N\
palmsource
N’

Palm OS®
Programmer’s
Companion

Volume |

Written by Greg Wilson, Jean Ostrem, and Christopher Bey.

Technical assistance from Jesse Donaldson, Noah Gibbs, Lee Taylor, Danny Epstein, Peter Epstein, David
Fedor, Roger Flores, Steve Lemke, Bob Ebert, Ken Krugler, Bruce Thompson, Tim Wiegman, Gavin Pea-
cock, Ryan Robertson, and Andy Stewart, and Waddah Kudaimi

Copyright © 1996-2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC.
ALSO EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, the PalmSource logo, BeOS, Graffiti, HandFAX, HandMAIL, HandPHONE, HandSTAMP, HandWEB,
HotSync, the HotSync logo, iMessenger, MultiMail, MyPalm, Palm, the Palm logo, the Palm trade dress, Palm
Computing, Palm OS, Palm Powered, PalmConnect, PalmGear, PalmGlove, PalmModem, Palm Pack, PalmPak,
PalmPix, PalmPower, PalmPrint, Palm.Net, Palm Reader, Palm Talk, Simply Palm and ThinAir are trademarks of
PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks or registered trademarks of
their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Palm OS Programmer’s Companion, Volume | PalmSource, Inc.
Document Number 3004-012 1240 Crossman Avenue
November 9, 2004 Sunnyvale, CA 94089
For the latest version of this document, visit USA

http://www.palmos.com/dev/support/docs/. www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Table of Contents

About This Document xiii
Palm OS SDK Documentation xiii
What This Volume Contains xiii
Additional Resources00 XV

1 Programming Palm OS in a Nutshell 1
Why Programming for Palm OS Is Different 1

ScreenSizeo 0000 2
Quick Turnaround Expected 2
PC Connectivity00 3
InputMethods.o 3
Powero 4
Memoryo 4
FileSystem00 4
Backward Compatibility 4
Palm OS Programming Concepts 5
API Naming Conventions 6
Integrating Programs with the Palm OS Environment. 7
Writing RobustCode 9
Assigning a Database Type and Creator ID. 11
Making Your Application Run on Different Devices 12
Running New Applications on an Older Device 13
Backward Compatibility with PalmOSGlue 14
Compiling Older Applications with the Latest SDK. 14
Programming Tools. 15
Palm OS Developer Suite 15
CodeWarrior. 16
Palm OSEmulator 16
Palm OS Simulator 16
Where to Go fromHere 16

2 Application Startup and Stop 19
Launch Codes and Launching an Application 20
Responding to Launch Codes 21

Palm OS Programmer’s Companion, Volume | iii

Responding to Normal Launch. 23

Responding to Other Launch Codes 25
Launching Applications Programmatically. 27
Creating Your Own Launch Codes 28
Stopping an Application. L. 29
Notifications. 30

Registering for a Notification 31

Writing a Notification Handler. 34

Sleep and Wake Notifications 35
Helper Notifications 38

When to Use the Helper API. 39

Requesting a Helper Service 40

Implementinga Helper 42
Socket Notifications. 45
Launch Code Summary 46
Notification Summary. 48
Launch and Notification Function Summary 50

3 Event Loop 53
The Application EventLoop 55
Low-Level Event Management 58

The Graffiti Manager 60

The Key Manager 62

The Pen Manager. 63

The System Event Manager 63
Creating and Handling Custom Events 67

Custom Events and the Palm OS Event Queue 69
System Event Manager Summary. 70

4 User Interface 73
Palm OS Resource Summary 74
Drawing on the Palm Powered Handheld 77

The Draw State 78

Drawing Functions 79

High-Density Displays 80
Forms, Windows, and Dialogs 92

Palm OS Programmer’s Companion, Volume |

AlertDialogso 93

Progress Dialogs 94
The Keyboard Dialog 96
Offscreen Windows. 99
Controls. 100
Buttonso 00000 100
Pop-Up Trigger 101
Selector Trigger 102
Repeating Button.00 0L 103
Push Buttons 104
CheckBoxes. 0L 105
Sliders and Feedback Sliders. 106
Fields.00 110
Menuso 113
Checking Menu Visibility 115
DynamicMenus 116
Menu Shortcuts00 oL 117
Tables.o 119
TableEvento 120
Listso 120
Using Lists in Placeof Tables. 122
Categorieso 124
Initializing Categories in a Database 125
Initializing the Category Pop-up Trigger. 127
Managing a Category Pop-up List 128
Bitmapso o000 131
Versions of Bitmap Support 131
Bitmap Families 138
Drawing aBitmap 0L 142
Color Tables and Bitmaps 143
Labels.o 144
ScrollBarso 0000 144
Custom Ul Objects (Gadgets). 146
DynamicUI 149
Dynamic User Interface Functions 150

Palm OS Programmer’s Companion, Volume | v

Color and Grayscale Support. 151

Indexed Versus Direct Color Display 151
ColorTable 152
UlColorList. 154
Direct Color Functions 156
Pixel Reading and Writing. 157
Direct Color Bitmaps 157
InsertionPoint00 0L 160
Application Launcher 160
Icons in the Launcher. 160
Application Version String. 161
The Default Application Category 161
Opening the Launcher Programmatically 163
Summary of User Interface API. 164
5 Memory 177
Introduction to Palm OS Memory Use. 177
Hardware Architecture 177
PC Connectivity 178
Memory Architecture 000 L 179
Heap Overview 183
The Memory Manager. 186
Memory Manager Structures. 186
Using the Memory Manager 189
Achieving Optimum Performance 192
Summary of Memory Management 194
6 Files and Databases 197
The Data Manager 197
Records and Databases 198
Structure of a Database Header 199
Using the Data Manager 202
Automatic Database Backup and Restore 204
DataManager Tips 205
The Resource Manager 207
Structure of a Resource Database Header 207

vi Palm OS Programmer’s Companion, Volume |

7 Expansion

Using the Resource Manager. 208

File Streaming Application Program Interface 210
Using the File Streaming API 210
Summary of Files and Databases 212
215

Expansion Supporto 0L 216
Primary vs. Secondary Storage. 216
ExpansionSlot. 217
Universal Connector 217
Architectural Overview 218
SlotDriverso 219
FileSystems00 220
VESManager 220
Expansion Manager 222
Standard Directories 222
ApplicationsonCards. 224
Card Insertion and Removal 226
Startprc. oL 231
Checking for ExpansionCards 232
Verifying Handheld Compatibility 232
Checking for Mounted Volumes 233
Enumerating Slotso 234
Determining a Card’s Capabilities 235
Volume Operations 236
Hidden Volumes 238
Matching VolumestoSlots. 238
Naming Volumes. 239
File Operations. 240
Common Operations 240
Naming Files 242
Working with Palm Databases 243
Directory Operations 248
Directory Paths 249
Common Operations 249

Palm OS Programmer’s Companion, Volume | vii

Enumerating the Files in a Directory 250
Determining the Default Directory for a Particular File Type . 251

Default Directories Registered at Initialization 252
CustomCalls. 255
CustomI/O. o000 255
Debugging.o 256
Summary of Expansion and VFS Managers 257
8 Text 259
Text Manager and International Manager 260
Characters. 261
Declaring Character Variables 261
Using Character Constants 262
Missing and Invalid Characters 263
Retrieving a Character’s Attributes 264
Virtual Characters 264
Retrieving the Character Encoding 265
Stringso 266
Manipulating Strings 267
Performing String Pointer Manipulation. 268
Truncating Displayed Text. 269
Comparing Strings 270
Global Find 271
Dynamically Creating String Content 273
Using the StrVPrintF Function 275
Fontso 276
Built-inFontso 00000 277
Selecting Which FonttoUse 278
Fonts for High-Density Displays 279
Setting the Font Programmatically 281
Obtaining Font Information 282
Creating Custom Fonts 284
Summaryof TextAPI 288
9 Applications and the Dynamic Input Area 291
The Dynamic Input Area Feature 292

viii Palm OS Programmer’s Companion, Volume |

Size Constraints 293

Input Area Policyo 295
Setting the Input Area Policy. 295
Enabling the Input Trigger. 296
Setting an Input Area State 296

ResizingaForm 297

Hiding and Showing the ControlBar 300

Pen Input Manager Compatibility. 300
New sysFtrNumlInputAreaFlags Support 301
Additional winDisplayChangedEvent 301
Restoration of Input Trigger State. 302
New pinlnputAreaUser Input Area State 302
New Stat... Functions 303
New Support for Changing Display Orientation 303

10 Attentions and Alarms 305

Getting the User’s Attention 305
The Role of the Attention Manager 305
Attention Manager Operation 307
Getting the User’s Attention. 312
Attentions and Alarms oL oL 323
Detecting and Updating Pending Attentions. 324
Detecting Device Capabilities 326
Controlling the Attention Indicator 327

Alarmso oL 328
Settingan Alarm 329
Alarm Scenarioo 331
Setting a Procedure Alarm. 333

Summary of Attentions and Alarms. 335

11 Palm System Support 337

Features.o 337
The System Version Feature 338
Application-Defined Features 340
Using the Feature Manager 340
Feature Memory 341

Palm OS Programmer’s Companion, Volume | ix

Preferences
Accessing System Preferences
Setting System Preferences

SimpleSound
Sampled Sound 0oL L
SimplevsSampled
Sound Preferences
Standard MIDI Files
Creating a Sound Stream
System Bootand Reset
SoftReset
Soft Reset + Up Arrow
HardReset
System ResetCalls
Hardware Interaction
Palm OS Power Modes

Guidelines for Application Developers

12 Localized Applications

Localization Guidelines
Using Overlays to Localize Resources
Dates
Numbers
Obtaining Locale Information
Notes on the Japanese Implementation

Power ManagementCalls
The Microkernel
Retrieving the ROM Serial Number
Time00

Using Real-Time Clock Functions.

Using System Ticks Functions
Floating-Point
Summary of System Features.

X Palm OS Programmer’s Companion, Volume |

Japanese Character Encoding 394

Japanese CharacterInput 394

The Calculator Button. 395

Displaying Japanese Strings on Ul Objects. 395

Displaying Error Messages 396

ChineseFonts 396

Summary of Localization 396

13 Security 399
Certificate Manager. 399

Certificate Store Operations 400

Certificate Verification and Parsing 401

Certificate Backup and Restore. 402

14 Palm OS Garnet ARM Programming 403
Understanding Palm OS Garnetand ARM 403

Palm Application Compatibility Environment 404

Using ARM-Native Subroutines 405

Calling ARM-Native Subroutines. 406

Writing ARM-Native Subroutines 407

Isolate the Performance-Critical Area in Your 68K Application408
Convert the ARM-Native Subroutine to Take One Argument . 409

Handle 68K and ARM Technical Differences 410
Test the ARM-Native Subroutine 412
Build the ARM-Native Subroutine 413
Embed the ARM Code in a 68K Application 414
Calling Palm OS Functions From ARM Code 414
CallingaTrap 415
Calling a Function Using a Function Pointer 416
Overview of Sample Files 418
ARM-Native Subroutine Sample Files. 418
Windows DLL Sample Files 419
15 Debugging Strategies 421
Displaying Development Errors 422
Using the Error Manager Macros 423

Palm OS Programmer’s Companion, Volume | xi

The Try-and-Catch Mechanism 424

Using the Try and Catch Mechanism 424

Using the ARM DebugNub 426

Activating the ARM Debugger Nub. 426

Register with Palm OS Debugger. 426

Summary of Debugging APT 427

16 Standard 10 Applications 429
Creating a Standard IO Application. 430

Creating a Standard IO Provider Application. 431

Summary of Standard IO 0000 L. 434

Index 435

About This
Document

Palm OS Programmer’s Companion is part of the Palm OS® Software
Development Kit. This introduction provides an overview of SDK
documentation, discusses what materials are included in this
document, and what conventions are used.

Palm OS SDK Documentation

The following documents are part of the SDK:

Document Description

Palm OS Programmer’s ~ An API reference document that contains descriptions of all
API Reference Palm OS function calls and important data structures.

Palm OS Programmer’s A multi-volume guide to application programming for
Companion Palm OS. This guide contains conceptual and “how-to”
information that complements the Reference.

Constructor for Palm OS A guide to using Constructor to create Palm OS resource
tiles.

Palm OS Programming A guide to writing and debugging Palm OS applications
Development Tools Guide with the various tools available.

What This Volume Contains

This volume is designed for random access. That is, you can read
any chapter in any order. You don’t necessarily have to read some
before others, though the first few chapters are designed for
programmers who are new to the Palm OS. The first three chapters
help you learn necessary tasks and possible features for your
application.

Note that each chapter ends with a list of hypertext links into the
relevant function descriptions in the Reference book.

Here is an overview of this volume:

Palm OS Programmer’s Companion, Volume | xiii

About This Document
What This Volume Contains

¢ Chapter 1, “Programming Palm OS in a Nutshell.” Provides
new Palm OS programmers with a summar y of what tasks
and tools are involved in writing a Palm OS” application and
provides pointers to where to look for more information.

e Chapter 2, “Application Startup and Stop.” Describes how to
use and respond to launch codes to start and stop an
application and perform other actions. Describes how to
implement the PilotMain function, the entry point for all
applications.

¢ Chapter 3, “Event Loop.” Describes the Event Manager,
events, the event loop, and how to implement the event loop
in your application. Discusses how your application and the
system interact to handle events.

¢ Chapter 4, “User Interface.” Describes the user interface
elements that you can use in your application and how to use
them. Also covers related topics such as drawing, high-
density displays, dynamic Ul, receiving user input, and the
Application Launcher.

* Chapter 5, “Memory.” Describes the memory architecture,
memory use on Palm Powered ™ handhelds, and the Memory
Manager.

¢ Chapter 6, “Files and Databases.” Describes the data storage
system, the Data Manager, Resource Manager, and the file
streaming APIL

¢ Chapter 7, “Expansion.” Describes how to work with
expansion cards and add-on devices using the Palm OS
Expansion and Virtual File System (VFS) Managers.

e Chapter 8, “Text.” Describes how to manipulate characters
and strings in a way that makes your application easily
localizable.

¢ Chapter 10, “Attentions and Alarms.” Describes the
Attention Manager, which applications use to bring
important events to the user’s attention, and the Alarm
Manager, which allows applications to receive notification at
some future point in time.

¢ Chapter 11, “Palm System Support.” Describes features
unique to the Palm hardware and OS such as the Feature
Manager, preferences, the Sound Manager, system boot and
reset, the microkernal, time, and floating point arithmetic.

xiv Palm OS Programmer’s Companion, Volume |

About This Document
Additional Resources

¢ Chapter 12, “Localized Applications.” Discusses how to
make your application localizable. Includes information on
the Overlay Manager and the Locale Manager, and how to
work with numbers and dates.

¢ Chapter 15, “Debugging Strategies.” Describes
programmatic approaches to debugging your application;
that is, using the Error Manager and the Palm OS try and
catch mechanism for debugging.

¢ Chapter 16, “Standard IO Applications.” Describes how to
create a command line application. On Palm OS, command
line applications are typically used by developers for
debugging purposes only.

Volume II of the Palm OS Programmer’s Companion discusses
communications.

Additional Resources

¢ Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

¢ Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http:/ /www.palmos.com/dev/training

¢ Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http:/ /www.palmos.com /dev/support/kb/

Palm OS Programmer’s Companion, Volume | xv

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

1

Programming Palm
OS in a Nutshell

This chapter is the place to start if you're new to Palm™
programming. It summarizes what’s unique about writing
applications for Palm Powered ™ handhelds and tells you where to
go for more in-depth information. It covers:

e Why Programming for Palm OS Is Different

Palm OS Programming Concepts

* Assigning a Database Type and Creator ID

Making Your Application Run on Different Devices

* Programming Tools
e Where to Go from Here

Read this chapter for a high-level introduction to Palm
programming. The rest of this book provides the details.

Why Programming for Palm OS Is Different

Like most programmers, you have probably written a desktop
application—an application that is run on a desktop computer such
as a PC or a Macintosh computer. Writing applications for
handhelds, specifically Palm Powered handhelds, is a bit different
from writing desktop applications because the Palm Powered
handheld is designed differently than a desktop computer. Also,
users simply interact with the handheld differently than they do
desktop computers.

This section describes how these differences affect the design of a
Palm OS® application.

Palm OS Programmer’s APl Reference 1

Programming Palm OS in a Nutshell
Why Programming for Palm OS Is Different

Screen Size

Most Palm Powered handheld screens are only 160x160 pixels, so
the amount of information you can display at one time is limited.

For this reason, you must design your user interface carefully with
different priorities and goals than are used for large screens. Strive
for a balance between providing enough information and
overcrowding the screen. See the book Palm OS User Interface
Guidelines for more detailed guidelines on designing the user
interface.

Note that screen sizes of future Palm Powered handhelds may vary.
The Sony Clie already has a different screen resolution (320 X 320
pixels) than other Palm Powered handhelds although its screen is
still the same size as other handhelds. The HandEra 330 has
introduced the ability to rotate the display and the ability to collapse
the input area. If the user collapses the input area, there is more
space available to the application.

Quick Turnaround Expected

On a PC, users don’t mind waiting a few seconds while an
application loads because they plan to use the application for an
extended amount of time.

By contrast, the average handheld user uses a handheld application
15 to 20 times per day for much briefer periods of time, usually just
a few seconds. Speed is therefore a critical design objective for
handhelds and is not limited to execution speed of the code. The
total time needed to navigate, select, and execute commands can
have a big impact on overall efficiency. (Also consider that Palm OS
does not provide a wait cursor.)

To maximize performance, the user interface should minimize
navigation between windows, opening of dialogs, and so on. The
layout of application screens needs to be simple so that the user can
pick up the product and use it effectively after a short time. It’s
especially helpful if the user interface of your application is
consistent with other applications on the handheld so users work
with familiar patterns.

The Palm OS development team has put together a set of design
guidelines that were used as the basis for the applications resident

2 Palm OS Programmer’s APl Reference

Programming Palm OS in a Nutshell
Why Programming for Palm OS Is Different

on the handheld (Memo Pad, Address Book, and so on). These
guidelines are summarized in the book Palm OS User Interface
Guidelines.

PC Connectivity

PC connectivity is an integral component of the Palm Powered
handheld. The handheld comes with a cradle that connects to a
desktop PC and with software for the PC that provides “one-
button” backup and synchronization of all data on the handheld
with the user’s PC.

Many Palm OS applications have a corresponding application on
the desktop. To share data between the handheld’s application and
the desktop’s application, you must write a conduit. A conduit is a
plug-in to the HotSync® technology that runs when you press the
HotSync button. A conduit synchronizes data between the
application on the desktop and the application on the handheld. To
write a conduit, you use the Conduit SDK, which provides its own
documentation.

Input Methods

Most users of Palm Powered handhelds don’t have a keyboard or
mouse. Users enter data into the handheld using a pen. They can
either write characters in the input area or use the keyboard dialog
provided on the handheld.

While Graffiti® or Graffiti® 2 strokes and the keyboard dialog are
useful ways of entering data, they are not as convenient as using the
tull-sized desktop computer with its keyboard and mouse.

Therefore, you should not require users to enter a lot of data on the
handheld itself.

Many Palm Powered handhelds support external keyboards, which
are sold separately. Do not rely on your users having an external
keyboard.

Palm OS Programmer’s APl Reference 3

Programming Palm OS in a Nutshell
Why Programming for Palm OS Is Different

Power

Palm Powered handhelds run on batteries and thus do not have the
same processing power as a desktop PC. The handheld is intended
as a satellite viewer for corresponding desktop applications.

If your application needs to perform a computationally intensive
task, you should implement that task in the desktop application
instead of the handheld application.

Memory

Palm Powered handhelds have limited heap space and storage
space. Different versions of the handheld have between 512K and
8MB total of dynamic memory and storage available. The handheld
does not have a disk drive or PCMCIA support.

Because of the limited space and power, optimization is critical. To
make your application as fast and efficient as possible, optimize for
heap space first, speed second, code size third.

File System

Because of the limited storage space, and to make synchronization
with the desktop computer more efficient, Palm OS does not use a
traditional file system. You store data in memory chunks called
records, which are grouped into databases. A database is analogous
to a file. The difference is that data is broken down into multiple
records instead of being stored in one contiguous chunk. To save
space, you edit a database in place in memory instead of creating it
in RAM and then writing it out to storage.

Backward Compatibility

Different versions of Palm Powered handhelds are available, and
each runs a different version of Palm OS. Users are not expected to
upgrade their versions of Palm OS as rapidly as they would an
operating system on a desktop computer. Updates to the OS are
designed in such a way that you can easily maintain backward
compatibility with previous versions of the OS, and thus, your
application is available to more users. See “Making Your
Application Run on Different Devices” on page 12 for details.

4 Palm OS Programmer’s API Reference

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

Palm OS Programming Concepts

Palm OS applications are generally single-threaded, event-driven
programs. Only one program runs at a time. To successfully build a
Palm OS application, you have to understand how the system itself
is structured and how to structure your application.

* Each application has a PilotMain function that is
equivalent to main in C programs. To launch an application,
the system calls PilotMain and sends it a launch code. The
launch code may specify that the application is to become
active and display its user interface (called a normal launch),
or it may specify that the application should simply perform
a small task and exit without displaying its user interface.

The sole purpose of the PilotMain function is to receive
launch codes and respond to them. (See Chapter 2,
“Application Startup and Stop.”)

¢ Palm OS is an event-based operating system, so Palm OS
applications contain an event loop; however, this event loop
is only started in response to the normal launch. Your
application may perform work outside the event loop in
response to other launch codes. Chapter 3, “Event Loop,”
describes the main event loop.

* Most Palm OS applications contain a user interface made up
of forms, which are analogous to windows in a desktop
application. The user interface may contain both predefined
Ul elements (sometimes referred to as UI objects), and
custom Ul elements. (See Chapter 4, “User Interface.”)

¢ All applications should use the memory and data
management facilities provided by the system. (See Chapter
5, “Memory,” and Chapter 6, “Files and Databases.”)

* You implement an application’s features by calling Palm OS
functions. Palm OS consists of several managers, which are
groups of functions that work together to implement a
feature. As a rule, all functions that belong to one manager
use the same prefix and work together to implement a certain
aspect of functionality.

Managers are available to, for example, generate sounds,
send alarms, perform network communication, and beam
information through an infrared port. A good way to find out
the capabilities of the Palm OS is to scan the Table of

Palm OS Programmer’s APl Reference 5

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

Contents of both this book and Palm OS Programmer’s
Companion, vol. II, Communications.

IMPORTANT: The ANSI C libraries are not part of the Palm
development platform. In many cases, you can perform the same
function using a Palm OS API call as you can with a call to a
ANSI C function. For example, the Palm OS provides a string
manager that performs many of the string functions you’d expect
to be able to perform in an ANSI C program. If you do use a
standard C function, the code for the function is linked into your
application and results in a bigger executable.

APl Naming Conventions
The following conventions are used throughout the Palm OS API:

Functions start with a capital letter.

All functions belonging to a particular manager start with a
two- or three-letter prefix, such as “Ctl” for control functions
or “Ftr” for functions that are part of the Feature Manager.

Events and other constants start with a lowercase letter.
Structure elements start with a lowercase letter.
Global variables start with a capital letter.

Typedefs start with a capital letter and end with “Type” (for
example, DateFormatType, found in DateTime.h).

Macintosh ResEdit resource types usually start with a
lowercase letter followed by three capital letters, for example
tSTR or tTBL. (Customized Macintosh resources provided
with your developer package are all uppercase, for example,
MENU. Some resources, such as Talt, don’t follow the
conventions.)

Members of an enumerated type start with a lowercase prefix
followed by a name starting with a capital letter, as follows:

enum formObjects {

frmFieldObj,
frmControlObj,
frmListObj,
frmTableObj,
frmBitmapObj,

6 Palm OS Programmer’s APl Reference

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

frmLineObj,
frmFrameObj,
frmRectangleObj,
frmLabelObj,
frmTitleOb]j,
frmPopupObj,
frmGraffitiStateOb],
frmGadgetObj
}i
typedef enum formObjects FormObjectKind;

Integrating Programs with the Palm OS
Environment

When users work with a Palm OS application, they expect to be able
to switch to other applications, have access to Graffiti or Graffiti 2
power writing software and the onscreen keyboard, access
information with the global find, receive alarms, and so on. Your
application will integrate well with others if you follow the
guidelines in this section. Integrate with the system software as
follows:

¢ Handle sysAppLaunchCmdNormalLaunch

* Handle or ignore other application launch codes as
appropriate. For more information, see the next chapter,
Chapter 2, “Application Startup and Stop.”

¢ Handle system preferences properly. System preferences
determine the display of

— Date formats

Time formats

Number formats

First day of week (Sunday or Monday)

Be sure your application uses the system preferences for
numeric formats, date, time, and start day of week. See
“Accessing System Preferences” on page 343 for instructions
on how to do so.

¢ Allow the system to post these messages:

— alarms

Palm OS Programmer’s APl Reference 7

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

— low-battery warnings
— system messages during synchronization

The normal event loop used by virtually all Palm OS
applications allows ample time for the system to post
messages and handle necessary events. You only need to take
special care if your application performs a lengthy
computational task. For example, if your application has a
large database with greater than 20,000 records and it must
search through each of these database records, you might
want to check for system events every so often during this
loop.

Be sure your application does not obscure or change the
input area, input area icons, and power button.

Don’t obscure shift indicators.

In addition, follow these rules:

Store state information in the application preferences
database, not in the application record database. See “Setting
Application-Specific Preferences” on page 346 for more
information.

If your application uses the serial port, be sure to close the
port when you no longer need it so that the HotSync
application can use it.

Ensure that your application properly handles the global
find. Generally, searches and sorts aren’t case sensitive.

If your application supports private records, be sure they are
unavailable to the global find when they should be hidden.

Integrate with the Launcher application by providing an
application name, two application icons, and a version string
as described in “Application Launcher” on page 160.

Follow the guidelines detailed in the book Palm OS User
Interface Guidelines.

Ensure that your application properly handles system
messages during and after synchronization.

Ensure that deleted records are not displayed.

Ensure that your application doesn’t exceed the maximum
number of categories: 15 categories and the obligatory
category “Unfiled” for a total of 16.

8 Palm OS Programmer’s API Reference

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

* Ensure that your application uses a consistent default state
when the user enters it:

— Some applications have a fixed default; for example, the
Date Book always displays the current day when
launched.

— Other applications return to the place the user exited last.
In that case, remember to provide a default if that place is
no longer available. Because of HotSync operations and
Preferences, don’t assume the application data is the same
as it was when the user looked at it last.

e If your application uses sounds, be sure it uses the Warning
and Confirmation sounds properly.

Writing Robust Code

To make your programs more robust and to increase their
compatibility with the next generation of Palm OS products, it is
strongly recommended that you follow the guidelines and practices
outlined in this section.

* Check assumptions

You can write defensive code by adding frequent calls to the
ErrNonFatalDisplayIf function, which enables your
debug builds to check assumptions. Many bugs are caught in
this way, and these “extra” calls don’t weigh down your
shipping application. You can keep more important checks in
the release builds by using the ErrFatalDisplayIf
function.

* Avoid continual polling

To conserve the battery, avoid continual polling. If your
application is in a wait loop, poll at short intervals (for
example, every tenth of a second) instead. The event loop of
the Hardball example application included with your Palm
OS SDK illustrates how to do this.

¢ Avoid reading and writing to NULL (or low memory)

When calling functions that allocate memory (MemSet,
MemMove and similar functions) make sure that the pointers
they return are non-NULL. (If you can do better validation
than that, so much the better.) Also check that pointers your
code obtains from structures or other function calls are not

Palm OS Programmer’s APl Reference 9

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

NULL. Consider adding to your debug build a #define that
overrides MemMove (and similar functions) with a version
that validates the arguments passed to it.

¢ Use dynamic heap space frugally

It is important not to use the extra dynamic heap space
available on Palm units running 2.0 and higher unless it is
truly necessary to do so. Wasteful use of heap space may
limit your application to running only on the latest
handhelds—which prevents it from running on the very
large number of units already in the marketplace.

Note that some system services, such as the IrDA stack or the
Find window, can require additional memory while your
application is running; for example, if the unit starts to
receive a beam or other external input, the system may need
to allocate additional heap space for the incoming data. Don’t
use all available dynamic memory just because it’s there;
instead, consider using the storage heap for working with
large amounts of temporary data.

* Check result codes when allocating memory

Because future handhelds may have larger or smaller
amounts of available memory;, it is always a good idea to
check result codes carefully when allocating memory. It’s
also good practice to use the storage heap (and possibly file
streams) to work with large objects.

¢ Avoid allocating zero-length objects

It’s not valid to allocate a zero-byte buffer, or to resize a
buffer to zero bytes. Palm OS 2.0 and previous releases
allowed this practice, but later revisions of the OS do not
permit zero-length objects.

* Avoid making assumptions about the screen

The location of the screen bulffer, its size, and the number of
pixels per bit aren’t set in stone—they might well change.
Don’t hack around the windowing and drawing functions. If
you are going to hack the hardware to circumvent the APISs,
save the state and return the system to that saved state when
you quit.

10 Palm OS Programmer’s APl Reference

Programming Palm OS in a Nutshell
Assigning a Database Type and Creator ID

* Don't access globals or hardware directly

Global variables and their locations can change; to avoid
mishaps, use the documented API functions and disable your
application if it is run on anything but a tested version of the
OS. Future handhelds might run on a different processor
than the current one.

Similarly, don’t hardcode references to cards. Although
current Palm OS hardware provides only a single card slot,
this may not always be the case. Thus, when calling functions
that manipulate cards, such as Data Manager and file
streaming functions, pass a variable that references the target
card, rather than passing a hardcoded reference to card 0.

* Built-in applications can change

The format and size of the preferences (and data) for the
built-in applications is subject to change. Write your code
defensively, and consider disabling your application if it is
run on an untested version of the OS.

Assigning a Database Type and Creator ID

Each Palm OS application is uniquely identified by a four-byte
creator ID. Assigning this same creator ID to all of the databases
related to an application associates those databases with the
application. The OS takes advantage of this; for instance, the
launcher’s Info panel uses the creator ID to calculate the total
memory used by each application.

Each database on the Palm Powered handheld has a type as well as
a creator ID. The database type allows applications and the OS to
distinguish among multiple databases with the same creator ID. For
applications, set the database type to sysFileTApplication
('appl'). For each database associated with an application, set the
database type to any other value (as long as it isn't composed
entirely of lowercase letters, since those are reserved by Palm).
Certain predefined types—such as 'appl' (application) or 'libr'
(library)—have special meaning to Palm OS. For instance, the
launcher looks at the database type to determine which databases
are applications.

Palm OS Programmer’s APl Reference 11

Programming Palm OS in a Nutshell
Making Your Application Run on Different Devices

Types and creator IDs are case-sensitive, and are composed of four
ASCII characters in the range 32-126 (decimal). Types and creator
IDs consisting of all lowercase letters are reserved for use by Palm
Inc., so any type or creator ID that you choose must contain at least
one uppercase letter, digit, or symbol’.

To protect your application from conflicting with others, you need
to register your creator ID with Palm, which maintains a database of
registered IDs. To choose and register a creator ID, see this web

page:
http:/ /www.palmos.com /dev/creatorid /

Note that you don’t need to register database types as you do
creator IDs. Each creator ID in effect defines a new space of types, so
there is no connection between two databases with type 'Data’ but
with different creator IDs.

IMPORTANT: Applications with identical creator IDs cannot
coexist on the same handheld; during installation the new
application will replace the existing application that possesses the
same creator ID. Further, the new application could well corrupt
any databases that were associated with the preexisting
application. For this reason, all applications should have their own
unique creator ID.

Finally, creator IDs aren’t used only to identify databases. They are
also used, among other things, when getting or setting application
preferences, to register for notifications, and to identify features.

Making Your Application Run on Different

Devices

There are many different handhelds that run Palm OS, and each
may have a different version of the OS installed on it. Users are not
expected to upgrade the Palm OS as frequently as they would an OS
on a desktop computer. This fact makes backward compatibility
more crucial for Palm OS applications.

1.Palm has also reserved 'pga '

12 Palm OS Programmer’s APl Reference

http://www.palmos.com/dev/creatorid/

Programming Palm OS in a Nutshell
Making Your Application Run on Different Devices

This section describes how to make sure your application runs on as
many handhelds as possible by discussing;:

* Running New Applications on an Older Device
¢ Backward Compatibility with PalmOSGlue
¢ Compiling Older Applications with the Latest SDK

Running New Applications on an Older Device

Releases of the Palm OS are binary compatible with each other. If
you write a brand new application today, it can run on all versions
of the operating system provided the application doesn’t use any
new features. In other words, if you write your application using
only features available in Palm OS 1.0, then your application runs
on all handhelds. If you use 2.0 features, your application won’t run
on the earliest Palm Powered handhelds, but it will run on all
others, and so on.

How can you tell which features are available in each version of the
operating system? There are a couple of way to do so:

* The Palm OS Programmer’s API Reference has a “Compatibility
Guide” appendix. This guide lists the features and functions
introduced in each operating system version greater than 1.0.

¢ The header file SysTraps.h (or CoreTraps.h on Palm OS
3.5 and higher) lists all of the system traps available. Traps
are listed in the order in which they were introduced to the
system, and comments in the file clearly mark where each
operating system version begins.

Programmatically, you can use the Feature Manager to determine
which features are available on the system the application is
running on. Note that you can’t always rely on the operating system
version number to guarantee that a feature exists. For example,
Palm OS version 3.2 introduces wireless support, but not all Palm
Powered handhelds have that capability. Thus, checking that the
system version is 3.2 does not guarantee that wireless support
exists. Consult the “Compatibility Guide” in the Palm OS
Programmer’s API Reference to learn how to check for the existence of
each specific feature.

Palm OS Programmer’s APl Reference 13

Programming Palm OS in a Nutshell
Making Your Application Run on Different Devices

Backward Compatibility with PalmOSGlue

The PalmOSGlue library can help you maintain backward
compatibility with earlier releases while still allowing you to use the
latest set of APIs. PalmOSGlue provides backward compatibility for
some of the user interface manager calls and the managers that
enable localization and internationalization.

PalmOSGlue can be used in any application that runs on Palm OS
2.0 and later. The library provides the latest support for localization
features and for accessing internal Ul data structures. Link your
application with the library PalmOSGlue (PalmOSGlue. lib or
libPalmOSGlue. a).

When you use PalmOSGlue, you use the functions in the same way
as described in the Palm OS Programmer’s API Reference, but their
names are different. For example, TxtFindString is named
TxtGlueFindString in PalmOSGlue. When you make a call to a
glue function (for example, TxtGlueFunc, FntGlueFunc, or
WinGlueFunc), the code in PalmOSGlue either uses the appropriate
function found in the ROM or, if the function don’t exist, executes a
simple equivalent of the function.

To see a complete list of functions in PalmOSGlue, see the chapter
“PalmOSGlue Library” on page 1929 of the Palm OS Programmer’s
API Reference.

PalmOSGilue is a linkable library that is bound to your project at
link time. It is not a shared library. PalmOSGlue will increase your
application’s code size. The exact amount by which your code size
increases depends on the number of library functions you call; the
linker strips any unused routines and data.

Compiling Older Applications with the Latest
SDK

As arule, all Palm OS applications developed with an earlier
version of the Palm OS platform SDK should run error-free on the
latest release.

If you want to compile your older application under the latest
release, you need to look out for functions with a changed API. For

14 Palm OS Programmer’s APl Reference

Programming Palm OS in a Nutshell
Programming Tools

any of these functions, the old function still exists with an extension
noting the release that supports it, such as V10 or V20.

You can choose one of two options:

¢ Change the function name to keep using the old APIL. Your
application will then run error free on the newer handhelds.

¢ Update your application to use the new API. The application
will then run error free and have access to some new
functionality; however, it will no longer run on older
handhelds that use prior releases of the OS.

NOTE: If you want to compile a legacy application with the Palm
OS 3.5 or later SDK, note that some header file names have
changed, and the names used for basic types have changed. For
example, parameters previously declared as Word are now
UIntl6 or Intl6. To compile existing applications, you’ll need to
make these changes in your code or include the header file
PalmOSCompatibility.h. See the “Compatibility Guide” in the
Palm OS Programmer’s API Reference for further details.

Programming Tools

Several tools are available that help you build, test, and debug Palm
OS applications.

Palm OS Developer Suite

Palm OS Developer Suite is an Eclipse-based integrated tool chain
that provides Palm OS software developers with an easy and fast
path for creating Palm OS applications. Palm OS Developer Suite
enables development of both ARM-native Palm OS Protein
applications and legacy 68K applications, all within a single IDE.
Palm OS Developer Suite can be freely downloaded from the
PalmSource, Inc. website, at http:/ /www.palmos.com/dev/tools/
dev suite.html.

Palm OS Programmer’s APl Reference 15

http://www.palmos.com/dev/tools/dev_suite.html
http://www.palmos.com/dev/tools/dev_suite.html

Programming Palm OS in a Nutshell
Where to Go from Here

CodeWarrior

CodeWarrior Development Studio for Palm OS Platform is one of
the industry’s most complete programming tools. It is available for
Windows and Mac OS platforms. For more information, see the
Metrowerks website at http:/ /www.metrowerks.com /MW /
Develop/Desktop /PalmOS /Default.htm.

Palm OS Emulator

The Palm OS Emulator is software that emulates the hardware of
the various models of Palm OS platform devices on Windows or
Mac OS computers. Palm OS Emulator simulates Palm Powered
devices running Palm OS 4.x and earlier only.

Palm OS Simulator

The Palm OS Simulator is Palm OS Cobalt or Palm OS Garnet
running native on a Windows machine. Currently it is the easiest
and best way to test your application for Palm OS Cobalt or Palm
OS Garnet compatibilty. It is available as part of the Palm OS
Developer Suite download and as a stand alone download via the
PalmSource, Inc. web page.

See http://www.palmos.com/dev/tools/ for information about
these and other development tools.

Where to Go from Here

This chapter provided you only with a general outline of the issues
involved in writing a Palm OS application. To learn the specifics,
refer to the following resources:

e This book

The rest of this book provides details on how to implement
common application features using the Palm OS SDK. If
you're new to Palm OS programming, you need to read the
next two chapters to learn the principles of Palm OS
application design, how to implement the main function, and
how to implement the standard event loop. The remaining
chapters you can read on an as-needed basis.

16 Palm OS Programmer’s APl Reference

http://www.palmos.com/dev/tools/
http://www.metrowerks.com/MW/Develop/Desktop/PalmOS/Default.htm
http://www.metrowerks.com/MW/Develop/Desktop/PalmOS/Default.htm

Programming Palm OS in a Nutshell
Where to Go from Here

Example applications

The actual source code for the applications on the Palm
Powered handheld is included with your SDK as examples.
The code can be a valuable aid when you develop your own
program. The software development kit provides a royalty-
free license that permits you to use any or all of the source
code from the examples in your application.

Palm OS Programming Development Tools Guide

The Palm OS Programming Development Tools Guide provides
more details on using the tools to debug programs. (You
might also be interested in the “Debugging Strategies”
chapter in this book, which describes programmatic
debugging solutions.)

Palm OS Programmer’s API Reference

The reference book provides the details on all of the public
data structures and API calls.

Palm OS User Interface Guidelines

The Palm OS User Interface Guidelines provides detailed
guidelines for creating a user interface that conforms to Palm
standards. You should read this book before you begin
designing your application’s interface.

Conduit Development Kits and documentation

If you need to write a conduit for your application, see the
documentation provided with the Conduit Development
Kits.

Palm OS Programmer’s APl Reference 17

2

Application Startup
and Stop

On desktop computers, an application starts up when a user
launches it and stops when the user chooses the Exit or Quit
command. These things occur a little bit differently on the Palm OS®
handheld. A Palm OS application does launch when the user
requests it, but it may also launch in response to some other user
action, such as a request for the global find facility. Palm OS
applications don’t have an Exit command; instead they exit when a
user requests another application.

This chapter describes how an application launches, how an
application stops, and the code you must write to perform these
tasks properly. It also covers notifications, which is another way for
the system to launch your code when certain events occur.
Notifications are available in later releases of the Palm OS. This
chapter covers:

¢ Launch Codes and Launching an Application

* Responding to Launch Codes

¢ Launching Applications Programmatically
¢ Creating Your Own Launch Codes

¢ Stopping an Application

¢ Notifications

¢ Helper Notifications

e Launch Code Summary

e Notification Summary

¢ [aunch and Notification Function Summary

This chapter does not cover the main application event loop. The
event loop is covered in Chapter 3, “Event Loop.”

Palm OS Programmer’s Companion, Volume | 19

Application Startup and Stop
Launch Codes and Launching an Application

Launch Codes and Launching an Application

An application launches when it receives a launch code. Launch
codes are a means of communication between the Palm OS and the
application (or between two applications).

For example, an application typically launches when a user presses
one of the buttons on the device or selects an application icon from
the application launcher screen. When this happens, the system
generates the launch code sysAppLaunchCmdNormalLaunch,
which tells the application to perform a full launch and display its
user interface.

Other launch codes specify that the application should perform
some action but not necessarily become the current application (the
application the user sees). A good example of this is the launch code
used by the global find facility. The global find facility allows users
to search all databases for a certain record, such as a name. In this
case, it would be very wasteful to do a full launch—including the
user interface—of each application only to access the application’s
databases in search of that item. Using a launch code avoids this
overhead.

Each launch code may be accompanied by two types of information:

* A parameter block, a pointer to a structure that contains
several parameters. These parameters contain information
necessary to handle the associated launch code.

* Launch flags indicate how the application should behave.
For example, a flag could be used to specify whether the
application should display UI or not. (See “Launch Flags” in
the Palm OS Programmer’s API Reference.)

A complete list of all launch codes is provided at the end of this
chapter in the section “Launch Code Summary.” That section
contains links into where each launch code is described in the Palm
OS Programmer’s API Reference.

20 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Responding to Launch Codes

Responding to Launch Codes

Your application should respond to launch codes in a function
named PilotMain. PilotMain is the entry point for all
applications.

When an application receives a launch code, it must first check
whether it can handle this particular code. For example, only
applications that have text data should respond to a launch code
requesting a string search. If an application can’t handle a launch
code, it exits without failure. Otherwise, it performs the action
immediately and returns.

Listing 2.1 shows parts of PilotMain from the Datebook
application as an example. To see the complete example, go to the
examples folder in the Palm OS SDK and look at the file
Datebook.c.

Listing 2.1 PilotMain in Datebook.c

UInt32 PilotMain (UIntlé cmd, void *cmdPBP,
UIntl6é launchFlags)
{

return DBPilotMain(cmd, cmdPBP, launchFlags);
}

static UInt32 DBPilotMain (UIntl6é cmd, void *cmdPBP,
UIntl6é launchFlags)
{

UIntl6 error;

Boolean launched;

// This app makes use of PalmOS 2.0 features.It will crash
// if run on an earlier version of PalmOS. Detect and warn
// if this happens, then exit.
error = RomVersionCompatible (version20, launchFlags);
if (error)

return error;

// Launch code sent by the launcher or the datebook
// button.
if (cmd == sysAppLaunchCmdNormalLaunch) {

error = StartApplication ();

if (error) return (error);

FrmGotoForm (DayView);

Palm OS Programmer’s Companion, Volume | 21

Application Startup and Stop
Responding to Launch Codes

EventLoop ();
StopApplication ();

// Launch code sent by text search.
else if (cmd == sysAppLaunchCmdFind) {
Search ((FindParamsPtr)cmdPBP);

}

// This launch code might be sent to the app when it's
// already running if the user hits the "Go To" button in
// the Find Results dialog box.
else if (cmd == sysAppLaunchCmdGoTo) {
launched = launchFlags & sysAppLaunchFlagNewGlobals;
if (launched) {
error = StartApplication ();
if (error) return (error);

GoToItem ((GoToParamsPtr) cmdPBP, launched);

EventLoop ();

StopApplication ();

else

GoToItem ((GoToParamsPtr) cmdPBP, launched);

// Launch code sent by sync application to notify the

// datebook application that its database has been synced.
VA

// Launch code sent by Alarm Manager to notify the

// datebook application that an alarm has triggered.

/] ...

// Launch code sent by Alarm Manager to notify the

// datebook application that is should display its alarm
// dialog.

/] ...

// Launch code sent when the system time is changed.

/] ...

// Launch code sent after the system is reset. We use this
// time to create our default database if this is a hard
// reset

/] ...

// Launch code sent by the DesktopLink server when it

// creates a new database. We will initialize the new

// database.

22 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Responding to Launch Codes

return (0);

Responding to Normal Launch

When an application receives the launch code
sysAppLaunchCmdNormalLaunch, it begins with a startup
routine, then goes into an event loop, and finally exits with a stop
routine. (The event loop is described in Chapter 3, “Event Loop.”
The stop routine is shown in the section “Stopping an Application”
at the end of this chapter.)

During the startup routine, your application should perform these
actions:

1. Get system-wide preferences (for example for numeric or
date and time formats) and use them to initialize global
variables that will be referenced throughout the application.

2. Find the application database by creator type. If none exists,
create it and initialize it.

3. Get application-specific preferences and initialize related
global variables.

4. Initialize any other global variables.

As you saw in Listing 2.1, the Datebook application example
responds to sysAppLaunchCmdNormalLaunch by calling a
function named StartApplication. Listing 2.2 shows the
StartApplication function.

Listing 2.2 StartApplication from Datebook.c

static UIntl6é StartApplication (void)
{
UIntl6 error = 0;
Err err = 0;
UIntl6 mode;
DateTimeType dateTime;
DatebookPreferenceType prefs;
SystemPreferencesType sysPrefs;
UIntl6 prefsSize;

// Step 1l: Get system-wide preferences.
PrefGetPreferences (&sysPrefs);

Palm OS Programmer’s Companion, Volume | 23

Application Startup and Stop
Responding to Launch Codes

// Determime if secret records should be
// displayed.
HideSecretRecords = sysPrefs.hideSecretRecords;

if (HideSecretRecords)
mode = dmModeReadWrite;
else
mode = dmModeReadWrite | dmModeShowSecret;

// Get the time formats from the system preferences.
TimeFormat = sysPrefs.timeFormat;

// Get the date formats from the system preferences.
LongDateFormat = sysPrefs.longDateFormat;
ShortDateFormat = sysPrefs.dateFormat;

// Get the starting day of the week from the system
// preferences.
StartDayOfWeek = sysPrefs.weekStartDay;

// Get today's date.

TimSecondsToDateTime (TimGetSeconds(), &dateTime);
Date.year = dateTime.year - firstYear;

Date.month = dateTime.month;

Date.day = dateTime.day;

// Step 2. Find the application's data file. If it
// doesn't exist, create it.
ApptDB = DmOpenDatabaseByTypeCreator (datebookDBType,
sysFileCDatebook, mode);
if (! ApptDB) {
error = DmCreateDatabase (0, datebookDBName,
sysFileCDatebook, datebookDBType, false);
if (error) return error;

ApptDB =
DmOpenDatabaseByTypeCreator (datebookDBType,
sysFileCDatebook, mode);

if (! ApptDB) return (1);

error = ApptAppInfoInit (ApptDB);
if (error) return error;

// Step 3. Get application-specific preferences.

24 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Responding to Launch Codes

// Read the preferences/saved-state information. There is
// only one version of the DateBook preferences so don't
// worry about multiple versions.

prefsSize = sizeof (DatebookPreferenceType);

if (PrefGetAppPreferences (sysFileCDatebook,

datebookPrefID, &prefs, &prefsSize, true)
!= noPreferenceFound) {
DayStartHour = prefs.dayStartHour;
DayEndHour = prefs.dayEndHour;
AlarmPreset = prefs.alarmPreset;
NoteFont = prefs.noteFont;
SaveBackup = prefs.saveBackup;
ShowTimeBars = prefs.showTimeBars;
CompressDayView = prefs.compressDayView;
ShowTimedAppts = prefs.showTimedAppts;
ShowUntimedAppts = prefs.showUntimedAppts;
ShowDailyRepeatingAppts =
prefs.showDailyRepeatingAppts;

}

// Step 4. Initialize any other global variables.

TopVisibleAppt =

CurrentRecord = noRecordSelected;

// Load the far call jump table.
FarCalls.apptGetAppointments = ApptGetAppointments;

FarCalls.apptGetRecord
FarCalls.apptFindFirst

ApptGetRecord;
ApptFindFirst;

FarCalls.apptNextRepeat = ApptNextRepeat;
FarCalls.apptNewRecord ApptNewRecord;
FarCalls.moveEvent MoveEvent;

return (error);

Responding to Other Launch Codes

If an application receives a launch code other than
sysAppLaunchCmdNormalLaunch, it decides if it should respond

to that launch code. If it responds to the launch code, it does so by
implementing a launch code handler, which is invoked from its

PilotMain function.

In most cases, when you respond to other launch codes, you are not
able to access global variables. Global variables are generally only

Palm OS Programmer’s Companion, Volume | 25

Application Startup and Stop
Responding to Launch Codes

allocated after an application receives
sysAppLaunchCmdNormalLaunch (see Listing 2.2) or
sysAppLaunchCmdGoTo; so if the application hasn’t received
either of these launch codes, its global variables are usually not
allocated and not accessible. In addition, if the application has
multiple code segments, you cannot access code outside of segment
0 (the first segment) if the application has no access to global
variables.

There is one other case where an application may have access to its
global variables (and to code segments other than 0). This is when
an application is launched with the code
sysAppLaunchCmdURLParams. If this launch code results from a
palm URL, then globals are available. If the launch code results
from a palmcall URL, then globals are not available. The URL is
passed to your application in the launch parameter block.

NOTE: Static local variables are stored with the global variables
on the system’s dynamic heap. They are not accessible if global
variables are not accessible.

Checking launch codes is generally a good way to determine if your
application has access to global variables. However, it actually
depends on the setting of the launch flags that are sent with the
launch code. In particular, if the sysAppLaunchFlagNewGlobals
tlag is set, then your application’s global variables have been
allocated on this launch. This flag is set by the system and isn’t (and
shouldn’t be) set by the sender of a launch code.

Boolean appHasGlobals = launchFlags & sysAppLaunchFlagNewGlobals;

There’s one case where this flag won’t be set and your application
will still have access to global variables. This is when your
application is already running as the current application. In this
case, its global variables have already been allocated through a
previous launch.

If your application receives a launch code other than
sysAppLaunchCmdNormalLaunch or sysAppLaunchCmdGoTo,
you can find out if it is the current application by checking the
launch flags that are sent with the launch code. If the application is

26 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Launching Applications Programmatically

the currently running application, the
sysAppLaunchFlagSubCall flag is set. This flag is set by the
system and isn’t (and shouldn’t be) set by the sender of a launch
code.

Boolean appIsActive = launchFlags & sysAppLaunchFlagSubCall;

Launching Applications Programmatically

Applications can send launch codes to each other, so your
application might be launched from another application or it might
be launched from the system. An application can use a launch code
to request that another application perform an action or modify its
data. For example, a data collection application could instruct an
email application to queue up a particular message to be sent.

TIP: In Palm OS 4.0 and higher, there are other ways for
applications to communicate. See the section “When to Use the
Helper API” to help you decide which method to use.

Sending a launch code to another application is like calling a
specific subroutine in that application: the application responding to
the launch code is responsible for determining what to do given the
launch code constant passed on the stack as a parameter.

To send a launch code to another application, use the system
manager function SysAppLaunch. Use this routine when you want
to make use of another application’s functionality and eventually
return control of the system to your application. Usually,
applications use it only for sending launch codes to other user-
interface applications.

For example, you would use this function to request that the built in
Address Book application search its databases for a specified phone
number and return the results of the search to your application.
When calling SysAppLaunch do not set launch flags yourself—the
SysAppLaunch function sets launch flags appropriately for you.

An alternative, simpler method of sending launch codes is the
SysBroadcastActionCode call. This routine automatically finds

Palm OS Programmer’s Companion, Volume | 27

Application Startup and Stop
Creating Your Own Launch Codes

all other user-interface applications and calls SysAppLaunch to
send the launch code to each of them.

When an application is called using SysAppLaunch, the system
considers that application to be the current application even though
the application has not switched from the user’s perspective. Thus,
if your application is called from another application, it can still use
the function SysCurAppDatabase to get the card number and
database ID of its own database.

If you want to actually close your application and open another
application, use SysUIAppSwitch instead of SysAppLaunch. This
routine notifies the system which application to launch next and
tfeeds an application-quit event into the event queue. If and when
the current application responds to the quit event and returns, the
system launches the new application.

When you allocate a parameter block to pass to SysUIAppSwitch,
you must call MemPtrSetOwner to grant ownership of the
parameter block chunk to the OS (your application is originally set
as the owner). If the parameter block structure contains references
by pointer or handle to any other chunks, you also must set the
owner of those chunks by calling MemPtrSetOwner or
MemHandleSetOwner. If you don’t change the ownership of the
parameter block, it will get freed before the application you're
launching has a chance to use it.

In Palm OS 3.0 and higher, you can also use the Application
Launcher to launch any application. For more information, see the
section “Application Launcher” in the “User Interface” chapter.

WARNING! Do not use the SysUIAppSwitch or
SysAppLaunch functions to open the Application Launcher
application.

Creating Your Own Launch Codes

The Palm OS contains predefined launch codes, which are listed in
Table 2.1 at the end of this chapter. In addition, developers can
create their own launch codes to implement specific functionality.

28 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Stopping an Application

Both the sending and the receiving application must know about
and handle any developer-defined launch codes.

The launch code parameter is a 16-bit word value. All launch codes
with values 0-32767 are reserved for use by the system and for
future enhancements. Launch codes 32768-65535 are available for
private use by applications.

Stopping an Application

An application shuts itself down when it receives the event
appStopEvent. Note that this is an event, not a launch code. The
application must detect this event and terminate. (You'll learn more
about events in the next chapter.)

When an application stops, it is given an opportunity to perform
cleanup activities including closing databases and saving state
information.

In the stop routine, an application should first flush all active
records, then close the application’s database, and finally save those
aspects of the current state needed for startup. Listing 2.3 is an
example of a StopApplication routine from Datebook.c.

Listing 2.3 StopApplication from Datebook.c

static void StopApplication (void)
{

DatebookPreferenceType prefs;

// Write the preferences / saved-state information.
prefs.noteFont = NoteFont;

prefs.dayStartHour = DayStartHour;

prefs.dayEndHour = DayEndHour;

prefs.alarmPreset = AlarmPreset;

prefs.saveBackup = SaveBackup;

prefs.showTimeBars = ShowTimeBars;
prefs.compressDayView = CompressDayView;
prefs.showTimedAppts = ShowTimedAppts;
prefs.showUntimedAppts = ShowUntimedAppts;
prefs.showDailyRepeatingAppts = ShowDailyRepeatingAppts;

// Write the state information.
PrefSetAppPreferences (sysFileCDatebook, datebookPrefID,

Palm OS Programmer’s Companion, Volume | 29

Application Startup and Stop

Notifications

datebookVersionNum, &prefs, sizeof
(DatebookPreferenceType), true);

// Send a frmSave event to all the open forms.

FrmSaveAllForms ();

// Close all the open forms.

FrmCloseAllForms ();

// Close the application's data file.

DmCloseDatabase (ApptDB);

}

On systems where the Notification Feature Set is present, your
application can receive notifications and launch when certain
system-level events or application-level events occur. Notifications
are similar to application launch codes, but differ from them in two
important ways:

* Notifications can be sent to any code resource, such as a
shared library or a system extension (for example, a hack
installed with the HackMaster program). Launch codes can
only be sent to applications. Any code resource that is
registered to receive a notification is called a notification
client.

* Notifications are only sent to applications or code resources
that have specifically registered to receive them, making
them more efficient than launch codes. Many launch codes
are sent to all installed applications to give each application a
chance to respond.

The Palm OS system and the built-in applications send notifications
when certain events occur. See the “Notification Summary” in this
chapter for a complete list.

It’s also possible for your application to create and broadcast its own
notifications. However, doing so is rare. It's more likely that you’ll
want to register to receive the predefined notifications or that you'll
broadcast the predefined sysNotifyHelperEvent described in
the “Helper Notifications” section.

30 Palm OS Programmer’s Companion, Volume |

Application Startup and Stop
Notifications

Three general types of event flow are possible using the notification
manager:

e Single consumer

Each client is notified that the event has occurred and
handles it in its own way without modifying any information
in the parameter block.

e Collaborative

The notification’s parameter block contains a handled flag.
Clients can set this flag to communicate to other clients that
the event has been handled, while still allowing them to
receive the notification. An example of this is the
sysNotifyAntennaRaisedEvent for Palm VII" series
handhelds. A client might decide to handle the antenna key
down event and in this case, sets handled to true to inform
other clients that the event has been handled.

e Collective

Each client can add information to the notification’s
parameter block, allowing the data to be accumulated for all
clients. This style of notification could be used, for example,
to build a menu dynamically by letting each client add its
own menu text. The sysNotifyMenuCmdBarOpenEvent is
similar to this style of notification.

Registering for a Notification

To receive notification that an event has occurred, you must register
for it using the SysNotifyRegister function. Once you register
for a notification, you remain registered until the system is reset or
until you explicitly unregister for this notification using
SysNotifyUnregister.

To register an application for the HotSync® notification, you'd use a
function call similar to the one in Listing 2.4.

Listing 2.4 Registering an application for a notification

SysNotifyRegister (myCardNo, appDBID, sysNotifySyncStar