
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

The Parallel Enumeration Sorting Scheme for

HIROTO YASUURA, MEMBER, IEEE, NAOFUMI TAKAGI, STUDENT MEMBER, IEEE, AND

SHUZO YAJIMA, SENIOR MEMBER, IEEE

Abstract-We propose a new parallel sorting scheme, called the
parallel enumeration sorting scheme, which is suitable for VLSI im-
plementation. This scheme can be introduced to conventional computer
systems without changing their architecture. In this scheme, sorting
is divided into two stages, the ordering process and the rearranging one.
The latter can be efficiently performed by central processing units or
intelligent memory devices. For implementations of the ordering
process by VLSI technology, we design a new hardware algorithm of
parallel enumeration sorting circuits whose processing time is linearly
proportional to the number of data for sorting. Data are serially
transmitted between the sorting circuit and memory devices and the
total communication between them is minimized. The basic structure
used in the algorithm is called a bus connected cellular array structure
with pipeline and parallel processing. The circuit consists of a linear
array of one type of simple cell and two buses connecting all cells for
efficient global communications in the circuit. The sorting circuit is
simple, regular and small enough for realization by today's VLSI
technology. We discuss several applications of the sorting circuit and
evaluate its performance.

Index Terms-Bus connected cellular array, database machine,
merging, multikey sort, parallel enumeration sort, parallel sorting
algorithm, pipeline, sorting, VLSI.

I. INTRODUCTION

S ORTING is one of the most important operations in data
processing. Many sequential and parallel sorting algo-

rithms have been developed and practically used [1]-[1 2]. We
propose here a new parallel sorting scheme called the parallel
enumeration sort which is suitable for VLSI implementation
[9]- [16]. In this scheme, sorting is divided into two parts, the
ordering process and the rearranging one. We have developed
a hardware algorithm for the ordering process and designed
a parallel enumeration sorting circuit for VLSI implementa-
tion.
Many parallel sorting schemes have been proposed and

implemented in parallel processing systems and database
machines. Many studies have been carried out on sorting
networks consisting of comparator modules which compare
and exchange two inputs [1], [3] . Sorting by parallel counter
proposed by Muller and Preparata [4] and parallel sort algo-
rithms on multiprocessor systems [5]-[8] are also developed.
However, most of them assume that a number of data for
sorting can be accessed at a time in parallel. It is difficult to

Manuscript received September 15, 1981; revised January 14, 1982 and
April 15, 1982. This work was supported in part by a Grant in Aid for Science
Research of the Ministry of Education, Science and Culture of Japan.
The authors are with the Department of Information Science, Faculty of

Engineering, Kyoto University, Kyoto, Japan.

accept them in conventional computer systems where data
access is restricted to one at a time. Several sorting schemes,
in which data are assumed to be transmitted one by one be-
tween a sorting circuit and memory devices, have been pro-
posed such as the pipeline sorting modules by Tanaka et al. [9]
and the rebound sorter by Chen et al. [10].

In this paper, we adopt the same assumptions: 1) a sorting
circuit is separated from memory devices and 2) data trans-
mission between the circuit and memory devices is serial.
Under these assumptions, processing for sorting cannot be
faster than data transmission. Since the time required for
sorting in our algorithm is linearly proportional to the number
of keys, our algorithm achieves optimum order on time. In
order to perform efficient sorting, it is important to minimize
the amount of communication between the sorting circuit and
memory devices. Our scheme can be considered as an optimum
solution for this minimization problem.

In the parallel enumeration sort, sorting is divided into the
ordering process and the rearranging process. This idea is
known as the enumeration sort [2] (or sorting by counting [1])
and adopted in some sorting programs and the sorting circuit
by Muller and Preparata [4]. In this paper, we will be mainly
concerned with a hardware algorithm for the ordering process
and its VLSI implementation. A sequence of keys for sorting
is transmitted from a memory device to the sorting circuit
serially and the sorting circuit outputs a sequence of numbers
Cl, C2, * * *, c, which represents that the ith key is the (c1 + I)th
smallest in the input key sequence. We can easily perform
rearrangement using the sequence of the orders in a central
processing unit or memory devices. Since the sorting circuit
processes keys, not whole records for sorting, the communi-
cation between the sorting circuit and memory devices are
minimized. The amount of hardware of the sorting circuit also
becomes small.
We propose a hardware algorithm of the sorting circuit on

a structure called the bus connected cellular array. The bus
connected cellular array is an array of cells which are sharing
buses. Using these buses, global communication in the array
is available [16]. The sorting circuit proposed here has the
following properties suitable for VLSI implementation
[13]-[15].

1) The circuit has a linear array structure of one type of
simple cell and each cell contains two registers, a comparator,
a counter, and a simple control circuit. Thus design and veri-
fication of the circuit will be easy.

2) The circuit performs pipeline and parallel processing

0018-9340/82/1200-1 192$00.75 © 1982 IEEE

1192

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

YASUURA et al.: SORTING SCHEME FOR VLSI

efficiently. Especially, the sorting time is completely over-
lapped with the input/output time.

3) The communication structure of the circuit is very simple
and regular. Local communication between neighbor cells and
global ones using two buses is efficiently performed and con-
trolled by the simple control circuit in each cell.

4) Since a linear array structure is adopted, the circuit can
be easily expanded and the number of pins of a VLSI chip is
independent of the number of cells on the chip.

5) The number of keys for sorting and the length of each
key are bounded by the total number of cells and the length of
registers in each cell, respectively. But for key sequences longer
than the upper bound of the circuit or consisting of keys longer
than the register length, we show efficient algorithms using
the sorting circuit twice or more.

6) The sorting time is linearly proportional to the number
of input keys, because global communication is used effec-
tively. Hence, the processing time including data transmission
is independent of the size of the circuit.
Kung and his group proposed the systolic algorithm for

parallel processing on VLSI [13]-[15]. Our algorithm is
similar to the systolic one except for permitting global com-
munication by buses. Using the bus connected array structure,
we can realize hardware algorithms whose processing time is
essentially depending on the size of problems, and not the size
of circuits.

In Section II, the parallel enumeration sort scheme is pro-
posed. A parallel enumeration sorting circuit for the ordering
process is designed and possibility of a VLSI implementation
is considered in Section III. In Section IV applications of the
sorting circuit, especially methods for relaxing restrictions of
hardware size are discussed.

II. THE PARALLEL ENUMERATION SORT SCHEME
For a given set of records R = Jri, r2, * * *, rnj and a set of

corresponding keysX = Ixl, x2, . . *, xn }, sorting aims to pro-
duce an arrangement of records whose corresponding keys
obey a specified linear order. In this paper, we assume that all
keys are integers represented by the standard binary repre-
sentations and the relation "." on integers is used for the linear
order. We divide sorting into two parts, the ordering process
and the rearranging one. The ordering process is the process
to decide the order of each key in the set of keys X. When xi
is the kth smallest key in X, the ordering process returns the
order c, equal to k - 1 corresponding to xi. The order ci is
easily calculated by counting results of comparisons between
xi and all keys in X. The rearranging process can be easily and
effectively performed by software on a central processing unit
or a memory device with special mechanisms, because the
order ci represents the desired location of xi.

Fig. 1 shows an example of sorting by the parallel enum-
eration sort scheme. For given records (names) and corre-
sponding keys (ages), records are sorted according to orders
of keys. First we obtain orders of keys, the increasing order of
ages, in the ordering process. Next, in the rearranging process,
we store each record to the location indexed by the order of the
corresponding key.
A basic algorithm to compute the order ci is as follows.

NAME
YAMADA
TANAKA
KATO
SUZUKI
HAYASHI
WATANABE
NAKAJIMA
MATSUMOTO

AGE
27
30
18
25
30
22.
20
35

ORDER
4
5
0
3
6
2
1

NAME (Sorted)
KATO
NAKAJIMA
WATANABE
SUZUKI
YAMADA

TANAKA
HAYASHI
MATSUMOTO

ORDERING REARRANGING

Fig. 1. Parallel enumeration sorting scheme.

Algorithm 1:

begin

Cj1= 0

for j := 1 step 1 until n do

ifxi > xj then ci ci + 1

end

Since Tanaka and Hayashi in Fig. 1 have the same age, their
orders must be the same by Algorithm 1. It is not desired for
the rearranging process because two or more records would
be stored to the same location. In order to avoid these collisions,
we use Algorithm 2.

Algorithm 2:

begin

Ci := 0

forj:= step I until i- Ido

if xi _xj then ci := ci +

for j i step 1 until n do

ifxi > x then c :=Ci+ 1

end

Algorithm 2 guarantees that all keys have different orders and
if xi = xj and i < j, then ci < cj.

In the parallel enumeration, n processor elements each of
which executes Algorithm 2 are provided and compute orders
efficiently in parallel. Keys and orders are transmitted serially
between a memory device and a sorting circuit which performs
the ordering process. Our algorithm precisely discussed in the
next section makes it possible that the processing time is
completely overlapped with input/output time. Thus, the
sorting time including the ordering and the rearranging process
is proportional to the number of records. Since keys are the
minimum information required for computing orders, data
transmission between the sorting circuit and a memory device
are clearly minimized. Thus amount of hardware of the sorting
circuit and the communication lines between the circuit and
a memory device also become small. Considering the size of
the circuit and the number of input/output ports, we conclude
that the sorting circuit proposed in this paper is fit for VLSI
implementation.

1193

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

III. A PARALLEL ENUMERATION SORTING CIRCUIT

In this section, we propose a hardware algorithm for the
ordering process and design a sorting circuit. Our sorting cir-
cuit, the parallel enumeration sorting circuit, is fed a sequence
of keys xi, x2, * * , x, serially, and outputs a sequence of orders
c1, c2, * * *, cn, where ci corresponds to xi.
A. A Parallel Enumeration Algorithm

First, we are concerned with a hardware algorithm of the
parallel enumeration for VLSI implementation. The algorithm
is based on the bus connected cellular array structure.
We prepare m cells each of which performs Algorithm 2.

These cells are connected in linear array. Fig. 2(a) shows a flow
of the parallel enumeration algorithm for an input key se-
quence XI, X2, * xn, where n _ m. The input sequence is
provided consecutively from tI to tn and the output sequence
is returned from t,+1 to t2n. At time ti, xi arrives at the input
terminal and is transported to the first cell and to the ith cell.
After receiving xi, the ith cell begins to perform Algorithm 2.
xj's in Algorithm 2 are shifted from the left cell (the i - 1st
cell) consecutively. At time tn+i, the ith cell completes Algo-
rithm 2 and transmits the counting result ci (the order of xi)
to the output terminal.

In this algorithm, two kinds of data transmissions are used:
1) local transmissions from the ith cell to the i + 1st cell and
2) global ones between each cell and the input/output termi-
nals. For the latter we can use a bus structure in order to
minimize the area of the communication lines on a VLSI chip.
An input bus and an output bus are provided for transmission
of keys from the input terminal to each cell and from each cell
to the output one, respectively.
We introduce several control signals to control execution

in cells. The control scheme is embedded into the linear array
of cells and distributed to each cell.

1) Input Start Signal s: This signal is used for triggering
operation of each cell. s is applied to the first cell at time to and
shifted from the ith cell to the i + 1st cell at time t, for i = 1,
2, .. , n. After a cell receives s, the cell begins the execution
of Algorithm 2. At time ti- 1, the ith cell receives s. Then, at
ti, ci is reset, xi which is just on the input bus is taken into the
cell and xi and x1 which is shifted from the i - 1st cell are
compared.

2) Input Completion Signalf This signal is used for ter-
minating operation of each cell.f is applied to the first cell at
time t, and also shifted from left to right on the array for each
time. Each cell receivesf when the execution of Algorithm 2
is completed. The ith cell receivesf at tn+i- 1 and then outputs
ci through the output bus at tn+i.

3) Counting Control Signals d and e: In Algorithm 2, the
condition for increasing ci changes after the i - 1st compari-
son. d and e are used to control this condition. Both d and e are
applied to the first cell at time to. d is shifted from left to right
for each time as same as the input start signal s. d sets a
counting control flag which indicates the condition of counting
in Algorithm 2. When the counting control flag is set up, the
counting condition includes the equal case. On the other hand,
e is shifted on the array from left to right at t2, t4, t6, ..*,t2n,2.
At time t2i-2 and t2i-1, e exists in the ith cell. Since the ith cell

executes the ith comparison at time t2i. 1,le is used to reset the
counting control flag. In applications of the sorting circuit, we
control the behavior of the cell used d and e effectively (see
Sections IV-B and IV-C).

4) Reset Signalfo:fo is applied to all the cells in the array
simultaneously. Whenfo is applied, the completion signal in
any cell is deleted. The usage offo is mentioned later.

Fig. 2(a) shows a flow of the algorithm for a key sequence
3, 6, 3, 2. s, d, and e are applied to the first cell at to. e stays at
each cell for two clock periods. When xi is shifted to the ith
cell, e just stays at the cell and changes the counting condition.
Since the counting condition of the third cell changes at t5,
counting at t3 and t5 are different.

B. Logic Design

A parallel enumeration sorting circuit is shown in Fig. 3. m
cells form a linear array and the inpout and output buses are
further connecting all cells. Input of the circuit is a-sequence
of keys and control signals (s, e, d,f, andfo). Output is a se-
quence of orders. Keys are transmitted to each cell through the
input bus on the one hand and shifted from left to right through
the array of cells on the other. Orders are transmitted through
the output bus. Control signals are shifted on the array from
left to right exceptfo which is sent to all cells simultaneously
through a line connected with all cells. The circuit can process
any key sequences not longer than m.

Fig. 4 shows a block diagram of a cell. The cell contains a
bus data register (abbreviated BDR), a shift data register
(SDR), a comparator, a counter, and a control circuit. The
BDR is connected with the input bus and stores a key xi during
the execution of Algorithm 2 in the cell. The SDR temporally
stores keys xI, x , x, which are shifted consecutively from
the SDR of the left neighbor cell. Keys in the BDR and SDR
are compared by the comparator for each time. By the result
of the comparison, the counter increases ci. The output of the
counter is connected with the output bus. The control circuit
controls when to get a key on the input bus into the BDR, to
output the order ci to the output bus, to reset the counter and
to change the condition of counting. These controls are
triggered by control signals s, d, e, andf.

Suppose that we use the nMOS technology for implemen-
tation [14]. Let the length of the BDR and SDR be p bits and
the length of the counter be q bits. Fig. 5 shows a detailed logic
design of each part of the cell. We use two-phase clocking il-
lustrated in Fig. 5(a). Setting of the data into BDR is con-
trolled by the input start signal s [see Fig. 5(b)]. The SDR is
realized by a simple shift register using inverters and transfer
gates as shown in Fig. 5(c). Combinational circuits in the
comparator and the counter are implemented by triangular
PLA's [see Fig. 5(d) and (e)]. The output of the counter is
controlled by the input completion signalf [see Fig. 5(e)]. The
control circuit illustrated in Fig. 5(f) and (g) consists of shift
registers for control signals, a counting control flip-flop, and
combinational circuits. Since the counting control signal e
stays at a cell for two clock periods, a two-bit shift register is
provided. The counting control circuit [Fig. 5(g)] generates
an internal signal GT + EQ * u, which directly controls the
counter. The control flip-flop is set when d = 1 and reset when

1194

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

YASUURA et al.: SORTING SCHEME FOR VLSI

Time Cell 1 Cell 2 Cell 3 Cell i ... Cell n

to s,d,eX
-Os,d,e

xi

xi

tl
c e d

t2 x2 XiK Xd

C2

C2--S2..

ti i C1 C-2 s
1 42 c3

CH
' 1 2 3

tn xi 3 i- x-2 .. 1 .. -

Cell m Time Cell 1 Cell 2 Cell 3 ... Cell i Cell n

K2 13xix
t X-n n-In1uiJ2 2EItn+l f W g

1 2 3- n

Cl

g ;~~~~3i xntn+2 fn ux-iJ-3

C2 3 1

tn+i-1~~C C C

i2 13 1'

Ci

t2ni DLJLZLZ4.:
C1 <

DEZEIJEII

(a)

time Cell 1 Cell 2 Cell 3 Cell 4

s ,d,e- os ,e

flag

3

6 3,6
e s,dL0+1

3

3 6 3

t3 ~ 3 6 3 (0
e s d

.
1+

t ~ ©(02(
f e

0,~~~~~~~~~~~~~~~~~~~

~~~~~~~~~32

2 3 0(

(b)

Fig. 2. Algorithm of parallel enumeration. (a) Flow of parallel

enumeration. (b) An example.

1195

* Cell m

LI
LI
LI
LI
LI

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

Key Input

Control Signals

s,d,e and f

Reset Signal f0
Output

Input Bus

Output Bus

Fig. 3. A parallel enumeration sorting circuit.

VLSI implementation, because an increase of the number of
pins cannot be considered to be so fast as a rapid growing up
of the density of circuit on a chip. In general, the number of
pins of a chip is 3p + q + 11. The number of pins can be re-
duced when keys and orders are divided into two or more parts
to reduce data transfer at a time by a serial-parallel trans-
mission. If we divide each key and order into r parts, the
number of pins of a chip becomes 3rp/rl + rq/rl + 11. In the
example mentioned above, only 43 pins are required when r
= 4. However, the processing time increases proportionally to
r.
A sorting circuit is constructed by connecting the chips, so

far as the number of cells does not exceed 216. No other circuits
are required for the construction. When we can drive the cir-
cuit by 5 MHz clock, 60 000 keys will be able to be processed
in 24 ms.

IV., APPLICATIONS OF THE SORTING CIRCUIT

In this section, we are concerned with several applications
of the parallel enumeration sorting circuit designed in the
previous section. Assume that the length of the BDR (and the
SDR) and the counter are p and q, respectively. Our circuit
has m cells wherem _ 2a. Let the length of keys and the length
of a key sequence by k and n, respectively. The length of a
sequenceX is denoted by IXI.
A. Pipelining

Although 2n clock periods are required for sorting a se-
quenceX with length n, the ith cell is busy only from the ith
period to the (i + n)th one. We can begin the sorting of the
other sequence X' before the sorting ofX is completed. This
means that pipelined processing for key sequences is possible.
Fig. 8 illustrates pipelined processing for three key sequences
X, X', and X". Sequence X' can be applied to the circuit im-
mediately after the input of sequenceX is completed. Thus the
input ofX' and the output forX are overlapped. Sequence X"
which is shorter than X' cannot be applied immediately after
the completion ofX' because there is possibility that outputs
for X" and X' are overlapped. The start time ofX" is delayed
enough to avoid such overlapping.
Assume that a sequence X1, the length of n1, and X2, the

length of n2, are sorted subsequently, where both nI and n2 are
not greater than m. If n1 _ n2, then we can immediately begin
the processing for X2 after completing the input of XI. If n,
> n2, then we start the processing for X2 after delay of n1-
n2 clock periods.
The input completion signalf will be shifted in the circuit

after the completion of outputs, when m > n. In order to avoid

f0 Output

Fig. 4. Block diagram of the cell.

e = 1 or s = d = 1. We can control the behavior of the cell by
the counting control signals d and e. If both d and e are applied
(this is the normal case), the cell performs Algorithm 2. If
neither d nor e are applied, the cell performs Algorithm 1. If
only d is applied, the counting condition always includes the
equal case. Such controls are used for applications in the next
section.fo resets the shift register forf.

Using such cells, we can construct sorting circuits consisting
of no more than 2q cells, because the counter with the length
q can count from 0 to 2q- 1. p and q are decided with due
consideration for the requirements of the circuit and the re-

strictions of the chip size and the number of pins for interchip
connection. In the following section, we will discuss sorting
methods using the sorting circuits for a key sequence longer
than 2q and for keys larger than p bits.

C. Considerations of VLSI Implementation

In order to evaluate the area on a VLSI chip we have tried
to draw a layout of the cell with p = 32 and q = 16 using
Mead-Conway design rules for nMOS technology [14]. Fig.
6 shows a rough draft of the layout. The area of each cell is
about 720X X 750X and the width of the input bus and the
output bus are 200X and lOOX, respectively. X is the length unit
of the design rule [141.

Fig. 7 shows a sketch of a layout of a chip constructed of the
cells. If we assume X = 2 ,um, we will produce an 8 X 8 mm2
chip including about 20 or 30 cells. The number of pins for
interchip connections is 123 which is independent of the
number of cells in a chip. This property is very important for

s ,d,
e,f

1196

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore.  Restrictions apply. 



YASUURA et al.: SORTING SCHEME FOR VLSI

Clock period

1~~~~~~~~~~~N
Phase-1

Phase-2

(a)

Input Bus
I -

-aJ.

NOR plane

ca:

I I
cq- I cqGT tEQ -

(e)

Ck Tk

rry

Tq 02 -

Tq~~~~~i-
Tq- I

Tu Ckf

'U Ck

b1 b2 b3

I

, SOl
_>~~~~~~1 S03IZLhI- n

up

7

b

(c)

OR plane

a2 a.
LSB

L
p apb3 a3

2

d
e
f
fo

(f)

I T

(d) (g)

Fig. 5. Logic design of the cell. (a) Clock. (b) Bus data register. (c) Shift
data register. (d) Comparator (PLA). (e) Counter (PLA and flip-flop).
(f) Control circuit (signal registers). (g) Control circuit (counting control
flip-flop).

a maloperation caused by f, we apply the reset signal fo for
deleting such f after outputs are completed. The counting
control signal e should be also deleted before each cell begins
the processing of a new sequence. The start signal s for the new
sequence is used for deleting e.

B. Sorting ofa Key Sequence Longer than m

When the length of a key sequence n is longer than m, the

number of cells in the circuit, our sorting circuit cannot process

the sequence in the standard manner. However, we can sort
such sequences using a sorting circuit with a little modifica-
tions. We modify the sorting circuit to a circuit with two input
ports, an input bus port (IB port) and a shift data port (SD
port), as shown Fig. 9(a). When X = {x1, x2, - * *, xn} and X'
= {x'1, x, x.* are applied to the IB port and the SD port
respectively, the modified sorting circuit computes the ordzr

IB1
IB2
IB3

IB*

¢ , . s

aa aa2 a3a3 * *

(b)
SI
SI2
SI 3

SIp
,

TL T- I-l

¢1* f

D,- d eF

- .

-

(as -+e)

AND
plane ME

I
b1 a,B2 b

I 1 1X

I I I L I I A I I I IL

t I I I I I I I I T

1197

ir ir If

SB

I"

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

720

Bus Data Register

Shift Data Lines

Shift Data Register

Comparator

Control Counter
Circuit

75OX

\Control Signal Lines

Fig. 6. Layout of the cell.

Pads for the input bus (p)

.~~~~~~~~

I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0.

I.,4
5
4.

B

0.

1,4
41~

4.1

'0

04

1-%04

:P.1
4.1
0

o410

4.1

5

to

6q
0

04

Pads for the output bus
and control signals (q+ll)

Fig. 7. Sketch of a VLSI chip.

of each xi E X in the sequence X'. It is clear that for this
modification no changes are required of the logic design of a
cell and the chip layout.
The procedure to compute orders of a sequenceX of length

n is as follows.

Procedure 1:
Input: A key sequence X =xI, X2, * x"}, where n >

mr.
Output: A sequence of orders C = {cl, c2, , c"}.
Method:
Step 1: Divide X into [n/rmn subsequences Xi, X2, ***,

Xrn/ml, where IXiI = m for i = 1, 2, , [n/rm - 1 and
xrnlmi I = n -[n/mlm + m.
Step 2: For all pairs ofXi and Xj, apply Xi to the IB port and

XJ to the SD port, respectively. If i < j, then neither the
counting control signal d nor e are applied. If i > j, then only
d is applied. If i = j, both d and e are applied. The resulting
order for the pair of Xi and Xj is denoted C,1 = IcV, cV,*

Step 3: Compute Ch = c? for i = 1, 2 , rn/rml and
j=1

h = 1, 2, INI. The sequence Ci = 1cl2, clxil is
orders corresponding to XN.

The sorting circuit is used [n/mi2 times. The time required
for Procedure 1 is O(n2/m). We can use the pipelined pro-

Input Output
Key Sequence X

Input Output
Key Sequence X' t

Input 'Output
Key Sequence X" !

r
waiting time

Fig. 8. Pipeline processing of key sequences.

Input Bus Port B
0 Output Port

Shift Data Port- S

(a)

c2 * m

I

Cm+ l ' m+ 21 cn
(b)

Fig. 9. Sorting of a key sequence longer than m. (a) The modified
sorting circuit. (b) An example.

cessing effectively in the Procedure 1. If we use rn/ml 2 sorting
circuits and [n/ml ([n/ml- 1) adders in parallel, Procedure
1 is 0(n) in time complexity. Fig. 9(b) shows a parallel sorting
using four sorting circuits and two adders, when m < n _
2m.

C. Sorting ofKeys Larger than p
The length of the key for sorting varies widely with the ap-

plication. However, the length of key which can be processed
by the sorting circuit is bounded by the length of registers (the
BDR and SDR). The register length p is restricted by the area
of a chip and by the number of pins.
One solution to increase the register length p effectively

without increasing the area of buses and the number of pins
is to divide data into two or more parts for a serial-parallel
transmission as mentioned in Section III. By this method, the
restriction on the key length k can be relaxed but not be re-
moved perfectly.
The other method to process long keys is to utilize a data

compression function of the sorting circuit. The order of a key
sequence can be considered as a compressed information of the
original key sequence. Fig. 10 shows an example of sorting for
keys of length 12 bits using a sorting circuit with p = 6. In Fig.
10, all numbers are represented by the octal notation. Each key
is divided into two parts, the upper half digits and the lower
half ones, and then two key sequences are obtained. After the
order of these sequences are decided by the sorting circuit,
respectively, corresponding orders are concatenated to each
other and a new sequence of keys each of which is 6 bits are

1198

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore.  Restrictions apply. 



YASUURA et al.: SORTING SCHEME FOR VLSI

3214, 2120, 2165 ,4751, 1021

32,21,21,47,10 14,20,65,5121

Sorting Sorting
Circuit Circuit

3, 1,1,4,0 0,1,4,3,2

30,11, 14,43,02

Sorting

Circuit

3,1,2,4,0

Fig. 10. Sorting of keys wider than p.

obtained. The new sequence is a compressed information
preserving the order of the original sequence, because the order
of the new sequence and of the original one are clearly same.

Thus we can sort the original sequence using the order of the
new sequence which is computed by the sorting circuit.

In general, we can compute order of a sequence of long keys
by the following procedure.

Procedure 2:
Input: A key sequenceX = {xl, x2, *, xn , where n _ m

and the length of each key is k.
Output: A sequence of orders corresponding to X.
Method:
Step 1: Let r = rk/pl. If r = 1, then compute the order of

the input sequence by the sorting circuit using the counting
control signals d and e. Otherwise execute Steps 2, 3, and 4.

Step 2: Divide each key into r parts each of which is not
greater than p bits. Namely, if xi = (aIa2 ak)2, then we

generate r integers, yI = (a a2 ap)2 y2 = (ap+ Iap+2
a2p)2,** Y,l = (a(r-1)p+ la(r-1)p+2

..

*ak)2.
Step 3: Compute the order of each sequence Yj = tyjl, y2,

n, yIJ for] = 1, 2, - - *, r using the sorting circuit and obtain
the order Cj = JcJ, cJ2, - * *, cJ }. In this computation, neither d
nor e are applied to the circuit. Concatenate cJ's for j = 1, 2,

r and generate a new key sequence C. Namely, we define
Ci = (bb2 brq)2, where cJ, = (b0-])q+lb(j-])q+2 * bjq)2
forj = 1,2, , r. And then let C be Icl, C2, , cn.

Step 4: Call Procedure 2 recursively as X = C.

In Procedure 2, the sorting circuit is used approximately
r(k -p)/(p - q)] + I times.

D. Merging and Multikey Sorting

The techniques mentioned in the previous two subsections
can be used for merging and multikey sorting which are both
important in the database operations.

For given sets of records R = Jrn, r2, , rn} and R' =r
r2 *, rn,4 with corresponding key sets X = {xI, x2, ** ,n

and X' = Ix', x2, * *, x',}, respectively, merging is to produce
a set of records R" = R u R' which is sorted with respect to
keysX uJ XI. Assume that both n and n' are not greater than
the number of cells in the sorting circuit. We also suppose that
orders C = {cI, C2 , cn} and C' = {cl, c2, , c,"I ofR and
R' are known, respectively. We perform merging ofR and R'
using the modified sorting circuit in Section IV-B [see Fig.
9(a)]. Applying X and X' (X' and X) to the IB port and SD
port, respectively, we obtain mutual order D = Id,, d2, -, dn}
(D' = {dl, dl, * * *, d',4, respectively). Since di is the order of
xi in X', ci + di denotes the order of xi inX u X'. c, + d, also
denotes the order of xi inX u X'. Thus we obtain a set of or-
ders C" ofR" by adding corresponding components in C (C')
and D (D'). Records in R" are rearranged according to C".
Fig. 11 shows an example of merging.
Next we will consider multikey sorting. In multikey sorting

for a given set of records R = Jr , r2, * * *, rnA with two corre-
sponding key sets X = {xl, x2, , xn,} and N' = {x'1, x2,*,
x", R is sorted according toX under the condition that if xi
= xj (xi, xj E X), then ri and rj are sorted according to mag-
nitude of x; and x) in X'. We can easily generalize multikey
sorting to three or more key sets. Suppose we have orders C =
Ic], c2, *,cnl and C' = {cl, c...... c' IofXandX' by Algo-
rithms 1 and 2, respectively. First we make composite key sets

X"= {x1, x2,.***, xnJ from C and C'. x' is a concatenation of
ci and c, (i.e., x' = c,2q + c4, where c, is represented by q bits).
Computing order C" of the composite key set X" by the sorting
circuit, we can perform multikey sorting. Fig. 12 illustrates
an example of multikey sorting.
The order computed by the parallel enumeration sorting

scheme can be considered as compressed information of keys
preserving an ordered relation. We can utilize the order instead
of inverted files to perform several database operations. Many
applications of the order and the sorting circuit can be con-
sidered in database systems.

V. CONCLUDING REMARKS

The parallel enumeration sorting circuit can be easily at-
tached to commercial computer systems as a peripheral device.
It has many properties suitable for VLSI implementation.
Since the design of the circuit is independent of the number
of cells on a chip, the progress of the process technology of
VLSI directly improves the density and performance of the
sorting circuit.

In order to evaluate the performance of the sorting circuit,
we will compare the sorting time of the parallel enumeration
scheme with a quick sort program. Table I shows the number
of comparisons and data exchanges of the quick sort program.
For 30 000 records, about 560 000 comparisons and 200 000
exchanges are required on an average. We suppose that a
comparison requires at least two instructions and an exchange
requires at least six instructions (which includes exchanges of
keys and records). Thus we need more than two million
instructions for the sorting. If we use a computer of 5 MIPS-
(million instruction per second), it requires more than 500 ms.
On the other hand, attaching the parallel sorting circuit with
5 MHz clock to the computer, we can sort 30 000 records only

1199

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-3 1, NO. 12, DECEMBER 1982

NAME

lAME
KATO

SATO

HONDA

SUZUKI

KI-IIRA

YAMADA

TANAKA

MORI I

Fig. I 1.

AGE (X' )

AGE

18

20

22

25

26

27

30

0 SATO 20 1 1

1 HONDA 22 1 2

2 KIMURA 26 2 4

3 MORI 35 4 7

COMPOSITE
KEY

37

56

10

35

14

51

03

72

ORDER

4

6

1

3

2

5

0

7

NAME (SORTED)

NAKAJIMA

KOJIMA

SUZUKI

TAKEDA

YAMADA

MIYATA

TANAKA

. MORI

Fig. 12. Multikey sorting.M35 1
Merging.

TABLE I
THE NUMBER OF COMPARISONS AND DATA EXCHANGES OF QUICK

SORT

Number of Data Comparison Exchange

10,000 158, 757 59,947
10,000 154,873 60,098
10,000 156,562 59,904
10,000 158,914 59,684
10,000 167, 197 59, 315

20,000 350,627 129,014
20,000 346,106 127,460
20,000 344,879 128,036
20,000 383,192 126,397
20,000 355 837 127,914

30,000 537,087 202,605
30,000 549,204 202,044
30,000 550,329 200,409
30,000 614,220 197,340
30,000 548,646 200,882

in 24 ms (12 ms for the ordering process by the circuit and 12
ms for the rearranging by a simple program on CPU). Since
the ordering and rearranging can be overlapped effectively,
the sorting time can be reduced to less than 20 ms. For tens of
thousands of records, ten or a hundred times the speed-up are

expected.
The bus connected cellular array structure is very useful for

designing hardware algorithms for VLSI. Especially, many

special purpose devices for data processing attached to com-
mercial computers will be able to implement as the bus con-

nected cellular array.

ACKNOWLEDGMENT
The authors would like to express their sincere appreciation

to Associate Prof. Y. Kambayashi of Kyoto University for his
many helpful suggestions on applications of the sorting scheme

R

ORDER C NAME AGE (X) ORDER D C + D

0 KATO 18 0 0

1 SUZUKI 25 2 3

2 YAMADA 27 3 5

3 TANAKA 30 3 6

ORDER C '

NAME AGE

YAMADA 27

TANAKA 30

KOJIMA 25

TAKEDA 27

SUZUKI 25

MIYATA 30

NAKAJIIMA 22

MORI 35

ORDER
BY AGE BY NAME

3 7

5 6

1 0

3 5

1 4

5 1

0 3

7 2

1 200

ORDER D ' C'+D'

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore.  Restrictions apply. 



YASUURA et al.: SORTING SCHEME FOR VLSI

to database systems. The authors would also like to thank
gratefully the members of the Yajima Laboratory for their
discussions.

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming: Sorting and
Searching, vol. 3. Reading, MA: Addison-Wesley, 1973.

[2] H. Lorin, Sorting and Sort System. Reading, MA: Addison-Wesley,
1975.

[3] K. E. Batcher, "Sorting networks and their applictions," in AFIPS Proc.
Spring Joint Comput. Conf., vol. 32, Apr. 1968, pp. 307-314.

[4] D. E. Muller and F. P. Preparata, "Bounds to complexities of networks
for sorting and for switching," J. Ass. Comput. Mach., vol. 22, pp.
195-201,Apr. 1975.

[5] F. P. Preparata, "New parallel-sorting schemes," IEEE Trans. Comput.,
vol. C-27, pp. 669-673, July 1978.

[6] C. D. Thompson and H. T. Kung, "Sorting on a mesh-connected parallel
computer," Commun. Ass. Comput. Mach., vol. 20, Apr. 1977.

[7] D. Nassimi and S. Sahni, "Bitonic sort on a mesh-connected parallel
computer," IEEE Trans. Comput., vol. C-28, pp. 2-7, Jan. 1979.

[8] D. S. Hirschberg, "Fast parallel sorting algorithms," Commun. Ass.
Comput. Mach., vol. 21, pp. 657-661, Aug. 1978.

[9] Y. Tanaka, Y. Nozaka, and A. Masuyama, "Pipeline searching and
sorting modules as components of a data flow database computer," in
Proc. IFIP'80, Oct. 1980, pp. 427-432.

[10] T. C. Chen, V. Y. Lum, and C. Tung, "The rebound sorter: An efficient
sort engine for large files," in Proc. 4th VLDB, Sept. 1978, pp. 312-
318.

[11] K. Chung, F. Luccio, and C. K. Wong, "On the complexity of sorting
in magnetic bubble memory systems," IEEE Trans. Comput., vol. C-29,
pp. 553-563, July 1980.

[12] D. T. Lee, H. Chang, and K. Wong, "An on-chip compare/steer bubble
sorter," IEEE Trans. Comput., vol. C-30, pp. 396-405, June 1981.

[13] M. J. Foster and H. T. Kung, "The design of special-purpose VLSI
chips," IEEE Comput., vol. 13, pp. 26-40, Jan. 1980.

[14] C. Mead and L. Conway, Introduction to VLSI Systems. Reading,
MA: Addison-Wesley, 1980.

[15] H. T. Kung, The Structure of Parallel Algorithms: Advances in
Computers, vol. 19. New York: Academic, 1980, pp. 65-112.

[16] A. Mukhopadhyay, "Hardware algorithms for nonnumeric computa-
tion," IEEE Trans. Comput., vol. C-28, pp. 384-394, June 1979.

Hiroto Yasuura (M'81) was born in Fukuoka,
Japan, on October 29, 1953. He received the B.E.
and M.E. degrees in information science from
Kyoto University, Kyoto, Japan, in 1976 and
1978, respectively.
He is now a Research Associate in the Depart-

ment of Information Science, Faculty of Engi-
neering, Kyoto University. His current interests
include hardware algorithms for numeric and non-
numeric computations, the complexity theory of
parallel computation, and logical design for
VLSI.

Naofumi Takagi (S'82) was born in Osaka, Japan,
on February 9, 1959. He received the B.E. degree
in information science from Kyoto University,
Kyoto, Japan, in 1981.
He is a graduate student at Kyoto University

and is now engaged in development of a sorting
circuit. He is interested in hardware algorithms
for VLSI.

Shuzo Yajima (M'66-SM'76) was born in Taka-
razuka, Japan, on December 6, 1933. He received
the B.E., M.E., and Ph.D. degrees in electrical en-
gineering from Kyoto University, Kyoto, Japan, in
1956, 1958, and 1964, respectively.
He developed Kyoto University's first digital

computer, KDC-I, in 1960. In 1961 he joined the
faculty of Kyoto University. Since 1971 he has
been a Professor in the Department of Information
Science, Faculty of Engineering, Kyoto Universi-
ty, engaged in research and education in logic cir-
cuits, switching, and automata theory.

Dr. Yajima is a Trustee of the Institute of Electronics and Communication
Engineers of Japan, and Chairman ofthe Technical Committee on Automata
and Languages of the Institute. He served as one of the Board of Directors
of the Information Processing Society of Japan.

1201

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore.  Restrictions apply. 


