are used to store
bytes waiting to be sent to NetLib and any extra bytes read from
NetLib that have not yet been processed. The SSL protocol initially
enters a handshake state, where the security parameters to use to

Secure Sockets Layer (SSL)
Attributes

206 Palm OS Programmer’s Companion, Volume II: Communications

encrypt and MAC the application’s data bytes are determined. As
part of this process, some certificates need to be verified.

The callback arrows indicate where the application can register to
receive notification of activity in those relevant subsystems. The IO
Interface can return via the info callback
(SslContextSet_InfoCallback()) information about the calls
to NetLib. The SSL box callback indicates the notification of SSL
Protocol Alerts that are received (via the info callback). The
handshake callback arrow indicates the calls to the info callback
when-ever the SSL handshake protocol changes state
(SslContextGet_HsState()). The information returned from
these three access points is mostly of interest for debugging reasons.
The final callback, the Verify callback
(SslContextSet_VerifyCallback()) is often used to modify
the policies regarding certificates.

Attributes
The SslLib library uses two main structures to hold information: the
SslLib structure and the SslContext. The SslContext is used to hold
all information associated with a single SSL network connection. It
contains various flags that govern how the SSL protocol will
operate, and also contains a read buffer and a write buffer where
SSL protocol packets are assembled and disassembled. As part of
the SSL handshake, various structures are created . These include
the security parameters associated with the particular connection
and the certificate from the SSL server that is on the other end of the
network connection. Quite a large number of these attributes can be
retrieved for debugging and informational reasons. Others can be
set by the application to modify the behavior of the SSL protocol.
The SslLib can be though of as a template for many of these options.
The SslLib can have many of its attributes set, and then when an
SslContext is created using the SslLib, these attributes are inherited
directly. These values are copied into the SslContext, so subsequent
changes to the SslLib’s attributes will not modify any existing
SslContext’s.

Attribututes can be broken into two main classes; integer values,
and pointer values. The integer values are numbers that can be set
or retrieved via the SslLibGetLong(), SslLibSetLong(),

Secure Sockets Layer (SSL)
Attributes

Palm OS Programmer’s Companion, Volume II: Communications 207

SslContextGetLong() and SslContextSetLong() calls.
These functions are not normally called directly; instead,
applications typically employ those macros declared in
SslLibMac.h. The pointer-based attributes are similarly set or
retrieved using macros; those macros evaluate to calls to
SslLibGetPtr(), SslLibSetPtr(), SslContextGetPtr()
and SslContextSetPtr(). Whenever an attribute is passed in
via a pointer, the type of the pointer is defined by the attribute being
used. The object that the pointer is pointing to is always copied into
the SslLib or SslContext, so the data element that is passed in does
not need to be preserved. There are some exceptions to this rule.
Pointer-based attributes that are retrived from an SslLib or an
SslContext will always be references to objects held inside the SslLib
or SslContext. If the application wishes these values to be
preserved, it should copy them into local storage.

The attributes can be grouped into several categories: some will
always be used, some will be regularly used and will profoundly
modify the behavior of some of SslLib core functions. Some are to
help debugging, and some are used to configure more subtle
protocol specific internal configuration parameters. The following
sections detail each attribute, grouping them by these categories.

Always-Used Attributes

AutoFlush

This attribute affects the behavior of SslSend() and SslWrite().
When enabled, these functions will attempt to immediately send the
supplied data bytes to the network. If the application performs 200
one-byte SslWrite() calls, this will generate 200 network packets,
each about 80 bytes in size (assuming TCP over Ethernet), for a total
of 16,000 bytes. If this data was buffered, it would have been sent in
a single packet of about 280 bytes. When buffering, there is an
additional advantage in that the write calls will not generate errors
unless the buffer fills. This can be used to simplify routines that
package data for transmission. It is very important to remember to
use the SslFlush() call when AutoFlush is disabled.
SslFlush() will write any data that is in the SslContext’s write
buffer. If an application does not flush this data to the network, the
server application at the other end will not reply, so the application

Secure Sockets Layer (SSL)
Attributes

208 Palm OS Programmer’s Companion, Volume II: Communications

will probably deadlock, awaiting a response from the server that
will never come because the client has not yet sent its data to the
server.

The internal logic in SslLib is as follows:

Int32 SslWrite(...) {
write_data_to_output_buffer(...);
if (ssl->autoflush)
 flush_output_buffer(...);
}

Auto-flush is enabled by default.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_AutoFlush()

SslLib Write: SslLibSet_AutoFlush()

SslContext Read: SslContextGet_AutoFlush()

SslContext Write: SslContextSet_AutoFlush()

CipherSuites

This attribute is used to specify the SSL cipher suites that the SSL
protocol will attempt to use. The pointer refers to an array of UInt8
bytes that specify the SSLv3 cipher suite values, in the order
desired, to be sent to the SSL Server. The first two bytes, in network
byte order, contain the number of bytes that follow. Following these
two bytes are values selected from “Cipher Suites” on page 2207.
Note that each sslCs_RSA... #define is two bytes long.

This value is inherited from the SslLib when an SslContext is
created. Setting CipherSuites with a value of NULL will restore
the use of the default cipher suite list. The default cipher suites list
(including the size bytes) is:

{0x00, 0x08, sslCs_RSA_RC4_128_MD5, sslCs_RSA_RC4_128_SHA1,
sslCs_RSA_RC4_56_SHA1, sslCs_RSA_RC4_40_MD5}

To ensure that an application only uses strong encryption, it should
make the following call:

Secure Sockets Layer (SSL)
Attributes

Palm OS Programmer’s Companion, Volume II: Communications 209

static UInt8 cipherSuites[]={
 0x00,0x04, /* Number of following bytes
 (each value is two bytes) */
 sslCs_RSA_RC4_128_MD5,
 sslCs_RSA_RC4_128_SHA1
};

SslLibSet_CipherSuites(theLibRef, lib, cipherSuites);
/* To change the cipher suite for an existing SslContext */
SslContextSet_CipherSuites(theLibRef, lib, cipherSuites);

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_CipherSuites()

SslLib Write: SslLibSet_CipherSuites()

SslContext Read: SslContextGet_CipherSuites()

SslContext Write: SslContextSet_CipherSuites()

Error

When a fatal error occurs while using an SslContext, the internal
error attribute is set to the error value. The application can retrieve
this error value and change it if it desires. Normally an application
will not change this value, but once the error attribute is set, the
SslLib network APIs will continue to return this error (unless the
error is a non-fatal error) until either an SSL Reset is performed on
the SslContext or the error is cleared, at which point the Error
attribute will be zero. A SSL Reset can be performed with
SslContextSet_Mode():

SslContextSet_Mode(theLibRef, ssl,SslContextGet_Mode(ssl));

Note that SslErrIo is a non-fatal error.

Use the following macros to read and write this attribute:

SslContext Read: SslContextGet_Error()

SslContext Write: SslContextSet_Error()

Secure Sockets Layer (SSL)
Attributes

210 Palm OS Programmer’s Companion, Volume II: Communications

Mode

This attribute is used to turn the SSL protocol on or off. It applies to
the SslContext, and when set to sslModeClear, causes the SSL
protocol to be bypassed. This can be useful for an application since
it can be written to use the SslLib API, and still perform normal non-
SSL data transfers via that API. This will let an application take
advantage of the buffering provided in an SslContext so that it can
perform buffer reads and buffer writes to the network. When an
SslContext has its Mode attribute changed, an SSL Reset occurs.
This clears any SSL state information and sets the SslContext back to
a state ready to establish a new SSL connection. The SSL Session
information is not cleared. This means that an application can start
in sslModeClear, and then switch to sslModeSslClient. If the
application switches back to sslModeClear, and again over to
sslModeSslClient, a new handshake will be performed.

The SslModeSsl is a subset value of sslModeSslClient. In a
future release of SslLib, the server side of the SSL protocol may be
supported in which case sslModeSslServer would be added.

An application can do the following in order to determine if the SSL
protocol is being used:

If (SslContextGet_Mode(theLibRef, ssl) & sslModeSsl)
 /* SSL protocol enabled */
else
 /* Using cleartext */

A comparison with sslModeSslClient could be used to
determine if the client or server side of the protocol is being used for
that particular SslContext.

The sslModeFlush flag is special. When supplied to
SslContextSet_Mode(), it causes any data in the internal data
buffers to be cleared. This is normally required when reusing an
SslContext for a new connection. If an application is using an
SslContext for cleartext, and then wants to enable SSL on the same
connection, this flag should not be used.

By default, the mode attribute is set to sslModeSslClient.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_Mode()

Secure Sockets Layer (SSL)
Attributes

Palm OS Programmer’s Companion, Volume II: Communications 211

SslLib Write: SslLibSet_Mode()

SslContext Read: SslContextGet_Mode()

SslContext Write: SslContextSet_Mode()

“Mode Attribute Values” on page 2203 lists the values that this
attribute can have.

RbufSize

The read and write buffers are used in the SslContext to buffer
incoming and outgoing data. When these values are set for an
SslLib, SslContexts that are created against the SslLib will inherit
the SslLib’s values.

The write buffer size is the maximum number of bytes that can be
buffered before a network write operation is performed. The
number of application data bytes that can be buffered is less than
this number when in SSL mode—approximately 30 bytes less due to
SSL record overheads. If the application writes a 16 kb block of data
and the write buffer is about 1 kb in size, about 16 network packets
will be sent.

The read buffer is a little different from the write buffer in that it
may be automatically increased is size depending on other
configuration information. The SSLv3 protocol supports SSL
Records up to 16 Kbytes in size. Depending on the encryption
cipher being used, the protocol may need to decrypt the record in a
single operation. In this case the read buffer will be increased in size
to buffer the incoming record. See the ReadStreaming option for
advanced usage of the read buffer to decrease latency of data
availability for the application.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_RbufSize()

SslLib Write: SslLibSet_RbufSize()

SslContext Read: SslContextGet_RbufSize()

SslContext Write: SslContextSet_RbufSize()

The read buffer’s default size is 2048 bytes. You can change the size
of the read buffer to any value from 0 to 16384 bytes.

Secure Sockets Layer (SSL)
Attributes

212 Palm OS Programmer’s Companion, Volume II: Communications

Socket

This call is used to specify the NetLib socket that the SslContext
should use to perform its network I/O operations. An SslContext is
unable to perform any network operation until the application
creates and supplies a suitable NetSocketRef. The SslLib library
does not perform any NetLib operations on the supplied
NetSocketRef other than NetLibSend() and
NetLibReceive(). All socket creation and shutdown operations
must be performed by the application.

Use the following macros to read and write this attribute:

SslContext Read: SslContextGet_Socket()

SslContext Write: SslContextSet_Socket()

VerifyCallback

The callback function is used to assist with certificate verification.
See SslCallbackFunc() (documented on page 2241) for more
details on the SslCallback structure and its usages, specifically
when used to assist in certificate verification.

When a new Verify callback is specified, the application passes in a
pointer to an SslCallback structure. This structure is copied into
an internal SslCallback structure. The callback and data fields
are preserved. When the Verify callback structure is copied into an
SslLib, or copied into an SslContext, the callback function is called
with a command of sslCmdNew. When the parent SslLib or
SslContext is destroyed, a sslCmdFree command is issued.. If a
SSL Reset is performed, a sslCmdReset command is issued.
Outside of these situations, the callback will be called during the
certificate verification process as outlined in the documentation for
the SslCallbackFunc() function.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_VerifyCallback()

SslLib Write: SslLibSet_VerifyCallback()

SslContext Read: SslContextGet_VerifyCallback()

SslContext Write: SslContextSet_VerifyCallback()

Secure Sockets Layer (SSL)
Attributes

Palm OS Programmer’s Companion, Volume II: Communications 213

WbufSize

The read and write buffers are used in the SslContext to buffer
incoming and outgoing data. When these values are set for an
SslLib, SslContexts that are created against the SslLib will inherit
the SslLib’s values.

The write buffer size is the maximum number of bytes that can be
buffered before a network write operation is performed. The
number of application data bytes that can be buffered is less than
this number when in SSL mode—approximately 30 bytes less due to
SSL record overheads. If the application writes a 16 kb block of data
and the write buffer is about 1 kb in size, about 16 network packets
will be sent.

The read buffer is a little different from the write buffer in that it
may be automatically increased is size depending on other
configuration information. The SSLv3 protocol supports SSL
Records up to 16 Kbytes in size. Depending on the encryption
cipher being used, the protocol may need to decrypt the record in a
single operation. In this case the read buffer will be increased in size
to buffer the incoming record. See the ReadStreaming option for
advanced usage of the read buffer to decrease latency of data
availability for the application.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_WbufSize()

SslLib Write: SslLibSet_WbufSize()

SslContext Read: SslContextGet_WbufSize()

SslContext Write: SslContextSet_WbufSize()

The write buffer’s default size is 1024 bytes. You can change the size
of the write buffer to any value from 0 to 16384 bytes.

Debugging and Informational Attributes

AppInt32

The AppInt32 attribute is a 32-bit integer value that the application
can read or write as it sees fit. It is present so the application can
attach an arbitrary value to an SslLib or a SslContext.
SslLibDestroy() and SslContextDestroy() do not modify

Secure Sockets Layer (SSL)
Attributes

214 Palm OS Programmer’s Companion, Volume II: Communications

this attribute, so if the data pointed to by this attribute needs to be
disposed of, the application must do this itself.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_AppInt32()

SslLib Write: SslLibGet_AppInt32()

SslContext Read: SslContextGet_AppInt32()

SslContext Write: SslContextSet_AppInt32()

AppPtr

The AppPtr attribute is a pointer value that the application can
read or write as it sees fit. It is present so the application can attach
an arbitrary pointer to an SslLib or a SslContext.
SslLibDestroy() and SslContextDestroy() do not modify
this attribute, so if the data pointed to by this attribute needs to be
disposed of, the application must do this itself. The value of the
AppPtr attribute is NULL by default.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_AppPtr()

SslLib Write: SslLibGet_AppPtr()

SslContext Read: SslContextGet_AppPtr()

SslContext Write: SslContextSet_AppPtr()

CipherSuite

Pass a pointer to a uint8_t pointer in order to retrieve this attribute.
The returned value points to two bytes which identify the cipher
suite being used by the current connection. Possible values for the
cipher suites are:

0x00, 0x00
No cipher suite

0x00, 0x04
sslCs_RSA_RC4_128_MD5

0x00, 0x05
sslCs_RSA_RC4_128_SHA1

Secure Sockets Layer (SSL)
Attributes

Palm OS Programmer’s Companion, Volume II: Communications 215

0x00, 0x64
sslCs_RSA_RC4_56_SHA1

0x00, 0x03
sslCs_RSA_RC4_40_MD5

Also see the CipherSuites attribute for instructions on specifying
which cipher suites SslLib should advertise as available for use
when it initially connects to the SSL server.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_CipherSuite()

CipherSuiteInfo

This function differs from most others in that the application passes
in a structure to be populated from the SslContext. Normally the
SslContext returns a pointer to an internal data structure. This call
returns the information relevant to the current cipher suite.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_CipherSuiteInfo()

ClientCertRequest

The SSL protocol allows the SSL server to request a certificate from
the client. This attribute will be set if the server requested a client
certificate.

SslContext Read: SslContextGet_ClientCertRequest()

Compat

Turn on compatibility with incorrect SSL protocol implementations.
These bugs will not normally be encountered while using the SSL
protocol, but if desired, it is worth enabling the compatibility in case
old buggy servers are being accessed.

See “Compatibility Flags” on page 2204 for the defined constants
that correspond to the compatibility flags. By default, none of these
compatibility flags are set.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_Compat()

SslLib Write: SslLibSet_Compat()

Secure Sockets Layer (SSL)
Attributes

216 Palm OS Programmer’s Companion, Volume II: Communications

SslContext Read: SslContextGet_Compat()

SslContext Write: SslContextSet_Compat()

HsState

This attribute is the state that the SSL protocol is currently in.
Possible values are defined under “SSL Protocol States” on
page 2210. This information is generally only of use during
debugging. See the SSL protocol specification for clarification on
what the values mean.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_HsState()

InfoCallback

This callback is called when various situations occur during the
usage of an SslContext. It is primarily intended for debugging and
feedback purposes. If the callback returns a non-zero value, this
error will be returned back out to the SslLib API. The callback will
be called with a command argument of sslCmdInfo.

A single Info callback is used for notification of four different types
of events. The InfoInterest attribute controls which of these
events will invoke the Info callback.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_InfoCallback()

SslLib Write: SslLibSet_InfoCallback()

SslContext Read: SslContextGet_InfoCallback()

SslContext Write: SslContextSet_InfoCallback()

InfoInterest

This value is used to specify the events for which the
InfoCallback will be called. The value is the logical ORing of the
sslFlgInfo... values listed under “InfoInterest Values” on
page 2209. The sslFlgInfoIo value controls the notification of the
four different Info Callbacks. By default, the InfoInterest
attribute value is zero.

Use the following macros to read and write this attribute:

Secure Sockets Layer (SSL)
Attributes

Palm OS Programmer’s Companion, Volume II: Communications 217

SslLib Read: SslLibGet_InfoInterest()

SslLib Write: SslLibSet_InfoInterest()

SslContext Read: SslContextGet_InfoInterest()

SslContext Write: SslContextSet_InfoInterest()

IoFlags

Since we will normally be using TCP connections with SSL, this
attribute is more included for completeness rather than utility. Read
about this flags value in the NetLibSend() and
NetLibReceive() documentation.

NOTE: The netIOFlagOutOfBand and netIOFlagPeek
values are not valid and will be silently removed.

Use the following macros to read and write this attribute:

SslContext Read: SslContextGet_IoFlags()

SslContext Write: SslContextSet_IoFlags()

IoStruct

The SslContext’s internal SslSocket structure.

Use the following macros to read and write this attribute:

SslContext Read: SslContextGet_IoStruct()

SslContext Write: SslContextSet_IoStruct()

IoTimeout

The SslContext contains internally a default timeout value to pass to
NetLib calls. When a call is made into the SslLib API which does not
specify a timeout, this internal value is used. If the API call has a
timeout value, it overrides this internal value.

By default, the SslContext’s internal timeout value is 10 seconds.

Use the following macros to read and write this attribute:

SslContext Read: SslContextGet_IoTimeout()

SslContext Write: SslContextSet_IoTimeout()

Secure Sockets Layer (SSL)
Attributes

218 Palm OS Programmer’s Companion, Volume II: Communications

LastAlert

The alert values are received from the server and are either fatal or
non-fatal. Non-fatal alerts have a value of the form 0x01XX, while
fatal alerts have the form 0x02XX. SslLib will fail on fatal alerts
and continue on non-fatal alerts. See “SSL Server Alerts” on
page 2212 for the complete list of alerts.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_LastAlert()

LastApi

This attribute is the last SslLib API call that was made.
sslLastApiRead is set if SslRead(), SslPeek() or
SslReceive() was called. sslLastApiWrite is set if
SslWrite() or SslSend() was called. This attribute can be
useful in event driven programs.

See “LastApi Attribute Values” on page 2209 for the set of values
that this attribute can have.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_LastApi()

LastIo

This function can be called to determine the last network operation.
If SslLib, while performing a network operation, encounters an
error, the error value will be returned to the application. Since most
of the SslLib API I/O functions can cause an SSL handshake to be
performed, it is often not possible to know if the reason that a
SslSend() returned netErrWouldBlock is because the send
operation failed or a receive operation failed (because a SSL
Handshake was being performed). This attribute allows the
application to determine which I/O operation was being called if an
network error is returned. If the application is using
NetLibSelect(), this attribute is very important. This attribute
returns the last network operation performed. This means that
sslLastIoNone will only be returned if the SslContext has not
performed any I/O operations since its last reset.

See “LastIO Attribute Values” on page 2210 for the set of values that
this attribute can have.

Secure Sockets Layer (SSL)
Attributes

Palm OS Programmer’s Companion, Volume II: Communications 219

Use the following macro to read this attribute:

SslContext Read: SslContextGet_LastIo()

PeerCert

If the certificate supplied by the other end of the SSL connection is
available, the certificate is returned. The returned pointer references
a data structure which is internal to the SslContext and will be
disposed of by the SslContext. If a new connection is established
with the SslContext, previously returned PeerCert pointers will
become invalid. If the application wishes to preserve the certificate
for an extended period, it should make a local copy.

The SslExtendedItems structure is described in “The
SslExtendedItems Structure” on page 2247.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_PeerCert()

PeerCommonName

This call will return a pointer to an SslExtendedItems structure
which contains the common name for the server’s certificate. If
using SSL in an https context, the client application should ensure
that the common name contained in the servers certificate matches
the URL requested. This function facilitates this functionality. The
pointer returned refers to a data structure from inside the peer
certificate; the offset field in the returned value is relative to the
value returned by SslContextGet_PeerCert().

The following code shows how to access the common name from
within the SslExtendedItems structure (see “The
SslExtendedItems Structure” on page 2247 for a description of this
structure):

SslExtendedItems *cert;
SslExtendedItem *commonName;
uint16_t length;
uint8_t *bytes;

SslContextGet_PeerCert(theLibRef, ssl, &cert);
if (cert == NULL) goto err;
SslContextGet_PeerCommonName(theLibRef, ssl,&commonName);
length=commonName->len;

Secure Sockets Layer (SSL)
Attributes

220 Palm OS Programmer’s Companion, Volume II: Communications

bytes=((Int8 *)cert)+commonName->offset;
// bytes now points to the common name, and length contains
// the length of the common name string.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_PeerCommonName()

ProtocolVersion

The version of the SSL protocol to use. There are 3 versions of the
SSL protocol. SSLv2 which is deprecated due to security flaws,
SSLv3 which is the most widely deployed, and TLSv1, or SSLv3.1.
SslLib implements only SSLv3 at this point in time, so modification
of this value is not a good idea. By default this attribute is set to
sslVersionSSLv3.

See “Protocol Versions” on page 2204 for the defined constants that
correspond to the SSL protocol versions.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_ProtocolVersion()

SslLib Write: SslLibSet_ProtocolVersion()

SslContext Read: SslContextGet_ProtocolVersion()

SslContext Write: SslContextSet_ProtocolVersion()

SessionReused

The SSL protocol has the capability to re-establish a secure
connection with a truncated handshake. This can be performed if
both end-points have communicated previously and share an SSL
Session. An SSL Session is a collection of security attributes that are
normally determined as part of the SSL Handshake. If the SSL
handshake was able to perform a truncated handshake by re-using
the SSL session values in the SslContext, this attribute will have a
non-zero value. See the SslSession attribute.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_SessionReused()

Secure Sockets Layer (SSL)
Attributes

Palm OS Programmer’s Companion, Volume II: Communications 221

SslSession

This attribute is either the SslSession currently being used, or the
SslSession for this SslContext to use to establish its next
connection. The SslSession holds all the security information
associated with a particular SSL connection. If an SslContext is
configured to use the same SslSession as a previous connection
to the same server, the SSL protocol can perform a truncated
handshake that involves less network traffic and a smaller CPU load
on the server.

If a new connection is performed on the SslContext, or another call
is made to retrieve the SslSession, any previously returned
SslSession pointers will become invalid. If the program wants to
keep the SslSession for an extended period, it should make a
local copy.

Use the following macros to read and write this attribute:

SslContext Read: SslContextGet_SslSession()

SslContext Write: SslContextSet_SslSession()

SslVerify

During certificate verification, an SslVerify structure (see “The
SslVerify Structure” on page 2244 for a definition of this structure) is
used in the SslContext to preserve state. The application can
retrieve this structure to help it resolve any problems that SslLib
may have encounterd during certificate verifcation.

When a certificate is being verified and a verification error occurs, if
the application has registered a VerifyCallback the callback will
be called with an argv value pointing to the SslVerify structure.
If there is no callback, or if the callback still reports an error, SslLib
will return the error back to the application. The application can
then decide to look at the certificate verification state (by calling
SslContextGet_SslVerify()) and, if it determines that the
error is not fatal, clear the error and re-call the SslLib API that just
returned the error.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_SslVerify()

Secure Sockets Layer (SSL)
Attributes

222 Palm OS Programmer’s Companion, Volume II: Communications

Advanced Protocol Attributes
The following attributes are not normally used. They give access to
various internal aspects of the SSL protocol and or SslLib.

BufferedReuse

The SSL protocol is capable of performing a truncated handshake if
both endpoints share an SslSession from a previous connection. The
truncated handshake finishes with SslLib sending a SSL handshake
message to the SSL server. If the application then sends a message,
say a URL, under some network stacks a significant delay can be
incurred as the TCP protocol waits for a response from the SSL
server’s TCP stack. This option, if enabled, will buffer the last
message in an SslSession-reused handshake instead of sending it
over the network. The application must send data before it tries to
read any, or more to the point, it must make sure the data is flushed,
ether by having AutoFlush enabled, or by explicitly calling
SslFlush(). There are security implications in that a “man in the
middle” attack would only be detected once the first data bytes are
read from the server. This would mean an attacker could have read
all the bytes in the first message sent to the server. For this reason
this option should not be normally used. By default, this attribute is
set to zero, disabling the buffered reuse option.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_BufferedReuse()

SslLib Write: SslLibSet_BufferedReuse()

SslContext Read: SslContextGet_BufferedReuse()

SslContext Write: SslContextSet_BufferedReuse()

DontSendShutdown

During the SSL protocol shutdown sequence, the two SSL endpoints
swap shutdown messages. This can incur a time penalty since extra
messages need to be exchanged over the network. If
DontSendShutdown is set, then a SslClose() will not send a
shutdown message to the server. If DontWaitForShutdown is set,
then SslLib will not wait for a shutdown message in SslClose().
To perform a correct SSL shutdown, these options should not be on.

Secure Sockets Layer (SSL)
Attributes

Palm OS Programmer’s Companion, Volume II: Communications 223

This attribute has a default value of zero. A non-zero value indicates
that the SSL protocol should be modified.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_DontSendShutdown()

SslLib Write: SslLibSet_DontSendShutdown()

SslContext Read: SslContextGet_DontSendShutdown()

SslContext Write: SslContextSet_DontSendShutdown()

DontWaitForShutdown

During the SSL protocol shutdown sequence, the two SSL endpoints
swap shutdown messages. This can incur a time penalty since extra
messages need to be exchanged over the network. If
DontSendShutdown is set, then a SslClose() will not send a
shutdown message to the server. If DontWaitForShutdown is set,
then SslLib will not wait for a shutdown message in SslClose().
To perform a correct SSL shutdown, these options should not be on.

This attribute has a default value of zero. A non-zero value indicates
that the SSL protocol should be modified.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_DontWaitForShutdown()

SslLib Write: SslLibSet_DontWaitForShutdown()

SslContext Read: SslContextGet_DontWaitForShutdown()

SslContext Write: SslContextSet_DontWaitForShutdown()

ReadBufPending

This attribute is the number of data bytes that are currently buffered
for reading from the SslContext. This number of bytes also include
bytes used for encoding SSL records. This attribute is mostly for
debugging purposes.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_ReadBufPending()

Secure Sockets Layer (SSL)
Attributes

224 Palm OS Programmer’s Companion, Volume II: Communications

ReadOutstanding

This attribute is the number of bytes in the current record that have
not been read from the network. If this value is 0, then all bytes that
have been read from the network have had their MAC checked. If it
is not 0, then the last bytes that have been read have not had their
MAC value checked yet. See the Streaming and ReadStreaming
attributes to see why this value can be useful.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_ReadOutstanding()

ReadRecPending

Unlike ReadBufPending, this attribute is the number of application
data bytes that are buffered, awaiting the application to read. If this
number of bytes is 0, then the next SslRead() or SslReceive()
will cause a NetLibReceive() call.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_ReadRecPending()

ReadStreaming

The SSL protocol exchanges records between its endpoints. A SSL
record can contain up to 16K bytes of data. This record is encrypted
and protected with a cryptographic checksum call a MAC. If the
network is very low speed (300 baud modem), it can be desirable to
allow data to be returned to the application from the SSL connection
before the full record has been downloaded. If the ReadStreaming
flag is on, this protocol modification is enabled. There are security
implications behind this modification. The record MAC is used to
ensure that the data bytes downloaded have not been modified. If
the application has been sent a 16K record, and it is read-streaming
and only processing 300 bytes at a time, those bytes could be
corrupted or forged without SslLib notifiying the application of this
error until the last bytes of the 16K of data is sent. This attribute can
be useful if the application is displaying or saving the downloaded
data and does not want to be stuck in a SslRead() for an extended
period of time. Remember that if read-streaming is turned on, the
data may be invalid and you will only receive notification when the
last bytes are read from the record.

Secure Sockets Layer (SSL)
Sample Code

Palm OS Programmer’s Companion, Volume II: Communications 225

This attribute has a default value of zero. A non-zero value indicates
that the SSL protocol should be modified.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_ReadStreaming()

SslLib Write: SslLibSet_ReadStreaming()

SslContext Read: SslContextGet_ReadStreaming()

SslContext Write: SslContextSet_ReadStreaming()

Streaming

This attribute returns 1 if the current SslContext is doing read-
streaming. Just because the ReadStreaming attribute is set, that
does not mean the SslLib will use read-streaming.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_Streaming()

WriteBufPending

This attribute returns the number of bytes in the SslContext’s write
buffer waiting to be sent to the remote machine. This value will
normally be zero unless AutoFlush is disabled and/or non-blocking
I/O is being used. A SslFlush() will attempt to write these bytes
to the network.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_WriteBufPending()

Sample Code
The following is a simple example that demonstrates the usage of
some of the SslLib libraries functions by way of listing subroutines
that could be used by an application utilizing the SSL protocol.

#include <SslLib.h>

/* We will perform the initial SslLib setup. The SslLib would be
 * created with reasonable default values, which can be modified.
 * Quite a few of these values are
 * 'inherited' during SslContext creation.
 */

Secure Sockets Layer (SSL)
Sample Code

226 Palm OS Programmer’s Companion, Volume II: Communications

Err InitaliseSSL(libRet)
SslLib **libRet;
 {
 SslLib *lib;
 Int16 err;
 lnt32 lvar;

 /* Create the structure */
 if ((err=SslLibCreate(theLibRef, &lib)) != 0)
 return(err);

 /* Make sure we use the SSL protocol by default and increase
 * the write buffer size */
 SslLibSet_Mode(theLibRef, lib,sslModeSslClient);
 SslLibSet_WbufSize(theLibRef, lib,1024*8);

 *libRet=lib;
 return(0);
 }

/* This function would be called to create an sslContext from an open socket
 */
Err CreateSslConnection(SslLib *lib,NetSocketRef socket,SslContext **sslRet)
 {
 SslContext ssl=NULL;
 Int16 err;

 /* We first create a new SslContext.
 * This context will inherit various internal configuration
 * details from the SslLib.
 */
 if ((err=SslContextCreate(theLibRef, lib,&ssl)) != 0)
 return(err);

 /* We now specify the socket to use for IO */
 SslContextSet_Socket(theLibRef, ssl,socket);

 /* At this point we could specify the SSL Mode of operation to use,
 * but since we already specified this for the SslLib, we do not
 * need to do it again.
 */
 //SslContextSet_Mode(theLibRef, ssl,sslModeSslClient);

 /* For this example, we will perform the SSL handshake now. */
 err=SslOpen(theLibRef, ssl,0,30*SysTicksPerSecond());

 *sslRet=ssl;
 return(Err);

Secure Sockets Layer (SSL)
Sample Code

Palm OS Programmer’s Companion, Volume II: Communications 227

 }

/* Shutdown the SSL protocol and return the socket */
Err CloseSslConnection(SslContext ssl,NetSocketRef *retSock)
 {
 NetSocketRef socket;
 SslSession *sslSession;
 MemHandle ssHandle;

 /* We will perform a full SSL protocol shutdown. We could have
 * set a flag against the SslContext earlier, or even against the
 * SslLib to specify the shutdown behavior.
 */
 err=SslClose(theLibRef, ssl,0,10*SysTicksPerSecond());

 /* We have now closed the SSL protocol, but the socket is still open
 * and the SslContext still has SslSession information that
 * other connections to the same site may want to use.
 * In this case we ask for a reference to the SslSession.
 * Since this structure is variable in size, once we have a
 * reference to it, we can duplicate it if we want to keep it.
 */
 SslContextGet_SslSession(theLibRef, ssl,&sslSession);

 ssHandle=MemHandleNew(sslSession->length);
 Memcpy(MemHandleLock(ssHandle),sslSession,sslSession->length)
 MemHandleUnlock(ssHandle);
 /* We now have a handle to a SslSession that we can store
 * for later use with a new connection. We would need to store
 * this SslSession with the relevant hostname/url information
 * to ensure we try to reuse it on only the relevant SSL server.
 * This mapping is application/protocol-specific (urls for https).
 */

 /* We will return the Socket */
 *retSock=SslContextGet_Socket(theLibRef, ssl);

 /* Throw away the SslContext structure */
 SslContextDestroy(theLibRef, ssl);
 return(0);
 }

Err HTTPS_call(SslContext ssl,char *send,Uint16 len,char *reply,Uint32 *outlen)
 {

 Err err;
 Int16 ret;

Secure Sockets Layer (SSL)
Sample Code

228 Palm OS Programmer’s Companion, Volume II: Communications

 /* We will send the 'send' data, and then wait for the response */
 ret=SslSend(theLibRef, ssl,send,len,0,NULL,0,60*SysTicksPerSecond(),&err)
 if (ret <= 0) goto end;

 ret=SslReceive(theLibRef, ssl, reply, *outlen, 0, NULL, 0,
 60*SysTicksPerSecond(), &err);
 if (ret < 0) goto end;
 *outlen=ret;
end:
 return(err);
 }

Palm OS Programmer’s Companion, Volume II: Communications 229

9
Internet and
Messaging
Applications
This chapter provides an overview of wireless Internet access with
the Palm OS® and describes the programmatic interfaces to the Web
Clipping Application Viewer and email applications.

NOTE: You cannot use the features described in this chapter
with a version of the Palm OS earlier than version 3.2.

WARNING! The Web Clipping Application Viewer is only
present on a limited set of handhelds produced by Palm, Inc.
Applications can programmatically detect the presence of the
Web Clipping Application Viewer; see “System Version Checking”
on page 236 for details.

This chapter begins with a brief discussion of Internet access on
Palm Powered™ handhelds and then provides a brief overview of
how web clipping applications work in the following sections:

• Internet Access on Palm Powered Handhelds

• Overview of Web Clipping Architecture

For more information about web clipping applications, displaying
HTML pages on Palm Powered handhelds, and the Palm.Net
system, see the Web Clipping Developer’s Guide.

This chapter also describes how to programmatically access the Web
Clipping Application Viewer (the Viewer) and IMessenger
applications in the following sections:

• Using the Viewer to Display Information

Internet and Messaging Applications
Internet Access on Palm Powered Handhelds

230 Palm OS Programmer’s Companion, Volume II: Communications

• Sending Email Messages

• Using Wireless Capabilities in Your Applications

For more information about programmatic access to the Internet,
see Chapter 79, “Internet Library,” in the Palm OS Programmer’s API
Reference.

Internet Access on Palm Powered Handhelds
Starting with version 3.2, the Palm OS added support for wireless
Internet access and messaging. Version 3.5 of the Palm OS extended
those capabilities, and along with the Mobile Internet Kit, extended
wireless access capabilities to other Palm Powered handhelds.
Version 4.0 extends the wireless communications features even
further, adding numerous additional messaging, telephony, and
web access capabilities.

Two of the fundamental communications capabilities that Palm OS
users can take advantage of are:

• sending and receiving email communications

• viewing and interacting with the Internet

Users can access these capabilities with the built-in wireless antenna
on the Palm VII™ family of devices, or with a PPP connection that
uses a wireline or a wireless modem and cell phone on other Palm
Powered handhelds.

Overview of Web Clipping Architecture
PalmSource, Inc. invented web clippings to make it possible for
users to easily access information on the Internet with a small screen
and low connection bandwidth. Web clipping technology allows
users to extract and receive specific information from a web page,
much like clipping a specific article out of a newspaper.

Numerous web sites are now enabled for web clipping, which
means that the site’s content is available in web clipping format. In
the typical scenario, a web clipping application running on a Palm
Powered handheld sends a query to the web site. The web site

Internet and Messaging Applications
Overview of Web Clipping Architecture

Palm OS Programmer’s Companion, Volume II: Communications 231

responds to the query by sending a clipping back to the handheld,
and the web clipping application displays the returned clipping.

You create web clipping applications by compiling standard HTML
3.2 pages with Palm’s Web Clipping Application Builder tool, which
generates a .pqa that operates like a mini-web site and can execute
on Palm Powered handhelds. These .pqa files are actually
databases that are run by the Viewer, which communicates with the
Internet.

The Viewer sends requests for information to the Internet via a Palm
Proxy server, which converts the compressed format used by the
Viewer into standard format and relays the request to the
destination server. The server sends information back to the proxy
server in standard format, and the proxy server converts the
information into compressed format and relays it to the user’s
device, on which the Viewer displays it.

NOTE: The Palm OS automatically launches the Viewer when
the user taps on a web clipping application icon in the
Applications Launcher. The Viewer is not visible to users as an
application in the Launcher.

For a more complete description of how web clipping works,
including a discussion of the Palm Proxy Servers, see the Web
Clipping Developer’s Guide.

About Web Clipping Applications
A web clipping application might contain hyperlinks or an HTML
form that displays information and allows the sending or requesting
of information. The information can be stored locally, on the
handheld device, or remotely, on a web site that can be accessed on
the Internet. A web clipping application can also be a self-contained
web site.

Figure 9.1 shows a typical web clipping application. This
application contains a number of links; when the user taps on any of
these links, the HTTP(S) request is sent to the Internet, and the web
site sends back a web clipping page that is displayed on the
handheld screen.

Internet and Messaging Applications
Using the Viewer to Display Information

232 Palm OS Programmer’s Companion, Volume II: Communications

Figure 9.1 Typical web clipping application

For complete information about creating and building web clipping
applications, including reference information about the HTML
language features and extensions you can use in these applications,
see the Web Clipping Developer’s Guide.

Using the Viewer to Display Information
The Viewer program is a Palm OS program that displays web
clipping applications, interacts with the Palm Proxy Server, and
displays web clippings sent back from the Internet. You can also use
the Viewer to display HTML content that you have created by
launching the Viewer from your Palm OS applications.

Before using the features described in this section, you should verify
that the wireless access features are available in the system on which
your application is running. For more information, see “System
Version Checking” on page 236.

To launch the Viewer and display a web clipping page, use the
launch code sysAppLaunchCmdOpenDB. Pass the database ID and
card number for the .pqa that you want to display.

To launch the Viewer and display a specific URL, use the launch
code sysAppLaunchCmdGoToURL. Pass a pointer to the URL string
as a parameter to this launch code. Listing 9.1 shows an example.

NOTE: The Viewer was previously known as the Clipper; thus
you see “Clipper” used in various constant names.

Internet and Messaging Applications
Using the Viewer to Display Information

Palm OS Programmer’s Companion, Volume II: Communications 233

Listing 9.1 Launching Viewer with a URL

Err GoToURL(Char* origurl)
{ // parameter is ptr to URL string
 Err err;
 Char* url;
 DmSearchStateType searchState;
 UInt16* cardNo;
 LocalID* dbID;

 // make a copy of the URL, since the OS will free
 // the parameter once Viewer quits
 url = MemPtrNew(StrLen(origurl)+1);
 if (!url) return sysErrNoFreeRAM;
 StrCopy(url, origurl);
 MemPtrSetOwner(url, 0);

 // find Viewer and launch it
 err = DmGetNextDatabaseByTypeCreator (true, &searchState,
sysFileTApplication, sysFileCClipper, true, &cardNo, &dbID);
 if (err) { // Viewer is not present
 FrmAlert(NoClipperAlert);
 MemPtrFree(url);
 }
 else
 err =
SysUIAppSwitch(cardNo,dbID,sysAppLaunchCmdGoToURL,url);

 return err; // ErrNone (0) means no error
}

IMPORTANT: When programmatically launching an application
that connects to the Internet, remember that many Palm users
pay for their wireless transmissions on a per-byte basis, and that
web sites that are not designed to be Palm-friendly can result in
increased airtime charges. For more information about Palm-
friendly web pages, see the Web Clipping Developer’s Guide.

Internet and Messaging Applications
Sending Email Messages

234 Palm OS Programmer’s Companion, Volume II: Communications

Sending Email Messages
You can send email messages from your Palm OS applications in
three different ways:

• Use the standard mailto URL in the Viewer.

• Use the sysAppLaunchCmdAddRecord launch code to
launch the email program with its editor open.

• Use the sysAppLaunchCmdAddRecord launch code to
silently add the email item to the outbox.

Each of these message-sending methods is described in this section.

Before using the features described in this section, you should verify
that the wireless access are available in the system on which your
application is running. For more information, see “System Version
Checking” on page 236.

Registering an Email Application
The standard, default email application on the Palm OS is either the
Palm iMessenger program (for the Palm VII device family) or
MultiMail (for other Palm Powered handhelds). Starting with
version 4.0 of the Palm OS, you can register additional email
handling applications by calling the Exchange Manager from within
a Palm OS application:

ExgRegisterDatatype(CRID, // ID of registering app
 exgReg // URL scheme registry
 "mailto", // the scheme to associate
 "Email URL", // description
 0); // any flags

When you register a new email-handling application, the Exchange
Manager makes that application the default handler for email
messages.

For more information about the Palm Exchange Manager, see
Chapter 62, “Exchange Manager,” on page 1355 and the Palm OS
Programmer’s API Reference book.

Internet and Messaging Applications
Sending Email Messages

Palm OS Programmer’s Companion, Volume II: Communications 235

Sending Mail from the Viewer
You can send an email message with the Viewer just like you do in
standard HTML pages, by using the mailto: tag. For example:

Email us

When the Viewer encounters the mailto tag, it calls the Exchange
Manager to handle sending the email message. The Exchange
Manager calls the default email application.

Launching the Email Application for Editing
Use the sysAppLaunchCmdAddRecord launch code to launch the
iMessenger email program with its editor open (optionally filling in
some of the fields via the passed parameter block). This allows the
user to edit the email message. To make the email program display
the message in its editor, set the edit field in the parameter block to
true.

NOTE: The sysAppLaunchCmdAddRecord method of
launching an email program is only guaranteed to work with the
iMessenger email program.

Adding an Email to the Outbox
Use the sysAppLaunchCmdAddRecord launch code to silently add
an item (the email message) to the default email program’s outbox
database. You must pass all the needed information in the
parameter block. To prevent the email program from displaying the
message in its editor, set the edit field in the parameter block to
false.

When launched via the sysAppLaunchCmdAddRecord launch
code, the email application returns an error code, or errNone if
there was no error.

To send a launch code to the default email application, you need
obtain its database ID. You can use
DmGetNextDatabaseByTypeCreator and pass the constant
sysFileCMessaging for the creator parameter.

Internet and Messaging Applications
Using Wireless Capabilities in Your Applications

236 Palm OS Programmer’s Companion, Volume II: Communications

Note that adding an item to the email outbox does not actually send
the message over the radio. It simply stores the message in the
outbox until the user later opens the email application and chooses
to send queued messages. This always gives the user control over
when the radio is used.

Using Wireless Capabilities in Your Applications
This section provides information about system-level features that
you may need to use with your Palm OS applications that access
wireless communications capabilities. The following topics are
covered:

• System Version Checking

• Wireless keyDownEvent Key Codes

• Including Over-the-Air Characters

System Version Checking
Before using any special features of the operating system for
wireless communications, you must ensure that your application is
running on a device that supports the wireless internet access
features of the Palm OS.

NOTE: In some Palm Powered handhelds, the web clipping
components are not built into the operating system, but are
installed as separate components.

You can check that this feature set is implemented by checking for
the existence of the Viewer and iMessenger™ applications. Here’s an
example of how to check for the Viewer:

DmSearchStateType searchState;
UInt cardNo;
LocalID dbID;

err = DmGetNextDatabaseByTypeCreator(true, &searchState,
 sysFileTApplication, sysFileCClipper, true, &cardNo, &dbID);

Internet and Messaging Applications
Using Wireless Capabilities in Your Applications

Palm OS Programmer’s Companion, Volume II: Communications 237

If Viewer is not present, the
DmGetNextDatabaseByTypeCreator function returns an error.
To check for iMessenger, you can use the creator type
sysFileCMessaging.

For more information on checking system compatibility, see
Appendix B, “Compatibility Guide.”

Wireless keyDownEvent Key Codes
Versions 3.2 and later of the Palm OS provide special
keyDownEvent virtual key codes to support the wireless
capabilities of the Palm VII family of devices. These include:

• vchrHardAntenna, which signals that the user has raised
the antenna, activating the radio

• vchrRadioCoverageOK, which signals that the unit is
within radio coverage following a coverage check

• vchrRadioCoverageFail, which signals that the unit is
outside radio coverage following a coverage check, and thus
cannot communicate with the Palm.Net system

Virtual key codes are passed in the chr field of a keyDownEvent
data block, with the commandKeyMask bit set in the modifiers
field, as described in the section “keyDownEvent” on page 60 of the
Palm OS Programmer’s API Reference.

Normally, you ignore these events in your application event
handler, and let the system event handler handle them. For
example, the vchrHardAntenna event causes the system to invoke
the Launcher and switch to the Palm.Net category. If you want to do
something different in your application, you must trap and handle
the event in your application event handler.

Alternatively, if you want your application to have control over the
antenna (avoiding having the system switch to the Launcher on a
vchrHardAntenna event), you can open the Internet library when
your application starts, by calling INetLibOpen. You need to open
the Internet library with the default or wireless configuration. When
your application exits, you must close the Internet library by calling
INetLibClose. For more information about using the Internet
library, see Chapter 7, “Network Communication.”

Internet and Messaging Applications
Using Wireless Capabilities in Your Applications

238 Palm OS Programmer’s Companion, Volume II: Communications

Including Over-the-Air Characters
One of the overriding user interface design goals of the Palm
wireless communications system is to always give the user control
when making a wireless transaction, partly because of the costs
associated with doing so.

You can use the Palm over-the-air characters in your user interface
buttons to help the user recognize a wireless transaction. Palm
provides two different characters: one for standard transactions,
and another for secure transactions, as shown in Figure 9.2.

Figure 9.2 Over the Air Characters

If your application includes a button that causes data to be
transmitted when tapped, end the button text with the “Over-the-
air” character (chrOta). This alerts the user that tapping the button
will cause data transmission and incur possible airtime charges.

If your application includes a button that causes data to be
transmitted securely when tapped, end the button text with the
“Over-the-air-secure” character (chrOtaSecure). This alerts the
user that tapping the button will cause secure data transmission and
incur possible airtime charges.

Note that the Viewer application automatically adds these special
characters when rendering remote hyperlinks or buttons. You only
need to explicitly add these characters if you are building an
application that doesn’t use this capability of the Viewer.

Palm OS Programmer’s Companion, Volume II: Communications 239

10
Telephony Manager
You can use the Palm OS® Telephony Manager to communicate
between a handheld and a phone or to access telephony services in
an application intended for a smartphone. This chapter contains the
following sections that describe how to use the Palm OS Telephony
API:

• Telephony Service Types describes the component parts of
the telephony API.

• Using the Telephony API describes how to use the telephony
API in your applications.

For detailed information about the Telephony Manager data types,
constants, and functions, see the following chapters in the Palm OS
Programmer’s API Reference:

• Chapter 73, “Telephony Basic Services.”

• Chapter 74, “Telephony Security and Configuration.”

• Chapter 75, “Telephony Network.”

• Chapter 76, “Telephony Calls.”

• Chapter 77, “Telephony SMS.”

• Chapter 78, “Telephony Phone Book.”

The “Telephony Basic Services” chapter describes the basic services
and provides a map to the other functions.

Telephony Service Types
The telephony API organizes functions within sets called service
sets. Each service set contains a related set of functions that may or
may not be available on a particular mobile device or network. You
can use the TelIs<ServiceSet>Available macro to determine
if a service set is supported in the current environment, and you can
use the TelIs<FunctionName>Supported macro to determine if
a specific function is supported in the current environment.

Telephony Manager
Telephony Service Types

240 Palm OS Programmer’s Companion, Volume II: Communications

NOTE: Sometimes a service set is supported, but not all of the
functions in that service set are supported. See Testing the
Telephony Environment for more information.

Each function in the telephony API is prefixed with Tel; each
telephony service set adds an addition 3 characters to the prefix.
Table 10.1 describes the telephony service sets.
Table 10.1 Telephony API service sets

Service set Functionality Service prefix

Basic Basic functions that are always available Tel

Configuration Services that allow you to configure phones,
including SMS configuration

TelCfg

Data calls Data call handling TelDtc

Emergency
calls

Emergency call handling TelEmc

Information Functions to retrieve information about the current
phone

TelInf

Network Functions the provide network-oriented services,
including authorized networks, current network,
signal level, and search mode information

TelNwk

OEM Functions that allow hardware manufacturers to
extend the Telephony Manager. Each manufacturer
can provide a specific set of OEM functions for a
particular device

TelOem

Phone book Functions to access the phone’s SIM and address
book, including the ability to create, view, and
delete phone book entries

TelPhb

Power Power supply level functions TelPow

Security Functions that provide PIN code management and
related services for phone and SIM security-related
features

TelSty

Telephony Manager
Using the Telephony API

Palm OS Programmer’s Companion, Volume II: Communications 241

Using the Telephony API
This section provides examples excerpted from the Phone Book
Application (PhBkApp) sample program, which provides the
following capabilities:

• creates, modifies, and deletes entries on a phone, using the
SIM and built-in storage on the phone device

• imports entries from the Address Book application

• exports entries to the Address Book application

The PhBkApp program opens and accesses the Telephony Manager
library and makes a number of calls into the library. It provides an
excellent example of using telephony services in your applications.

Accessing the Telephony Manager Library
Before you can use the Telephony Manager library, you must load
the library and obtain a reference number for it. Each of the
functions in the library requires a reference number argument,
which is used with the system code to access a shared library.

Each of the functions in the library also requires an application
attachment identifier, which you can obtain by calling the TelOpen
function.

The example function LoadTelMgrLibrary, which is shown in
Listing 10.1, makes sure that the Telephony Manager library is

Short Message
Service

Services to handle Short Message Service (SMS)
and to enable the reading, sending, and deleting of
short messages

TelSms

Sound Phone sound management, including the playing
of key tones and muting.

TelSnd

Speech calls Functions to handle the sending and receiving of
speech calls. This service also includes functions
that handle DTMF

TelSpc

Table 10.1 Telephony API service sets (continued)

Service set Functionality Service prefix

Telephony Manager
Using the Telephony API

242 Palm OS Programmer’s Companion, Volume II: Communications

loaded, obtains an application attachment identifier, and returns a
reference number for it.

Listing 10.1 Loading the Telephony Manager library

Err LoadTelMgrLibrary(UInt16 *telRefNumP, UInt16 *telAppIdP)
{
 Err err;

 err = SysLibFind(kTelMgrLibName, telRefNumP);
 if (err != errNone)
 {
 err = SysLibLoad(kTelMgrDatabaseType,
 kTelMgrDatabaseCreator, telRefNumP);
 if (err)
 return err;
 }

 err = TelOpen(*telRefNumP, kTelMgrVersion, telAppIdP);
 return err;
}

The LoadTelMgrLibrary function first calls the SysLibFind
function to determine if the library has already been loaded, which
might be the case if your code has been called by another
application that has already loaded the library.

If the library has not already been loaded, LoadTelMgrLibrary
calls the SysLibLoad function to load the library and obtain a
reference number for it.

After obtaining a reference number for the library,
LoadTelMgrLibrary calls the TelOpen function to open the
loaded library. TelOpen opens the Telephony library using the
currently selected Connection Manager profile. If you need to use a
specific profile, call TelOpenProfile instead.

Note that if you are writing an application for a handheld to
communicate with a phone, you do not need to establish a network
connection between the two. After the Telephony library is
successfully opened, each call to the Telephony Manager opens a
connection to the phone, performs the necessary operation, and
then closes the connection. If you are going to make several calls in
succession, use TelOpenPhoneConnection to open the connection

Telephony Manager
Using the Telephony API

Palm OS Programmer’s Companion, Volume II: Communications 243

to the phone and leave it open. Then use
TelClosePhoneConnection when you are done.

Closing the Telephony Manager Library
When you are done with the library, you should close it by calling
the TelClose function, which releases any resources associated
with your use of the Telephony Manager.

As shown in Listing 10.2, you must test the return value of the
TelClose function; if the result is not telErrLibStillInUse,
you must unload the shared library by calling the SysLibRemove
function.

Listing 10.2 Closing the Telephony Manager library

Err UnloadTelMgrLibrary(UInt16 telRefNum, UInt16 telAppId)
{
 if ((TelClose(telRefNum, telAppId)!= telErrLibStillInUse))
 SysLibRemove(telRefNum);

 return errNone;
}

Testing the Telephony Environment
Before running your application, you need to verify that the
environment in which it is running (the Palm Powered™ handheld
and the telephone device) supports the facilities that your
application needs. The Telephony Manager allows you to determine
if a specific service set is available, and also allows you to determine
if a specific function call is supported.

The code excerpt in Listing 10.3 shows how the PhBkApp program
verifies that the environment supports the capabilities that it needs,
which include all of the phone book-related features of the
Telephony Manager. The PhBkApp program first tests for the
availability of the phone book services, and then determines if
several specific functions are supported. Note that the PhBkApp
refuses to run if any of the capabilities it is using are not available.

Telephony Manager
Using the Telephony API

244 Palm OS Programmer’s Companion, Volume II: Communications

Listing 10.3 Testing for the presence of specific capabilities

 err = TelIsPhbServiceAvailable(gDataP->refNum, gDataP->appId, NULL);
 // Test if phone book capabilities are present
 if (err != errNone)
 return err;

 // Check that this phone supports adding entry services
 err = TelIsPhbAddEntrySupported(gDataP->refNum, gDataP->appId, NULL);
 if (err != errNone)
 return err;

 // Check that this phone supports selecting a phone book
 err = TelIsPhbSelectPhonebookSupported(gDataP->refNum, gDataP->appId, NULL);
 if (err != errNone)
 return err;

 // Check that this phone supports getting entries
 err = TelIsPhbGetEntriesSupported(gDataP->refNum, gDataP->appId, NULL);
 if (err != errNone)
 return err;

 // Check that this phone supports getting entry count
 err = TelIsPhbGetEntryCountSupported(gDataP->refNum, gDataP->appId, NULL);
 if (err != errNone)
 return err;

 // Check that this phone supports deleting an entry
 err = TelIsPhbDeleteEntrySupported(gDataP->refNum, gDataP->appId, NULL);
 return err;

For a complete list of the service availability macros, see
TelIs<ServiceSet>Available in Chapter 73, “Telephony Basic
Services,” in Palm OS Programmer’s API Reference.

For more information about determining if a specific function is
supported, see TelIs<FunctionName>Supported in Chapter 73,
“Telephony Basic Services,” in Palm OS Programmer’s API Reference.

Using Synchronous and Asynchronous Calls
Almost all of the telephony API functions can be called either
synchronously or asynchronously. If you call a function
asynchronously, your application receives an event to notify it that

Telephony Manager
Using the Telephony API

Palm OS Programmer’s Companion, Volume II: Communications 245

the function has completed; the event that you receive contains
status and other information returned by the function.

This section provides a simple example of calling the
TelPhbAddEntry function both synchronously and
asynchronously to illustrate the difference.

When you call a function synchronously, you need to test the result
value returned by the function to determine if the call was
successful. For example, the code in Listing 10.4 calls the
TelPhAddEntry function synchronously.

Listing 10.4 Calling a function synchronously

 err = TelPhbAddEntry(gTelRefNum, gTelAppID, &gEntry,
 NULL);
 printf("Result of adding entry is %d", err);

To call the same function asynchronously, you must do the
following (see Listing 10.5):

• Pass a pointer to an unsigned integer as the last argument to
the call instead of passing NULL.

An asynchronous function call returns immediately. Upon
return, the last argument contains an ID to identify this
particular operation (the transaction ID).

• In your application’s main event loop, use TelGetEvent
instead of EvtGetEvent to get the next event.

TelGetEvent checks both the Telephony Manager’s
asynchronous reply queue and the system event queue. If a
telephony event is available, it returns that. If not, it returns
the first event in the system event queue.

If you’re operating outside of the event loop and are only
interested in telephony events, you can call
TelGetTelephonyEvent instead.
TelGetTelephonyEvent returns only telephony events.

• Check for the kTelephonyEvent event type.

When the function call completes, TelGetEvent returns a
TelEventType structure with the event type set to
kTelephonyEvent. If the event type is not equal to this
event, the normal event loop should process it.

Telephony Manager
Using the Telephony API

246 Palm OS Programmer’s Companion, Volume II: Communications

• Check the functionId and optionally the transId field of
the TelEventType structure.

The functionId field is a constant that tells you which
Telephony Manager call has completed. The transId field
tells you which instance of the call completed in case you
have made two or more asynchronous calls to the same
function.

Listing 10.5 Calling a function asynchronously

 err = TelPhbAddEntry(gTelRefNum, gTelAppID, &gEntry,
 &transId);
...
}

static void ProcessTelephonyEvent(TelEventType *eventP)
{
 switch(eventP->functionId) {
 ...
 case kTelPhbAddEntryMessage:
 printf("Result of adding entry is %d",
 eventP->returnCode);
 break;
 ...
}

static void AppEventLoop(void)
{
 UInt16 error;
 EventType event;

 do {
 TelGetEvent(gTelRefNum, gTelAppId,
 (TelEventType *)&event, evtWaitForever);

 if (event->eType == kTelephonyEvent) {
 ProcessTelephonyEvent((TelEventType *)&event);
 } else {
 if (! SysHandleEvent(&event))
 if (! MenuHandleEvent(0, &event, &error))
 if (! AppHandleEvent(&event))
 FrmDispatchEvent(&event);

Telephony Manager
Using the Telephony API

Palm OS Programmer’s Companion, Volume II: Communications 247

 } while (event.eType != appStopEvent);
}

Registering for Notifications
If you need to receive events from the Telephony Manager when
your application is not the current application, you should register
for the kTelTelephonyNotification. For example, if you are
writing an application that should handle incoming phone calls or
receive SMS messages, it is likely that your application will not be
the active application when the call or SMS is received. For these
types of events, the Telephony Manager posts a
kTelTelephonyNotification.

If you’ve registered for the notification, your application receives a
sysAppLaunchCmdNotify launch code for every telephony event.
The notifyDetailsP field of this notification’s parameter block
points to a TelNotificationType structure. The
notificationId field of this structure identifies which specific
telephony event has occurred.

Listing 10.6 shows how to register for and receive incoming SMS
message notifications.

Listing 10.6 Receiving an SMS message

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP,
 UInt16 launchFlags)
{
 Err error;
 switch (cmd) {
 //Register for the notification when we are first
 //installed and upon each system reset.
 case sysAppLaunchCmdSyncNotify:
 case sysAppLaunchCmdReset:
 error = SysCurrentAppDatabase(&gCardNo, &gAppID);
 if (error) return error;
 SysNotifyRegister(gCarNo, gAppID,
 kTelephonyNotification, NULL,
 sysNotifyNormalPriority, NULL);
 break;

 //Once registered, we receive incoming SMS message
 //notifications as a sysAppLaunchCmdNotify launch code

Telephony Manager
Using the Telephony API

248 Palm OS Programmer’s Companion, Volume II: Communications

 case sysAppLaunchCmdNotify:
 if((SysNotifyParamType *)cmdPBP->notifyType ==
 kTelephonyNotification) && ((SysNotifyParamType*)
 cmdPBP->notifyDetailsP->notificationId ==
 kTelSmsLaunchCmdIncomingMessage))
 ProcessIncomingSms(cmdPBP->notifyDetailsP);
 }
}

Using Data Structures With Variably-sized
Fields
Many of the telephony functions use data structures that have
variably-sized buffer fields. For example, the TelPhbGetEntry()
function uses the TelPhbEntryType structure, which contains two
such fields.

typedef struct _TelPhbEntryType
{
 UInt16 phoneIndex;
 Char* fullName;
 UInt8 fullNameSize;
 Char* dialNumber;
 UInt8 dialNumberSize;
} TelPhbEntryType;

The fullName and dialNumber buffers are variable-sized strings
that you allocate in the heap. When you initialize one of these
structures to pass to the TelPhbGetEntry() function, you must
preallocate the buffers and store the allocated size in the
corresponding size fields.

Listing 10.7 initializes a TelPhbEntryType data structure and
passes it to the TelPhbGetEntry function to retrieve an entry from
the phone book.

Listing 10.7 Initializing a TelPhbEntrypType structure

#define maxNameSize 45
#define maxNumSize 20
TelPhbEntryType myEntry;
UInt16 theIndex = 1;

Telephony Manager
Using the Telephony API

Palm OS Programmer’s Companion, Volume II: Communications 249

myEntry.phoneIndex = theIndex;
myEntry.fullName = MemPtrNew(maxNameSize);
myEntry.fullNameSize = maxNameSize;
myEntry.dialNumber = MemPtrNew(maxNumSize);
myEntry.dialNumberSize = maxNumSize;

err = TelPhbGetEntry(gPrefs->telRefNum, gPrefsP->telAppId,
 &myEntry, NULL);

Note that you can call the TelPhbGetEntryMaxSizes() function
to retrieve the maximum name size (in addition to other
information) instead of hardcoding it, as done in the above example.

Upon return from the function, the buffer fields are filled in, and the
size fields contain the actual number of bytes that were stored into
the buffer fields.

If the allocated size of a buffer is not large enough to contain the
entire value, the command function does the following:

• Returns the telErrBufferSize error.

• Fills the buffer with as much data as it can, and truncates the
data that does not fit. If the data ends with a null terminator
and is truncated, the null terminator is retained.

• Sets the value of the size field to the actual size required to
contain all of the data.

Note that for string buffers, the size includes the byte required for
the null terminator character.

NOTE: When you call a function asynchronously, the
telErrBufferSize error is returned in the returnCode field of
the event you receive upon completion of the function’s execution.

Also, when you call a function asynchronously, it is your
responsibility to ensure that any data structure used by the
function remains in memory until you receive the completion
event.

Telephony Manager
Summary of Telephony Manager

250 Palm OS Programmer’s Companion, Volume II: Communications

Summary of Telephony Manager
Telephony Manager Functions

Basic Functions

TelCancel TelIsPhoneConnected

TelClose TelIsPowServiceAvailable

TelClosePhoneConnection TelIsSmsServiceAvailable

TelGetCallState TelIsSndServiceAvailable

TelGetEvent TelIsSpcServiceAvailable

TelGetTelephonyEvent TelIsStyServiceAvailable

TelInfGetInformation TelMatchPhoneDriver

TelIsCfgServiceAvailable TelOemCall

TelIsDtcServiceAvailable TelOpen

TelIsEmcServiceAvailable TelOpenProfile

TelIsInfServiceAvailable TelOpenPhoneConnection

TelIsNwkServiceAvailable TelSendCommandString

TelIsOemServiceAvailable TelIs<FunctionName>Supported

TelIsPhbServiceAvailable TelIs<ServiceSet>Available

Data Calls

TelDtcCallNumber TelDtcReceiveData

TelDtcCloseLine TelDtcSendData

Emergency Calls

TelEmcCall TelEmcGetNumberCount

TelEmcCloseLine TelEmcSelectNumber

TelEmcGetNumber TelEmcSetNumber

Telephony Manager
Summary of Telephony Manager

Palm OS Programmer’s Companion, Volume II: Communications 251

Network Interface

TelNwkGetLocation TelNwkGetSelectedNetwork

TelNwkGetNetworkName TelNwkGetSignalLevel

TelNwkGetNetworks TelNwkSelectNetwork

TelNwkGetNetworkType TelNwkSetSearchMode

TelNwkGetSearchMode

Phone Book

TelPhbAddEntry TelPhbGetEntryCount

TelPhbDeleteEntry TelPhbGetEntryMaxSizes

TelPhbGetAvailablePhonebooks TelPhbGetSelectedPhonebook

TelPhbGetEntries TelPhbSelectPhonebook

TelPhbGetEntry

Power Management

TelPowGetBatteryStatus TelPowSetPhonePower

TelPowGetPowerLevel

Security

TelStyChangeAuthenticationType TelStyGetAuthenticationState

TelStyEnterAuthenticationCode

Short Message Services

TelCfgGetSmsCenter TelSmsReadMessages

TelCfgSetSmsCenter TelSmsReadReport

TelSmsDeleteMessage TelSmsReadReports

TelSmsGetAvailableStorage TelSmsReadSubmittedMessage

TelSmsGetDataMaxSize TelSmsReadSubmittedMessages

Telephony Manager Functions

Telephony Manager
Summary of Telephony Manager

252 Palm OS Programmer’s Companion, Volume II: Communications

TelSmsGetMessageCount TelSmsSelectStorage

TelSmsGetSelectedStorage TelSmsSendManualAcknowledge

TelSmsGetUniquePartId TelSmsSendMessage

TelSmsReadMessage

Sound

TelSndMute TelSndStopKeyTone

TelSndPlayKeyTone

Speech Calls

TelSpcAcceptCall TelSpcRejectCall

TelSpcCallNumber TelSpcRetrieveHeldLine

TelSpcCloseLine TelSpcSelectLine

TelSpcConference TelSpcSendBurstDTMF

TelSpcGetCallerNumber TelSpcStartContinuousDTMF

TelSpcHoldLine TelSpcStopContinuousDTMF

TelSpcPlayDTMF

Telephony Manager Functions

Palm OS Programmer’s Companion, Volume II: Communications 253

Index

Symbols
_send 18

A
ACL link

creating 145
disconnecting 145

AppNetRefnum 162, 163
AppNetTimeout 163
Authentication 138

B
battery

life, maximizing 48
baud rate, parity options 103, 104
_beam URL scheme 49
beaming 51, 85, 239

registering for 49
Berkeley Sockets API 158

mapping example 161
bind (Berkeley Sockets API) 177
Bluetooth 3, 92
Bluetooth Exchange Library 134, 154

detecting 154
obtaining remote device URLs 156
unsupported functions 156
URLs 155
using 155

Bluetooth exchange library 40
Bluetooth Extension 134
Bluetooth Library 133, 141, 142

opening 144
Bluetooth Stack 134
Bluetooth system

components 132
detecting 141

Bluetooth Transport 134
Bluetooth Virtual Serial Driver 134, 149, 154

See also Virtual serial port
BtLibCancelInquiry 145
BtLibDiscoverMultipleDevices 144
BtLibDiscoverSingleDevice 144
BtLibLinkConnect 145
BtLibLinkDisconnect 145

btLibManagementEventAclConnectInbound 145
btLibManagementEventAclConnectOutbound 14

5
btLibManagementEventAclDisconnect 143, 145
btLibManagementEventInquiryCanceled 145
btLibManagementEventInquiryComplete 145
btLibManagementEventInquiryResult 145
btLibManagementEventRadioState 144
BtLibOpen 144
BtLibPiconetCreate 145, 146
BtLibPiconetDestroy 146
BtLibPiconetLockInbound 146
BtLibPiconetUnlockInbound 146
BtLibRegisterManagementNotification 144
BtLibSdpGetPSMByUuid 147
BtLibSdpGetServerChannelByUuid 149
BtLibSdpServiceRecordCreate 147, 148
BtLibSdpServiceRecordSetAttributesForSocket 14

7, 148
BtLibSdpServiceRecordStartAdvertising 147, 148
BtLibSocketClose 148
BtLibSocketConnect 148, 149
BtLibSocketCreate 147, 148, 149
btLibSocketEventConnectedInbound 147, 148
btLibSocketEventConnectRequest 147, 148
btLibSocketEventData 147, 148
btLibSocketEventSendComplete 147
BtLibSocketListen 147, 148
BtLibSocketRespondToConnection 147, 148
BtLibSocketSend 146, 148
BtLibStartInquiry 144, 145
BtVdOpenParams 150, 151, 152
BtVdOpenParamsClient 151
BtVdOpenParamsServer 152
byte ordering 91

C
callback 191
Clipper application 236
Clipper. See Web Clipping Application Viewer
close (Berkeley Sockets API) 177
close-wait state 175
closing net library 174

254 Palm OS Programmer’s Companion, Volume II: Communications

closing serial link manager 124
CncAddProfile 117
CncDefineParamID 119
CncDeleteProfile 117
CncGetProfileInfo 117
CncGetProfileList 117
CncProfileCloseDB 118
CncProfileCreate 118
CncProfileOpenDB 118
CncProfileSettingGet 117
CncProfileSettingSet 118
configuration, net library 163
connect (Berkeley Sockets API) 178
connection errors

handling in exchange library 47
Connection Manager 116
Connection panel 116
connectivity 90
connector (external) 90
CRC-16 120
CTS timeout 103, 104

D
databases

sending and receiving 26
debugging exchange libraries 42
desktop link protocol 91
Desktop Link Server 122
Device discovery 139, 144
dispatch table

exchange library 41–45
DLP 91
dmHdrAttrBundle 35
dmUnfiledCategory 20
DrvEntryPoint 115
DrvrRcvQType 116

E
email applications

registering 234
Encryption 138
errno 163
errors

handling in exchange library 47
event 191
EvtEventAvail 106
EvtGetEvent 106
EvtResetAutoOffTimer 106
EvtSetAutoOffTimer 106
exchange libraries

and the Simulator 42
buffering data 47, 48
code resource 44
connection errors 47
creating 37
debugging 42
dispatch table 41–45
HostTransfer example 40
library-specific functions in 42
naming functions 41
previewing data 47
registering with Exchange Manager 49
relationship to Exchange Manager 38
required functions 40, 46
standard 39

exchange library 2
local 32, 39

Exchange Manager 1
creating libraries for 37
registering exchange libraries 49
relationship to exchange libraries 38

ExgAccept 23, 29
exgAskOk 23
exgBeamPrefix 7
ExgConnect 17, 30
ExgDBRead 29
ExgDBWrite 27
ExgDialogInfoType 20
ExgDisconnect 15, 17, 27, 29, 30
ExgDoDialog 20
ExgGet 29, 30, 31, 156
ExgGetDefaultApplication 11
ExgGetRegisteredApplications 11
ExgLibAccept 47
ExgLibConnect 47
ExgLibDisconnect 47, 48
ExgLibPut 47
ExgLibReceive 47

Palm OS Programmer’s Companion, Volume II: Communications 255

ExgLibSend 47, 48
exgLocalPrefix 7
ExgLocalSocketInfoType 33
ExgPreviewInfoType 22, 34
ExgPut 15, 17, 27
ExgReceive 29, 30
exgRegCreatorID 9
ExgRegisterData 8, 9, 12, 22
ExgRegisterDatatype 8
exgRegSchemeID 9
ExgRequest 31, 156
ExgSend 15, 17, 27
exgSendBeamPrefix 7, 18
exgSendPrefix 7, 18
ExgSetDefaultApplication 10
ExgSocketType 4, 5, 15, 16, 22, 26, 30, 33
exgUnwrap 14

F
fcntl 178
Finding devices 144
FIR 86

G
getdomainname (Berkeley Sockets API) 182
gethostbyaddr (Berkeley Sockets API) 182
gethostbyname (Berkeley Sockets API) 182
gethostname (Berkeley Sockets API) 182
getpeername (Berkeley Sockets API) 178
getservbyname (Berkeley Sockets API) 182
getsockname (Berkeley Sockets API) 178
getsockopt (Berkeley Sockets API) 178
gettimeofday() (Berkeley Sockets API) 182
global variables

and shared libraries 44

H
handshaking options 103, 104
_host URL scheme 49
HostTransfer sample exchange library 40
htonl (Berkeley Sockets API) 183
htons (Berkeley Sockets API) 183

I
iMessenger application 236
Inbound connection

L2CAP 147
RFCOMM 148

inet_addr (Berkeley Sockets API) 183
inet_lnaof (Berkeley Sockets API) 183
inet_makeaddr (Berkeley Sockets API) 183
inet_netof (Berkeley Sockets API) 184
inet_network (Berkeley Sockets API) 183
inet_ntoa (Berkeley Sockets API) 184
infrared library 85
interface(s) used by net library 164
Internet 162
Internet applications 158
Internet library

RAM requirement 192
IR 1, 92
IR library 39, 85

accessing 87
IrDA 3
IrDA stack 86
IrLAP 86
IrLMP 86
_irobex URL scheme 49

K
kSmsScheme 7
kTelTelephonyNotification 247

L
Launcher 34
libraries

creating exchange 37
shared 37, 42

listen (Berkeley Sockets API) 179
Local Exchange Library 32
local exchange library 39
Loop-back Test 122

M
mailbox 191
mailbox queue 158

256 Palm OS Programmer’s Companion, Volume II: Communications

Management 142
Management callback function 142

processing limitations 143
Management event 142
Management function return code 142
MIME data type 3
Modem Manager 91
Motorola byte ordering 91

N
net library

closing 174
open sockets maximum 176
opening and closing 173
OS requirement 159
overview 158–161
preferences 163
RAM requirement 159
setup and configuration 163
version checking 175

net protocol stack 158
as separate task 159

netCfgNameDefWireless 171
netCfgNameDefWireline 174
netIFCreatorLoop 165
netIFCreatorPPP 165
netIFCreatorSLIP 165
netlib interface introduction 158
NetLibIFAttach 164
NetLibIFDetach 164
NetLibIFGet 164
NetLibIFSettingGet 165
NetLibIFSettingSet 165
NetLibSettingGet 168
NetLibSettingSet 168
NetSocket.c 163
netSocketNoticeCallback 190
NetSocketNoticeCallbackPtr 191
netSocketNoticeEvent 190
NetSocketNoticeEventType 191
NetSocketNoticeMailboxType 191
netSocketNoticeNotify 190
NetSocketNoticeType 191
network device drivers 158

network interface 159
network services 157
nilEvent 107
Notice type 189
notify 191
notify type 189
ntohl (Berkeley Sockets API) 183
ntohs (Berkeley Sockets API) 183

O
OBEX 86
open sockets maximum (net library) 176
opening net library 173
opening serial link manager 124
opening serial port 98, 99, 101
Outbound connection

L2CAP 147
RFCOMM 149

over the air characters 238
overlays

beaming 34
overview of net library 158–161

P
packet assembly/disassembly protocol 91
packet footer, SLP 121
packet header, SLP 121
packet receive timeout 125
PADP 91, 122
PDI library

about 55
accessing 64
function summary 83
international considerations 60
properties dictionary 57
unloading 65, 243
using 61
using different media with 73
using with UDA 73

PDI properties
about 56
parameter name 56
parameter value 56
property name 56

Palm OS Programmer’s Companion, Volume II: Communications 257

property value field 56
PDI readers

about 57
creating 65
example of using 74
reading properties 66
reading property values 67

PDI writers
about 58
creating 71
example of using 79
writing property values 72

PdiEnterObject 78
PdiReader 60, 67
PdiReaderNew 65, 75
PdiReadParameter 66
PdiReadProperty 66
PdiReadPropertyField 66, 68, 70, 78
PdiReadPropertyName 66
PdiWriteBeginObject 72, 79
PdiWriteEndObject 72, 79
PdiWriteProperty 72
PdiWritePropertyFields 72
PdiWritePropertyStr 72
PdiWritePropertyValue 72
Piconet 145

support 139
PluginInfoType 185
pluginMaxNumOfCmds 185
pluginNetLibCallUIProc 188
port ID for socket 125
Power management 140
Power mode 140, 145
preferences database

net library 163
preview 21

in exchange library 47
Profile 135

Dial-up Networking Profile 136
Generic Access Profile 135
Generic Object Exchange Profile 137
LAN Access Point Profile 136
Object Push Profile 137
Serial Port Profile 136
Service Discovery Application Profile 135

properties dictionary 57

R
read (Berkeley Sockets API) 180
receiving SLP packet 123
recv (Berkeley Sockets API) 180
recvfrom (Berkeley Sockets API) 180
recvmsg (Berkeley Sockets API) 180
reference number for socket 124
Remote Console 122
Remote Console packets 122
Remote Debugger 122, 124
remote inter-application communication 91
Remote Procedure Call packets 122
remote procedure calls 91, 124
Remote UI 122
RIAC 91
RPC 91, 124
RS-232 signals 92

S
scheme 6
scptLauncCmdListCmds 185
scptLaunchCmdExecuteCmd 185, 186
scptLaunchCmdListCmds 185
select (Berkeley Sockets API) 180
_send URL scheme 49
send (Berkeley Sockets API) 181
Send command

registering for 49
Send menu command 18
Send With dialog 18
sending stream of bytes 105, 106
sendmsg (Berkeley Sockets API) 181
sendto (Berkeley Sockets API) 181
SerClearErr 108
SerClose 101
serErrAlreadyOpen 98
SerGetStatus 108
serial communication 90
serial link manager 124

opening 124
serial link protocol 91, 120, 121, 124

258 Palm OS Programmer’s Companion, Volume II: Communications

Serial Manager 93
serial port

opening 98, 99, 101
SerOpen 101
serPortLocalHotSync 101
SerReceive 107
SerReceiveCheck 107
SerReceiveFlush 110
SerReceiveWait 107
SerSend 105
SerSendCheck 106
SerSendFlush 106
SerSendWait 105
SerSetSettings 103
setdomainname (Berkeley Sockets API) 182
sethostname (Berkeley Sockets API) 182
setsockopt (Berkeley Sockets API) 181
settimeofday (Berkeley Sockets API) 182
setup, net library 163
shared libraries 37, 42

and library globals 44
dispatch table 42–45
startup routine 44

shutdown (Berkeley Sockets API) 181
Simulator

and exchange libraries 42
SIR 86
SlkClose 124
SlkCloseSocket 124
slkErrAlreadyOpen 124
SlkOpen 124
SlkOpenSocket 124
SlkPktHeaderType 125
SlkReceivePacket 125, 127
SlkSendPacket 125
SlkSocketListenType 125
SlkSocketPortID 125
SlkSocketRefNum 124
SlkSocketSetTimeout 125
SlkWriteDataType 125
SLP 91, 120
SLP packet 120

footer 121
header 121

receiving 123
transmitting 123

SMS 1, 3
SMS exchange library 40
SO_ERROR (Berkeley Sockets API) 179
SO_KEEPALIVE (Berkeley Sockets API) 179, 181
SO_LINGER (Berkeley Sockets API) 179, 181
SO_TYPE (Berkeley Sockets API) 179
Socket 146

L2CAP 146, 147
RFCOMM 146, 148

socket (Berkeley Sockets API) 181
socket listener 125, 127
socket listener procedure 125, 127
socket notice 188
socket notifications 189
sockets, opening serial link socket 124
SrmClearErr 108
SrmClose 101
SrmControl 103
SrmExtOpen 99, 150, 152
SrmExtOpenBackground 99
SrmGetStatus 108
SrmOpen 99, 150
SrmOpenBackground 99
SrmOpenConfigType 99
SrmReceive 107
SrmReceiveCheck 107
SrmReceiveFlush 110
SrmReceiveWait 107
SrmReceiveWindowClose 108
SrmReceiveWindowOpen 108
SrmSend 105
SrmSendCheck 106
SrmSendFlush 106
SrmSendWait 105
SrmSetReceiveBuffer 102
SrmSettingsFlagCTSAutoM 104
srmSettingsFlagCTSAutoM 103
srmSettingsFlagRTSAutoM 104
__Startup__ 44
sys_socket.h 160, 163
SYS_TRAP macro 42
sysAppLaunchCmdExgAskUser 19, 23

Palm OS Programmer’s Companion, Volume II: Communications 259

sysAppLaunchCmdExgGetData 30
sysAppLaunchCmdExgPreview 19, 22
sysAppLaunchCmdExgReceiveData 19, 21, 23
sysAppLaunchCmdGoto 19
sysAppLaunchCmdGoToURL 31
sysAppLaunchCmdNotify 247
sysAppLaunchCmdSyncNotify 9
sysFileCVirtIrComm 85, 100
sysFileDescStdIn 180
sysFtrNewSerialVersion 95
SysLibFind 87, 101
SysLibRemove 65
SystemMgr.h 164

T
TCP/IP 157
TCP_MAXSEG (Berkeley Sockets API) 179
TCP_NODELAY (Berkeley Sockets API) 178, 181
TelNotificationType 247
timeout

serial link socket 125
Tiny TP 86
transmitting SLP packet 123
two-way communications 30
typed data object 3

U
UDA library

using with PDI 73
UDP 157
URL 5
URL requests 31
URL scheme 6

registering for 49
Usage scenarios 138
USB 92
UUID 151

V
vCal objects 52
vCalendars 4

vCard objects 52
vCards 4
vchrHardAntenna 237
vchrRadioCoverageFail 237
vchrRadioCoverageOK 237
VDrvClose 116
VDrvControl 116
VDrvCustomControlProcPtr 116
VDrvOpen 116
VDrvStatus 116
VDrvWrite 116
version checking, net library 175
vEvent objects 52
Viewer application 236
Viewer. See Web Clipping Application Viewer
Virtual serial port

example 153
opening 150
opening as a client 151–152
opening as a server 152
Palm-to-Palm communication 153

vObjects
about 52
character sets 55
encodings 55
grouping 54
structure of 53

vTodo 52

W
wake 191
WCA Viewer. See Web Clipping Application

Viewer
Web Clipper. See Web Clipping Application

Viewer
Web Clipping Application Viewer 236
web clipping applications

architecture 230
web clipping architecture 230
web clippings

architecture 230
wireless internet feature set 236
write (Berkeley Sockets API) 181

	Palm OS® Programmer’s Companion
	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Volume Contains
	Additional Resources
	Conventions Used in This Guide

	Object Exchange
	About the Exchange Manager
	Exchange Libraries
	Typed Data Objects

	Initializing the Exchange Socket Structure
	Identifying the Exchange Library
	Identifying the Type of Data

	Registering for Data
	General Registration Guidelines
	Setting the Default Application
	Registering to Receive Unwrapped Data

	Sending Data
	Sending a Single Object
	Sending Multiple Objects
	Implementing the Send Command

	Receiving Data
	Controlling the Exchange Dialog
	Displaying a Preview
	Receiving the Data

	Sending and Receiving Databases
	Sending a Database
	Receiving a Database

	Requesting Data
	Sending a Get Request for a Single Object
	Responding to a Get Request
	Two-Way Communications
	Requesting a URL

	Sending and Receiving Locally
	Interacting with the Launcher
	Summary of Exchange Manager

	Exchange Libraries
	About Exchange Libraries
	Exchange Libraries, Exchange Manager, and Applications
	Palm OS Exchange Libraries

	Exchange Library Components
	The Exchange Library API
	Dispatch Table

	Implementing an Exchange Library
	Required Functions
	Registering with the Exchange Manager

	Summary of Exchange Library

	Personal Data Interchange
	About Personal Data Interchange
	About vObjects
	Overview of vObject Structure

	About the PDI Library
	PDI Property and Parameter Types
	The PDI Library Properties Dictionary
	PDI Readers
	PDI Writers
	Format Compatibility
	International Considerations
	Features Not Yet Supported

	Using the PDI Library
	Accessing the PDI Library
	Unloading the PDI Library
	Creating a PDI Reader
	Reading Properties
	Reading Property Values
	Creating a PDI Writer
	Writing Properties
	Writing Property Values
	Specifying PDI Versions

	Using UDA for Different Media
	About the UDA Library

	Using a PDI Reader - An Example
	Using a PDI Writer - An Example
	Summary of Personal Data Interchange
	Summary of Unified Data Access Manager

	Beaming (Infrared Communication)
	IR Library
	IrDA Stack
	Accessing the IR Library

	Summary of Beaming

	Serial Communication
	Serial Hardware
	Byte Ordering
	Serial Communications Architecture Hierarchy
	The Serial Manager
	Which Serial Manager Version To Use
	Steps for Using the Serial Manager
	Opening a Port
	Closing a Port
	Configuring the Port
	Sending Data
	Receiving Data
	Serial Manager Tips and Tricks
	Writing a Virtual Device Driver

	The Connection Manager
	The Serial Link Protocol
	SLP Packet Structures
	Transmitting an SLP Packet
	Receiving an SLP Packet

	The Serial Link Manager
	Using the Serial Link Manager

	Summary of Serial Communications

	Bluetooth
	Palm OS Bluetooth System
	Bluetooth System Components
	Implementation Overview
	Profiles
	Usage Scenarios
	Authentication and Encryption
	Device Discovery
	Piconet Support
	Radio Power Management

	Developing Bluetooth-Enabled Applications
	Overview of the Bluetooth Library
	Management
	Sockets

	Bluetooth Virtual Serial Driver
	Opening the Serial Port
	Palm-to-Palm Communication
	How Palm�OS Uses the Bluetooth Virtual Serial Driver

	Bluetooth Exchange Library Support
	Detecting the Bluetooth Exchange Library
	Using the Exchange Manager With Bluetooth
	ExgGet and ExgRequest

	Network Communication
	Net Library
	About the Net Library
	Net Library Usage Steps
	Obtaining the Net Library’s Reference Number
	Setting Up Berkeley Socket API
	Setup and Configuration Calls
	Opening the Net Library
	Closing the Net Library
	Version Checking
	Network I/O and Utility Calls
	Berkeley Sockets API Functions
	Extending the Network Login Script Support
	Socket Notices

	Internet Library
	System Requirements
	Initialization and Setup
	Accessing Web Pages
	Asynchronous Operation
	Using the Low Level Calls
	Cache Overview
	Internet Library Network Configurations

	Summary of Network Communication

	Secure Sockets Layer (SSL)
	SSL Library Architecture
	Attributes
	Always-Used Attributes
	Debugging and Informational Attributes
	Advanced Protocol Attributes

	Sample Code

	Internet and Messaging Applications
	Internet Access on Palm Powered Handhelds
	Overview of Web Clipping Architecture
	About Web Clipping Applications

	Using the Viewer to Display Information
	Sending Email Messages
	Registering an Email Application
	Sending Mail from the Viewer
	Launching the Email Application for Editing
	Adding an Email to the Outbox

	Using Wireless Capabilities in Your Applications
	System Version Checking
	Wireless keyDownEvent Key Codes
	Including Over-the-Air Characters

	Telephony Manager
	Telephony Service Types
	Using the Telephony API
	Accessing the Telephony Manager Library
	Closing the Telephony Manager Library
	Testing the Telephony Environment
	Using Synchronous and Asynchronous Calls
	Registering for Notifications
	Using Data Structures With Variably-sized Fields

	Summary of Telephony Manager

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

