PEEK [65]

The Unofficial OSI Journal

Column One

It's hard to believe this issue is so
near and yet so far to being on
schedule. Still, the response to the
summer issue was gratifying and 1
hope it has renewed everyone's
confidence in PEEK.

As 1 write this, Apple Computer has
just announced its new Apple I1gs. For
those of you who haven't read about it
yet, the Ilgs is a 65816-based
system that is designed to be
compatible with 90% of existing Apple
II software, but adds the power of a
16-bit CPU, 256K of RAM, a
detatchable Xkeyboard the now-

obligatory mouse, a high-resolution -

graphics c¢hip, and the 15-voice
Ensoniq sound chip. I mention the 1igs
not to debate the virtues or vices of
the machine, but instead to highlight
the expanding interest in the new
microprocessor it employs and that
the 8-bit OSI community is beginning
to discover.

Again, very soon every OSI owner will
have the opportunity to upgrade the
brains of his system to a more
powerful processor and 1 intend to
keep PEEK[65] intimately involved
with this evolution. While the new
65802 and 65816 will run our ancient
6502 software, there isnt a lot of
software available to take advantage
of the new chips’ abilities. That means
the OSI community will again have to
band together to provide its own
solutions.

September, 1966

Volume 7 Number 9
Inside This Issue:
DSDD Disk Interface page 2
DMS65D Mailer page 7
U-Word, anewwordproc. page9
Add 8K to your C1P page 11
(S)eli-(A)ware (M)icro. page 12
AD$ page 15

Whether you call them hobbiests,
personal computer users, or video
users, the C1/C4/C8 community
simply isnt large enough or
enthusiastic enough to provide a
vendor a reasonable return on new
software. Unless the software will also
appeal to the serial system market,
you arent going to see a mnew
commercial product. It seems to me,
therefore, that we are back to a
situation where there will be no
software unless there are enough
hardware purchases to warrant it, and
there won't be enough hardware
purchases if there is no software.
Clearly there has to be something to
get the ball rolling.

To help things out in the video

market, we are all once again
indebted to Paul Chidley of the
Toronto-based user group TOSIE for
developing a new CPU board that uses
the 65816. For the high-end users, an
imminent announcement will bring
you along as well, although 1 expect
the divergence in 65U/65D software
between the two communities to
increase, rather than diminish.

For my part, I have commitled to
produce a version of my ASM-Plus
assembler for the 65816. But to reafly
make this chip attractive, there must
be more than just an assembler.
Therefore, I propose that the new 65D
project I have been touting be shifted
to specifically designed as a 16-bit
operating system. Stand up and be
heard now, people. Take the time to

write in with your c¢omments,
suggestions, and opinions or this
project will languish and die.

Please check out the mailing label on
this issue. As noted in the Summer
issue, alt subscribers current through
June of 1986 had 2 extra months
added to their subscriptions. Some
people’s subscription will have
expired despite this extension, for
many others, this is their last issue. In
any event, if your subscription is
about to expire, please don't wait for
the reminder postcard to renew. It
will be some time before I can do
another mailing and this may cause
you to miss an issue if you neglect to
renew now. So take a moment and see
when your subscription expires. Your
support is very much appreciated.

Lots of good stuff in this issue. Among
other things, Scott Larson shows us
how to add 8K of RAM to the CIP, I
have included the mailing label
program for my DMS65D software
presented in the Summer issue, as
well as a product description of the
new word-processor from SofTouch,
Dave Livesay presents his new disk
interface that allows you to connect
the newer high-density mini-floppies
to your system (which he is offering
fully assembled for $50), and Richard
Reed gives us SAM, the Self-Aware
Microcomputer. Enjoy!

o3

How to add 5.25" 40 or 80 Track
Double Sided Drives to Your OS]

by David Livesay
Ave de la Resistance 6
B-4920 Embourg, Belgium

This article will cover several subjects
dealing with the problem of 5.25°
drives for the OSI. Covered will be the
conversion of a new MPIl drive to
replace your old drive, how to build a
data separator and a motor control
circuit to use with any industry
standard disk drive and last we will
cover how to use double sided 89
track drives. By implimenting the
suggestions- here you can increase
your disk drive capacity to either
328K or 656K for about $300 or even
less if you only impliment part of this.

Those who are faced with the problem
of adding more drive capacity or
replacing existing drives have several
choices available. These choices
include purchasing a new MPI drive
and adapting your oid data separator
Yo it, building a new data separator
and using standard 4@ ftrack drives
either single or double sided, or using
one of the 80 track double sided
drives. Some of the information
. presented here has been published
before but I think it worthwhile to
place all of this information into one
“article.

NEW MPI DRIVES

First we will discuss the adaptation of
a new MPI drive to replace an existing
051 MPI drive. As those of you who
have 525" disk systems know OSI
used a single sided 40 track MPI drive

Copyright 1986 PEEKI6S] Al rights reserved
published monthly .
Editor : Richard L. Trethewey

Subsoription Rates Air Surface
us $22
Canada & Mexico (1st class) $38
Europe $42 $40

" Other Foreign $47 $4e

All subscriptions are for one year and are payable in
advance in US dollars. For back issues,
subscriptions, or other information, write to:

PEEK[65) :

P.0. Box 586

Paoifica, CA 94844 415-359-5708
Mention of products by trade name in editorial
material or advertisements contained herein in no
way constitutes endorsement of the product or
preducts by this magazine or; the publisher.

page 2 PEEK{65] September, 1986

with built in data separator. During
the past few months 1 have seen
double sided MPI drives advertised
for about $89. To make the required
modifications you will need to remove
the main circuit board from the new
drive. Make mnote of all of the
connector ‘positions and if need be
mark them before removal. Now
remove the connectors and the screws
holding the board in place. For either
a double or single sided drive there is
only one modification required. The
line which goes to pin 3@ of the drive
interface connector (j4) is connected
to pin 3 of the 7438 nand gate shown
in Figure 1. This is normally the raw
data output. Pin 1 of this nand gate is
connected to pins 5 and 9 of the
74LS123 (see fig. 1) and must be cut.
Make sure that the connection
between pin 1 of the nand gate and
the drive separator connector remains
intact. Now you will need to remove
the small data separator circuit board,
which is located at the front right

~ hand side of the main circuit board,

{from your old drive. Install this on the
new drive and replace the board and
connectors. You now have a new
single or double sided MPI drive. For
double sided drives the circuitry on
the OSI controller and paddie board
will also need to be modified. -

MODIFICATION - OF THE OSl
CONTROLLER FOR DOUBLE SID
DRIVES ' ' :

The OSI disk drive selection circuitry
as used on the 5905 board is shown in
fig. 2. Other OSI floppy controllers use
the same basic circuit but you will
have to trace out the signals starting
with the PIA or get a copy of the
schematic for your board. For double
sided operation the traces marked
with an X" must be cut and the
jumpers shown in dashed lines must
be added. The drive selection logic for
single and double sided drives is
shown in table 1. As shown in table |
selecting drive A or C will select side

ConnvECTRA T
DaArA SEPARATIA

v
asiaad T

-
) =
L5 |

WPI FLOPPY DRIVE CIRCUIT BOARD °

ria. 1

a0

8EL DRIVE 1

becomes drive
ealect tor
double sided
arives

e
oaet " 1t J3-10

M) 8KEL DRIVE 2

becoues slde
select for
double sided
drives

J2-4 (eee text}

XeCUT, - - - = ADD (FOR DOUBLE SIDED DRIVES}

OS1 DRIVE SELECT BCHEMATIC (SOS BOARD)

?-05

3

r >

470

rio. 2

r__._M,_._o +Ss

10K
18 adjust for » 6 pa
posltive
Pulse st Us pitn &
u

arse .u-s>— L (.
f

}D h

DATA J3-30 >— Ui

+s o—t—3{18

£

v, <.u-u

6EP DATA

ap ; Sx5 crock
‘@)_,_h.._{ J1-10 3EP CrOCK

Ui = 7438
Ua = 74121

J1 = CONNECTOR TO CONTROLLER BOARD
J2 = CONMECTOR TO FLOPPY CABLX

DATA BEPARATOR
FIo. 3

one or two of the first drive and USING INDUSTRY STANDARD 5.25°
selecting drive B or D will select side INTERFACE DRIVES
one or two of the second drive. The
only problem now is that the drive Now what options do we have? The
select signal for drive two must be the first thing is that we will use an
inverse of the signal for drive select industry standard drive. Almost all of
one. We have two choices. The first is the 5.257 drives on the market today
to add an inverter on the paddle use the same interface. The only
board between pin 3 of the controller differences you will find are that
connector and pin 12 of the connector some drives have more user instailed
going to the drive. You can use a 7438 options available than others. Table 3
nand gate for this. Pin 18 of the OSI shows the pin asignments for the
controller which was conected to pin 5.25" interface. The OSI MPI drive had
12 of the disk drive needs to be the industry standard interface with
connected to pin 32 of the disk drive. two changes. Instead of using pin 30
as the read data line it became the
The second choice is to use the fault separate clock line and pin 34 became
reset driver in the OSI controller the separate data line. Some history is
circuit which is not used. This driver perhaps in order. The first disk drive
is shown in fig. 2. The input should be that OSI offered in 1976 was the GSI
connected to pin 13 of the nand gate model 185, The 470 board was
(USA) which drives the driver for the designed to interface to this drive.
select drive 1 line. The line coming This is the reason.that some of the
from pin 14 of the PIA will also need lines of the drive controller such as
to be cut. Now pin 4 of the OSI fault reset are no longer used. The fact
controller connector will need to be that this drive and the latter Siemens
connected to pin 12 of the disk drive and Shugart 8" drives also had data
cable connector and the connection separators meant that OSI never did
between pin 12 of the disk drive develop an interface board that
connector and pin 18 of the controtler included the data separator. As the 8"
connector removed. Pin 18 of the drives all used AC motors they ran
controller connector now needs to be continuously and when OS] came out
connected to pin 32 of the drive with the 525" drive systems they
connector. Table 2 shows the final never bothered to provide any control
connections. 1If you build the motor for the motor and had to use a drive
control circuit described later you will with a built in data separator. It may
only need to make the changes for also be that they decided to et the
conversion to double sided drives motor turn constantly to increase the
without making the changes needed to access speed. So much for history but
add the inverter for drive select 2. thats how we became stuck with
today’s problems with the disk drives.

+5

Ao

J1 = CONNZCTOR TO CONTROLLER BOARD
wg jooR J2 = CONNECTOR TO FLOPPY CABLE

+
4 lj
"
40K Hre "

s
Prvwrs 1) Ja-16 MO Ul o
a-y BB 2 Q
1 v g
U
Ji-5 STRP HA

CUT POR WOTOR ON BWITCH
= CUT PON DOUALE SIDKD DRIVRS
» ADD FOM DOUBLE S1DED DRIVES
= 74L386 Us = 7438
= 74L3123 Us = 2438

®
x
u,
. Us
s1-a0 TwoER iy T me
(WITH DELAY) >_“- 4 J.‘-Z‘l’
< J2-8 INDEX

i : . "LFD)_—(J2-12 DRIVE 2
S an oRiva 2 D— l -
JDJ—C--.’—(Jz2-32 8IOR SEL

DRIVE 1

MOTOR CONTROL

rIG. 4

DATA SEPARATOR

If were going to use the industry
standard interface we will need t
build a data separator. There have
been several articles published in
PEEK[65] on building data separators
all of which should work. In fig. 3 is
another data separator circuit which is
the one used by Siemens on the §”
drives. The timing values have been
adjusted to conform to the 5.25°
timing requirements. This separator
uses fewer components than most of
the others that | have seen and works
fine. You can adjust the timing by
connecting pin 9 of the OSI controller
to pin 30 of the data separator. Adjust
the potentiometer for a 6 microsecond
low pulse at pin 1 of the 74121.

DRIVE MOTOR CONTROL

I would suggest that you build a disk
motor on/off control circuit unless you
want your drives to turn continuously.
The motor control circuit is shown in
fig. 4. The motor control has been
set-up so that anytime a head load or
step pulse is detected the one-shot
will trigger for about 5 seconds.
Anytime a new step or head load
pulse is detected the one shot will
retrigger for the 5 second period. In
this way the motor will stay on if the
drive accesses several tracks in
succession. The second one-shot is
used to inhibit the output of the index
pulse until the motor has had time to

come up to speed.

‘ In general, almost all of the disk

drives available will start in 5
seconds or less. We therefore need to
inhibit the index pulses for about 5
seconds. If you wish, you can

- experiment with less delay to provide

for quicker access. In some cases you
can decrease the delay to around .25
second. If you wish to sometimes have
your motor on continuously for faster
access then a switch can be added as
shown. This switch can be located
either in the computer or on the disk
drive case.

THE OTHER DRIVE SIGNALS
The connections between the OSI and

the disk drive are shown in table 2.
Note that if you have a drive with the

page 3 PEEK[65] September, 1986

ready signal then you can connect this
line to pins 22 and 24 of the OS]
controlier, otherwise these pins should
be grounded.

BUILDING THE DATA SEPERATOR AND
MOTOR CONTROL

If you wish to build your own data
separator and motor control you can
build one using a small prototype
board about 4 X 3°. The biggest
problem is that the Molex connectors
for the connection to the OSI use a
.156" spacing between pins. You can
drill new holes in your prototype
board to match. You will find that you
can use some of the existing holes if
you enlarge them. If you use the
standard connectors as used on the
computer boards you will need to
straighten the leads so that the
connector is at right angles to the
board. Molex also builds a version of
the connector with straight leads.

1 would recommend that you epoxy
the connectors to the proto board.]
used a 34 pin right angle ribbon cable
header for the connector to disk drive.
This alows you to easily replace the
cable. The 470 pf capacitor in the data
separator circuit shoud be a stable
type such as a silver mica unit.

HEAD LOAD CONTROL

In general there are two types of head
load control for 5.25" drives. Some
drives such as the MPI use a head
load solenoid and have options for
head 1oad with motor on or head load
with drive select. Others such as
Tandon and Panasonic ioad the head
when the drive door is closed and
don't have a head load solenoid. Some
of the newer drives have other
options such as using pin 2 which is a
spare or pin 4 the In Use line to load
the head. All of the newer drives (if
they have head ioad solenoids) also
have the load head constant, with
motor on and with drive select options
for loading the head. For those who
don't wish to build their own
separator and motor control 1 will
have one available assembled and
tested without disk drive cable but
with a header for the drive cable. This
will sell for under $4@ plus about $5
for airmail shipping.

page 4 PEEK[65] September, 1986

TABLE 1

DRIVE SELECTION LOGIC FOR DSI DISK DRIVES

FOR SINGLE SIDED DRIVES

PIA PIN # : CONTROLLER PIN 8:

: PIN 8 : PIN 15 ¢ J2-3 : J2-18 :

~: DRIVE SELECTED :

& ¢ LOW : HIGH : HIGH : NONE
HIGH : HIGH : LOW : LOM ORIVE A
LON : HIGH : HIGH : LOM DRIVE 8

X = DON'T CRRE

FOR DOUBLE SIDED DRIUES

- —— o }
.

3 HIGH : HIGH : LOW : LOM DRIVE A
LOU HIGH HIGH Lou ORIUVE B
HIGH Lou Lou HIGH ORIVE C
LOH Lou HIGH HIGH ORIVE D

-NOTE- FOR DOUBLE SIDED DRIVES

DRIVE A = DRIVE 1 SIDE 1
DRIVE B = DRIVE 2 SIDE 1
ORIVE C = DRIVE 1 SIDE 2
DRIVE D = DRIVE 2 SIDE 2

DRIVE SELECTION

Now that we have the problem of the
data separator taken care of what do
we do about the drive. For someone
looking for a bargin in disk drives you
should be able to find some single
sided Tandon 100 drives as used in
the early IBM PCs. Most of these were
removed and replaced with double
sided drives a few years ago. If you
look in the ads in Byte magazine you
will find many double sided half
height 525" drives advertised for
under $90. Suitable drives are
identified as 4@ track double sided.

Some known drives which conform to
this are Teac FD-55B, Shugart SA455,
Mitsubishi 4851 and Qume 142.
Panisonic and others aiso build drives
which can be used. If you wish to use
two of these double sided drives you
will need to modify the circuit of your
disk controller board as described
earlier. If you built the motor control
circuit then it must be configured as
shown in fig. 4 for double sided
operation. The first drive must be
set-up as drive one and the second
drive as drive two. The manual that
you should have obtained when you
got the drive will explain how to do
this.

USING 8@ TRACK DOUBLE SIDED
DRIVES

Now we come to the real heart of the
article. We have another choice for the
type of drive to use. If you would like
to increase your drive capacity at
very little cost consider using 80 track
drives instead of the 4@ track units.
You can use drives built by the above
mentioned manufacturers which are
usually identified as 8@ track or 96 tpi
(tracks per inch) drives. These usuaily
cost about $10 more than the 40 track
drives. The only change that we need
to make is to modify 65D and some of
the utility programs so that they
know we have 8@ tracks available.
The 65D memory locations to be
changed are shown in table 4. We will
get to the utility programs later.

How do we set all of this up? First of
all you must have one 49 track drive
available. This should be set up as
drive one. If you have an OSI MPI
drive you will need to modify it to
provide the raw data to pin 30 of the
drive. If you look at the drive
controller board you will find that pin
30 goes to a 7438 nand gate. In the
OSI version the trace from pin 1 of the
7438 which goes to pin 5 and 9 of a
74L5123 has been cut. We need to
remove the small data separator from
the disk drive and reconnect the cut
trace.

Another easier way is to remove the
data separator and jumper pin 3 of
the data separator connectorto pin 5.
With this change made the drive will
now output the raw data at pin 30. At
this point you should connect the
drive to the new data separator and
computer and attempt to boot. If
everything was done correctly it

should boot. If ail goes well you can .

connect the 80 track disk drive. Set it
up as drive 2 as instructed in the
manual. Reboot and try to initialize
the 8@ track drive. The first side of
the 80 track drive will be device B.
Enter DISKI"SE B™ <RETURN> then POKE
9930,128 ,POKE 10089,121 and POKE
1015,121 . Next enter DISKI'INIT". If
all goes well the computer will
initialize 80 tracks.

If you were able to initialize a disk in
the §@ track drive you can now

TABLE 2

0S1 CONTROLLER - DISK DRIVE CONNECTIONS AND FUNCTIONS
(CONFIGURED FOR DOUBLE SIDED DRIUES)

0S1 CONTROLLER BRIVE FUNCTION

PINs PIN 8

1 N.C. HEAD LORD

2 , N.C. LOW CURRENT

3 (THROUGH CONTROLER) 18 & 12 DRIVE SELECT | & 2
4 N.C. FAULT RESET

5 20 STEP

6 18 DIRECTION

? N.C. ERASE ENRBLE

8 24 URITE GRTE

9 22 URITE DATA

18 (TO CONTROLLER) H.C. SEPARATE CLOCK
11 (TO CONTROLLER) N.C. SEPARATE DATA
128 13 T0 ALL ODD PINS GND

14 N.C. +5U

15 N.C. -gu (NOT USED)
16 N.C. N.C.

17 (THROUGH CONTROLLER) 8 INDEX

18 (THROUGH CONTROLLER) 32 SIDE SELECT

19 28 URITE PROTECT
28 GROUND THIS PIN % N.C. * READY DRIVE 2

21 N.C. SECTOR (NOT USED)
22 N.C. FAULT (NOT USED)
23 26 TRACK 88

24 GROUND THIS PIN * N.C. * READY DRIVE 1
N.C. 2 SPARRE

N.C. 4 IN USE

N.C. 6 DRIVE SEL 4

N.C. 14 DRIVE SEL 3
N.C. (TO CONTROLLER) 16 . HOTOR ON

N.C. (TO CONTROLLER) 38 READ DATA

N.C. 34 SPARE OR READY *

-HOTE-

(THROUGH COMTROLLER) INDICATES THAT THE SIGHAL IS

NODIFIED BY THE DATA SEPARATOR/MOTOR CONTROLLER.

(TO CONTROLLER) INDICATES THAT THE SIGHAL 1S USED
BY THE DATA SEPARATOR/NOTOR CONTROL OR GENERATED

BY THE CONTROLLER.

* SOME OF THE HEWER DRIVES HAVE READY LINES (PIN 34)
HHICH MAY BE COHNECTED TO 0SI CONTROLLER PIHS 2@

AND 24.

proceed to make a copy of your
operating system disk with your
utilities on it. Now remove the 4@
track drive and connect the first 80
track drive in its place. You should
now find that the disk that you just
made will boot.

At this point, if you've decided to
convert to two 80 track drives, you
should use the combination of one 40
track drive with one 80 track drive to
copy all of your programs to disks in
the 80 track drive. You can then make
the permenant change to two 80 track
drives. Before you can do this you will
need to change the CREATE utility. So
that more than 4@ tracks can be used

page 5 PEEK[65] September, 1986

change the following lines to read as

- follows:

498 DIN ALX(79)

29899 IF T8<13 OR T@>79 THEN
208060

28118 IF HT<1 OR NT+T@>88 THEN
28188

* NOTE * If you wish to use tracks
lower than number 13 on a data only
disk you can change line 20099 to
read as follows:

2999@ IF T8=-1 OR T8-12 OR T8>79
THEN 20868

You should also make the three 65D
memory changes permenent.

CHANGING 65D FOR 8@ TRACK DRIVES

There are three memory locations in
65D which need to be changed. There
are two ways that we can do this. The
first one is to poke the correct values
into memory from BEXEC*. The second
way is to make the changes and save
them back to disk. To do this exit
BASIC to 65D and load the track zero
read/write utility. Follow the
instructions to read track zero into
memory at $6290. Load the extended
monitor and change the three memory
locations list . in table 4. Remember
you will use an offset of $4000 when
making the changes (ie. use $66CA
instead of $26CA). Reload the track
zero utility and follow the instructions
to write the data at $6200 back to
track zero. Remember that we will
read and write 8§ sectors each time. At
this point you should have a disk that
will boot and be able to use all 8o
tracks. It should be mentioned that
the 8@ track drives will step at a rate
of 3 ms so you can modify the step
rate in 65D if you wish.

ARE THERE ANY DRAWBACKS TO
USING 80 TRACK DRIVES ?

At this point we should consider the
problems which could exist with this
system. The first problem is that the
disks you create in 80 track format
will not be readable by 40 track
drives. If you never exchange
programs with others then this should
not be a problem. If you sometimes

page 6 PEEKI65] September, 193¢

TABLE 3

INDUSTRY STANDARD 5.25" INTERFACE PIN DESIGNATION

PIN® SIGNAL TYPE

2 INPUT
4 INPUT
6 INPUT
8 ouTPUT
18 INPUT
12 INPUT
14 INPUT
16 INPUT
18 INPUT
28 INPUT
22 INPUT
24 INPUT
26 ouTPUT
28 guTPUT
38 ouTPUT
32 INPUT
34

FUNCTION

SPARE

IN USE

ORIUE SELECT 4
INDEX

DRIUE SELECT 1
DRIVUE SELECT 2
DRIVE SELECT 3
HOTOR ON
OIRECTION SELECT
STEP

WRITE DATA

HRITE GATE

TRACK @8

WRITE PROTECT
READ DATA

SIDE SELECT
SPARE OR READY ON NEWER DRIUVES

-NOTE- ALL 0OD PINS RRE GROUND

TABLE 4

THE FOLLOWING MEMORY LOCATIONS HUST BE CHANGED IN DOS TO USE THE
EIGHTY TRACK DRIVES. THE NUMBERS IN () ARE THE DECINMAL URLUES FOR

POKING.
MEMORY LOCATION EXISTING DATR CHANGE T0

$26CR (9938) $48 (64) $88 (128)

$2769 (18889) $39 (57) $79 (121)

$2779 (18118) $39 (57) $79 (121)

have a need for exchanging programs
then you should keep one 40 track
disk that you can substitute for one of
the 80 track drives when you need to
send someone a 40 track disk. If you
only need to read 40 track drives then
you can write a program in BASIC or
machine language to read a 49 track
disk on a 80 track drive. Another
option would be to write a disk copy
program in BASIC or machine
language to read a 4@ track disk on an
80 track drive. To do this the drive
must double step to move one track.

WHAT WILL THIS COST?

Two 40 track double sided half height
drives will cost a maximum of $18@. If
you use your existing case for a single
{ioppy system you can instalt two half
feight #rivas in it. You may or may

not be able to get away with using
your existing power supply. Since
both drive motors can be on at the
same time the power supply must be
able to furnish the power for both
drives at the same time.You can also
replace the power supply with a small
switching supply.

If you wish to purchase a new case it
will cost about $50 with power
supply. H you build the data
separator yourself it will cost you a
maximum of §2@ plus another $15 for
the cable to the disk drives. If you
purchase the data separator and
motor control it will be about $40 plus
the cable. So the price range for this
modifiction will be between $215 and
$290. If you use the 8@ track drives

then you will spend another $20 for -

two drives. This is not too bad an

R |

investment to obtain 656K of disk ;g EEOP;B ':g;;ing List Hanager for DHS-65D
drive storage to replace the 82K that 35 .
you have with one single sided MPI 48 REM- Construct Device 6 Current Track String
608 o6 = FNa(PEEK(9004)>): {66 ~ RIGHTEL(OTRE(cEH+kh)>, h2)>: RETURN

drive. 60 -
188 REM- Get Record ®r6 for Device %6
WHAT ELSE COULD YOU DO? 118 i6 = bodf + ((r6—k1)*rl): wi = INT(i6/ts) + st(k6)

120 GOSUB 58: IF cb = wt THEN 168
130 d6 = PEEK(9085): IF d6 = k@ THEN 158
. ; i 148 DISK!“sa = + t6$ + = 1=3a7e/” + pg$: POKE 9085,k9
What | haven't mentioned is that you 1o o %0 o o ek a1 pog 9804, FNb(ch)
could select a 3.5 drive. The 35 160 | = i6 - ((wi-c6)*is) + bs(k6): ih = INTCi/pg): il= i - ih%pg
drives use the same interface as the 178 POKE ip(k6),il: POKE ip(k6X¥kl,ih

o . 175 POKE op(k6),i1: POKE op(kB>+k 1. ih
5.25" drives and the controler cant ga peTiRN op

teli the difference. Another choice for gg E:n- Set Davice 6 1/0 Pointers to Indexcs

- - vice ointers to X
those who have both 525" and 8 218 | = i6+bs(k6) — (FNaCPEEK(9884)>) - st(k6))*ts
systems is to use the newer high 215 ih = INTCi/pg): il = i - ihpg

; . an 228 POKE ip<k6),i1: POKE ipCk6>+k1, ih
density 5.25° drives as used in the o5 pur Fie> 11 poke opCkB)+k 1. ih: RETURN

IBM AT. 278 :
380 REH~ Fetch Record from Device %6
_ 310 GOSUB 188:FOR k = k1 TO nf: i6 = bodf + ((r6—k1Yr +i6(k)
You must use one of the two speed 330 GOSUB 208: INFUT®K6,a$<k>: NEXT k: RETURN

. 340
versions. In the low speed mode these 460 REM- Put Re Out to Device %6

drives can be used to replace the 410 GOSUB 180
= dri 420 FOR k = k1 TO nf: i6 = bodf + C((r6~k1)*rl) + i6¢k) :GOSUB 200
sFandard 80 track 5.25° drives. In th? 438 PRINT®K6,a$(k): NEXT k: RETURN
high speed mode they can replace 8 440 -
drives Using these drives 10 roplace o o L PSS e a2 “Comtents
- . . . , ; ; ie ; ; onten
6" drives will be the subject of 220 PRINT: FOR k = k1 T0 nf g
another article. 73@ PRINT®dv,k; TABCk4); n$(k); TRB(32);a$¢k): NEXT k: PRINTSdv
748 RETURN
730
808 REM- Main Manu

WRlTE FOR PEEK! 32‘3 I;RINT 1(28); &(k9,k@); “DMS-65D Data File Manager”

838 PRINT £¢kS,k2); "¢1) Directory”
840 PRINT &(k3,k3); “(2) Print Hailing Labels'
. .. 841 PRINT &(k5,k4); "¢3) Report Writer
Mailing Label Utility for 858 PRINT &(kS,kS); "(4) Edit a DMS-65D Master File"
DMS-65D 988 PRINT &(k9,k7); ~Your Choice ~;: INPUT y$: k = URL(y$): TRAP @
018 PRINT 1(28);: IF k = k@ THEN END
920 IF kek1 OR k k3 OR k<>INT(k) THEN 820

by Richard L. Tret_hewey 930 ON k GOTO 20608,7800, 26000, 4089
908 : :
1808 k@8=8: Kk1=1: k2=2: k3=3: kd=4: k3=3: k6=6: k7=7: k8=8: k0=9: kt=19
As promised, this month I am 1818 aa=ASC("A"): az=ASC("2"): a@=ASC("8"): a9=ASC("9"): kh=189
) 1828 pg=256: hex$="0123456709%bcdef™: sx=16: t1=32: di=11897
presenting a follow-up to the random 1838 POKE 2972, 13: POKE 2976, 13: REM- Disable Comma & Colon
file system for 0S-65D V3.3 that I 1840 DEF FNa(x) = kt*¥INT(x/sx) + x — INT(x/sxYsx
; : 1850 DEF FNb(x) = sx*INT(x/kt) + x — INT(x/kt)¥kt
wrote about in the Summer iSSUE. ygeq nt = FracPEEKC11687)): dt = FNGCPEEKC11716)): e=35
You'll recall that one of the primary 1870 DIM index(k?), bs(k?), ba(k?), st(k?), et(k?), cu(k?), df(k?>
: 1888 DIM ip<k?), opk?), fH(ht), utchtd
uses for database managers iS fO yogp pocus) < PEEK(BOR) + PEEK(B930)*ng REM- Buffer Start Address
mailing lists. The program presented 1188 bs(k?) = PEEK(9886) + PEEK(3887)*pg
i it 1118 be(k6) = PEEK(9008) + PEEK(9B81)*pg: REM- Buffer End Rddress
here incorporates most of the editing 1128 be(k?) = PEEK(9888) + PEEK($989)*pg
functions of its predecessor, but goes 1130 ts = (be(k6) - bs(k6)): pg$ = HID$(hex$, ts/pgtki, k1)
on to add a mailing label printer and a 1148 dt§ = RIGHTS(STR$(di+kh), k2) + =, "
. 1158 ip(k6) = 9132: op(k6)> = 8155: ip(k?) = 0213: opCk?) = 0238
simple report generator. 1168 GOTO 888
1999
. : : 2668 REM- Directory Printer
As with any program using data files 2610 GOSUB 58888 GUSUS 11189
under 0S-65D, it is vital that you run 2028 PRINT 1¢28); TAB(21); “Directory”: PRINT
the program “CHANGE" before you 2030 FOR k = k@ TO ht: IF LENCf$(k))> = k@ THEN 2080

. 2840 PRINT TRB(x*19); LEFT$(f$¢k)k6);
enter the program into the computer 2041 p = k8: IF k > kO THEN p = k?

so that BASIC will reserve the 2058 PRINT TRB(x*19+p); ASCCHIDSCF$CK), k?, k1));
.) 2051 p=12: IFk » k9 THEN p = 18
appropriate amount of space in front 2068 PRINT TAB(x*19+p); RSCCRIGHT$(I$CK), K1));

of the workspace for the disk 2070 x = x + k1: IF x = k3 THEN x = k8: PRINT
. 26880 NEXT k: PRINT: PRINT

buffer(s). MAILER requires only one 2090 INPUT “Press <RETURN> to Continue *; u$

disk buffer, even though it does 2168 PRINT 1(28);: GOTO 800

include token support for a second g;t‘,g REM- Create Randos Character Record

data file to be opened simultaneously. 3010 FOR = k1 TO nf: a$(f) = ="

3820 FOR k= k1 TO f1Cf) - ki
. ,) . 3038 ¢ = INTCRNDCk1) * ASCC"z"))
The mailing label printer is written to 3@4@ IF c => o@ AND c<=a@ THEN 3870

allow you to print any number of 3858 IF c = >aa AND cc=az THEN 3870
page 7 PEEK[65] September, 1986

labels across each page (ie. 1-up,
2-up, 3-up, etc.). In addition, you may
choose the number of fields to be
printed on each line of each label, a
character to be printed between each
field (like the comma between CITY
and STATE fields), and where on each
page the labels are to be printed.

The setting for the character to be
printed between each field is handled
at line number 7190. Sometimes you
may want to be able to print more
than a single character between each
field. To do so, you will have to
modify both this input routine and the
output routine at line number 7918
Don't forget that in order to print all
<SPACE>s, your input routine will have
to recognize a null entry as being all
<SPACE>s and that it will have to ask
for the number of them to be printed
or impliment some other form of
delimiter.

[know one of the hardest parts of
deciphering someone else’s program is
trying to figure out what each
variable represents. In MAILER, |
have tried to use variable names that
help describe their function, even
though they're only 2 characters long
For example, "nl” is the Number of
Lines on each label, "ac” is the number
of labels to be printed ACross each
page, and so on.

Both the mailing label printer and the
report writer suffer from a poor
selection of terminology 1 have been
prone to. When the program asks i
‘'you want to do any “sorts”, it really
means to ask if you want the program
to search each record for a string in a
selected field. This “sorting™ allows
you to print only selected records
from the file, instead of relying solely
on a range of record numbers,
although you can certainly do that as
well.

.n producing PEEK[65], I use a
program similar ‘to this one to print
out the mailing labels. The best advice
1 can give you is to make several runs
that print only a single page of labels
so that you can figure out the proper
settings so that the printer doesnt
stray from the labels. Until you get it
down to a routine, in my experience
it's all a matter of trial and error.

page 8 PEEK[65] September, 1986

. 4660 PRINT"TOO LONG !~

3668 IF (c<ASC("a")) OR (c>ASC("z")) THEN 3838

g;g a$(f) = a$(f)> + CHR$(e): NEXT Kk, f: RETURN

4800 REM- Edit OMS-65D Master File

4018 GOSUB 13600

4028 PRINT !1(28) ;~DMS-63D Master File Editor~:PRINT

4838 PRINT “(1) Add a New Record”

4048 PRINT “(2) Change an Old Record”

4858 PRINT "(3) Delete a Record”

4851 PRINT "(4) Return to Main Marw”

4608 PRINT: INPUT " Your Choice *; y$: k = UAL(Y$)

4978 IF k<k1 OR k>k4 OR k<>INT(k) THEN 4020

4068 ON k GOTO 4100, 4483, 4880, 4969

4699

4100 REM Add a Record

4110 IF tn = nr THEN PRINT “FILE FULL": GOSUB 60060: GOTO 4028
4126 FOR k = ki TO nf: PRINT

4130 PRINT “Enter "; n$<k): PRINT TAB(k2);
4140 FOR 1 = k1 TO f1<k)> - k1: PRINT "-=;:
4150 INPUT a$(k): 1 = LENC¢a$<k))

4160 IF 1 < f1(k) THEN NEXT k: GOTO 4180
4170 PRINT “TOO LONG {": PRINT: GOTO 4139
4188 PRINT 1(28); " 8", TAB(k4);"Nome"; TAB(32);"Contents”: PRINT
4190 FORK = k1 TO nf: PRINT k; TAB(k4);n$Ck); TAB(32);a$¢k): NEXT k
4200 PRINT: INPUT "Are These Rlright °; y$: y$ = LEFTCy+" “ k1)
4210 PRINT: IF y$ ="y" THEN 4300

4220 INPUT “Hhich one did you want to change " ;y$: k = UAL(Y$)
4230 IF k<k1 OR k>nf THEN PRINT"WHAT ??": PRINT: GOTO 4180
4248 PRINT "Enter *;n$<k): PRINT TRB(kZ);
4250 FOR 1 = k1 TO flCk)> - k1: PRINT"-;
4260 INPU Ta$Ck): 1 = LENCa$(k)):
4270 PRINT "T0O LONG":
4289 :

4300 th = tn + k1: r6 = u, :GOSUB 489: GOTO 48208

4380 :

44608 REM- Change an 01d Record

4418 PRINT: PRINT"File Contains™; tn; "Record(s)”: PRINT

4420 IF tn=k@ THEN PRINT"NO RECORDS ON FILE":GOSUB 68000:GOTO 4820
4421 PRINT (1) Edit by Record Number”

4422 PRINT "(2) Edit by Searching File": PRINT

4423 INPUT * Your Choice "; y$: k = UAL(y$): PRINT

4424 IF k¢k1 OR k>k2 OR k<> INT(k) THEN 4419

4423 ON k 0GOTO 4439, 4609

4438 INPUT “Hhich RECOM NUMBER did you want to see ~; y$

4440 PRINT: ksURL(y$)>: IF k<k1 OR k>tn OR k<>INT(k) THEN 4438
4438 r6 = k: GOSUB 388 :

4460 PRINT 1(28);: dv = PEEK(89Q3): GOSUB 70@

4488 INPUT “Did you want to change this record *; y$

4498 PRINT: IF LEFTS(y$+" ", k1) ¢ "y" THEN 4560

4588 INPUT “Enter the FIELD NUMBER you wanted to change °; y$
4510 PRINT: k=UAL(yY$)>: IF k<k! OR (k>nf) OR k<>INTC(k)> THEN 4500
4520 PRINT “Enter "; n$(k)>: PRINT: PRINT TAB(k2);

4530 FOR 1 = k1 TO f1<k)>-k1: PRINT "=";: NEXT 1: PRINT

4540 INPUT a$(k) :PRINT: 1 = LENCa$Ck?>: IF 1<f1(k) THEN 4568
4550 PRINT “T0O LONG!"™: PRINT: GOTO 4520 ’
4560 GOSUB 468: GOTO 4020

4570

4680 REM- Search File for Editing

4610 GOSUB 8008: PRINT

4629 INPUT “Which FIELD NUMBER did you want to search in ~; y$
4630 PRINT: k=UAL(y$)>: IF k<ki OR <k>nf) OR kO INT<k) THEN 4618
4648 PRINT “Hhat STRING did you want to find in ~; n$(k);

4658 INPUT = ";ss$: PRINT: 1=LEN(ss$)>: IF 1<fl1(k) THEN 4670
GOSUB 60800: GOTO 4610
4678 sf = k: sl = LEN(ss$)

4671 GOTO 6080: REM- Remove this if Saarches FAIL
4073 FOR r6 = k1 TO tn: GOSUB 300

4679 x = LENCa$¢sf>): FOR 1 = k1 TO x

4680 IF MIDCa<sf), 1, s1) = ss§ THEN l=x: NEXT 1:
4081 MEXT 1

4690 NEXT r6: PRINT"STRING NOT FOUND": GOSUB 68080: GOTO 4020
4700 PRINT!(28);: dv=sPEEK(8933): GOSUB 708

NEXT 1: PRINT

: NEXT 1: PRINT
IF 1< 1) THEN 4!80
PRINT: GOTO 4240

GOTO 4708

The report writer portion of the
program is structured identically like
the mailing label printer. You can
select the range of record numbers to
be printed, and select to do "sorts™. |
had planned on making it more
sophisticated, but it does compliment
the mailing label printer in its present
form in that you can produce clean
file dumps from your database.

HAVE YOU
RENEWED YOUR
SUBSCRIPTION?

Don't Miss anIssuel
Renew Now!

AY

4718 INPUT “Is this the right record *; u$

4720 IF LEFT$(y$+" =,k1d > "y~ THEN 4600

4739 x = r6: rd = tn: NEXT r6: r6 = x: GOTO 44060

4740

4880 REM- Mark a Record for Deletion

4810 PRINT “File contains™; tn; “record(s)”: PRINT

4820 1F tn=k@ THEN GOSUB 6@8888: GOTO 4620

4838 INPUT “Which RECORD NUMBER did you want to delete “;y$
4848 PRINT: k=UAL(y$): IF k<k1 OR k>tn OR k<>INT(k) THEN 4830
4850 r6 = k: GOSUB 308: a$(k1) = “"P~: GOSUB 400: GOTO 4620
4860

4980 REM- Close DMS-65D Master File

4910 DISK get,k@: eodf = bodf + (tn*rl)

4920 i6 = bs(k0) + k9: ih = INTCi6/pg): il = i0 - ih*pg

4930 POKE op(k6),il: POKE op(kbX+k! ,ih

4940 PRINT®*k6, eodf: DISK close,kb: RUN

4950 :

6088 REM- Fast Device 86 Search Routine

6010 r6 = k1: GOSUB 180: REM- Initialize Pointer to BODF

6828 TRAP 6200: DISK find, ss$

6830 i6 = PEEK(ip<k6)) + (PEEK(ip(k6>k1)*pg) - bs(k6) - ki
6040 i6 = i6 + (FNaC(PEEK(S904))-st(k6)) * ts

6650 r6 = INTC(i6-bodf)/rl) + ki

6852 GOSUB 380: 1 = LEN(a$(sf))

6660 FOR k = k1 TO 1

6070 IF MID$<a$(sf),k,s1> = ss¢ THEN 6800

0080 NEXT k: r6 = r6 + ki: GOSUB 189: GOTO 6620

6098 k = 1: NEXT k: dv = PEEK(8993): GOSUB 789

6160 INPUT “Is this the correct record *; y$

6118 IF LEFTCy+™ ~,k1)<>“y" THEN r® = rb+k1: GOSUB 108: GOl. 5929
6138 TRAP @: GOTO 4468

6140 :

6280 TRAP 8: PRINT “STRING NOT FOUND": GOSUB 60600: GOTD 4020
6210 :

7600 REM- Mailing Label Printer

7818 PRINT “Mailing Label Printer”: PRINT: GOSUB 13088

7826 INPUT “"How many labéls will be printed across *; y$

7038 PRINT: ac=UAL(y$)>: IF ac<kl OR ac<>INT(ac) THEN 7020
7058 INPUT "How many lines will be printed on each label *; y$
7068 PRINT: nl=URL(y$>: IF nl<k1 OR nl>nf THEN 7858

7079 REM- ®of fields, field #, separation character

7088 DI 1f(nl), 1$(n] k2) ,p8$inl,ac), talac)

7099 FOR In = k1 T0 nl :PRINT “Line **;1n: PRINT

7108 f1=k8: f2=k®: f3=k0: f4=kO

7118 INPUT “How marwy FIELDs will be printed on this line =; y$
7128 PRINT: 11C1n)=UAL(y$): IF 11Cln)>nf THEN 7119

7121 1IF 11(n) = k@ THEN 7258

7130 FOR 1 = k1 TO 11CIn): PRINT™®;1: PRINT: GOSUB 881t: PRINT
2148 INPUT “Field Number *; y$: PRINT

7158 §2 = URL(y$)>: IF f2<k1 OR f2>nf THEN 7140

7168 1$C1In, k1> = 1$C1In, k1) + HID$(STREC12), k2)

2178 IF 1=11<¢1n) THEN 7288

2188 1$(1n, k1) = 1$(1In,kid + * "

7190 PRINT “Enter the choracter that will be used to separate”
7191 INPUT “this field from the next one when it is printed ";y$
7192 1$C1In,k2) = 1$(in,k2) + LEFT$(y$+" *, k1D

7200 PRINT: NEXT 1

7258 NEXT In

7268 PRINT!(28): ma = k@

7278 FOR In = k1 TO nl: PRINT In;" “;: IF 1f(ln)=k@ THEN PRINT:GOTO 7468

7280 xp=k1: xi=ki: t$="": 11=k@: IF 11<In)=k@ THEN PRINT: GOTQ 7370
7298 x=k@ «

73808 ¢ = ASCC MID$C1$CIn, k1), xp, k1))

7310 xp = xptk1: IF ¢ = RSC(",*) THEN 7340

7328 x = x*kt + URL(CHR$(c)>): IF xp <= LENC1$¢1n,k1)>) THEN 7300

7340 1§ = t$ + n$God: 11 = 11 + f10x>-k1: IF xp > LENC1$(1n, k1)) THEN 7360
7390 t$ = t$ + MID$C1$C1In,k2), x1, ki): x1 = x1+ki: 11 = 11+K1: GOTO 7290

7368 PRINT t$

737 IF 11 > ma THEN ma = 11

7488 NEXT In: PRINT

7418 INPUT “Is this alright *; y$

7420 PRINT: IF LEFT$(y$+~ “ ,k1) <> "y" THEN RUN

7425 PRINT “The largest line will be"; ma; “characters wide”
7438 PRINT :PRINT “"For each label to be printed across, please”
7440 PRINT “enter the tab setting to be used": PRINT

7458 x1=kB: FOR k = k1 TO ac: PRINT “Label #*; k

7468 INPUT “Tab Setting *; u$: PRINT: xp = VAL(Y$)

478 IF xp <= x1 THEN PRINT"TOO FAR LEFT": PRINT: GOTO 7460
7488 talk) = xp: x1 = tack)+ma: NEXT k: PRINT

498 PRINT "These settings require a page width of”; xt

7568 PRINT: INPUT “Is this alright *; y$

7518 PRINT: IF LEFTCy+ =, k1> ¢> =y THEN 7423

7320 PRINT “How many 1Ines should be skipped after each"

7538 INPUT "label has been printed (ie. between labels) ~; y$
7540 PRINT :sk = URL(y$)>: IF sk <> k@ THEN 7578

7338 INPUT “Are you sure you want B lines skipped ~; u$

. 756@ PRINT: IF LEFT$(y$+" - k1) <> =y~ THEN 7520

7570 PRINT “There are”; tn; “records in “; f$: PRINT
7588 INPUT “Enter the RECORD NUMBER you wish to start with °; y$

OSI-CALC:
SPREADSHEET PROGRAM

OSI-CALC has been a smash hit here
at PEEK[65). Written entirely in BASIC
by Paul Chidley of TOSIE, the program
gives you a 26 column by 36 row
spreadsheet with many features. Don't
let the fact that it's written in BASIC
fool you. 1t's VERY FAST.

Each cell can contain text (left or right
justified) or numeric data (in floating
point or dollar format) or a formula
which computes its resuits based on
the contents of the other cells.
Formulas can perform addition,
subtraction, multiplication or division
using cell contents and/or numeric
constants, Spreadsheets can be stored
on disk, and the program does very
nice printing too.

NSI-CALC requires 48K of memory
ind 0S-65D V3.3. Specify video or
serial system and mini-floppy or 8’
disks. Price 310068 plus $3.70
shipping ($13.70 totat).

U-Word: A Preview
by Richard L. Trethewey

U-Word is the newest word processor
for serial systems running .under
0S-65U. The program's main claim to
fame is that it runs on virtually any
65U-compatible system including
Level 3, Portland boards, and
(reportedly) Denver Boards. In fact,
that's why Softouch wrote it in the
first place. They needed a word
processor that would run on a
Portland board for a customer.

U-Word displays the text on the
screen exaclly as it will appear on
paper. The text is stored in memory,
so document size is limited. The
current version has a buffer that is
approximately 14K long. That's
enough to store 3 or 4 pages of
single-spaced text. The actual figure
varies depending on the number of
lines and the length of each one.

. The display is very clean, with the top

four lines occupied by the title, the
current INSERT/TYPEOVER mode
etting, and a ruler which shows the
~haracter positions, TAB and margin
continued on page 190

page 9 PEEK[65] September, 1986

- continued from page §

settings. The top display also inciudes
a prompt to enter “ESC>?" to get help.
Entering that command brings up a
menu screen that shows all of the
commands that are available. Entering
one of the commands brings up
another screen which describes that
command

Moving the cursor is accomplished
using the TAB, HOME, and arrow keys
or by using one of the two-keystroke
commands. The program can be
configured to use just about any
terminal. If your terminal supports it,
you can program your. function keys
to replicate the command sequences,
or the program will allow you to alter
the command sequences to suit your
tastes (although the version I used
didn't support this feature),

In reviewing the program, I entered
about two screens worth of text. The
program performed smoothly here,
quickly handiing word wrapping
when necessary. To test the program's
editing abilities, I tried moving the

cursor with the arrow keys and typing
over and inserting text at random
rates and intervals. 1 am not fond of
the way the DELETE key is handled. If
the cursor is at the end of the line, the
program backspaces and then deletes.
But if it's in the middle of text, the
character under the cursor is deleted.
Nitpicking, perhaps, but 1 didn't feel
comfortable with this. The program
also tended to lose keystrokes when
inserting text near the start, aithough
that is understandable to a certain
extent.

Searching for words was very fast.
The program aiso allows you to
immediately jump to the start or end
of the text, or page forward and
backward one page at a time. In fact,
all cursor movement was quick,
smooth, and easy.

Saving or toading text to or from disk
is easy, you just issue the disk
command, enter the name of the file
you want to use and then press "Y' I
would have liked to have had the
ability to select the disk drive here
too so as to be able to keep multiple

copies of documents, but that feature
isn't available.

Softouch is releasing what they call
version 1.8 of U-Word, planning to
add features as demand for the
product dictates. Future versions will
support block operations, search and
replace, and merging with OS-DMS
data files. Softouch considers this
release to be about 6% of what the
final product will be, and have priced
it accordingly. As each new version is
released, current owners will be able
to upgrade for the cost of the number
of steps theyre buying, to a final
estimated price of $395.00 (from its
current $237).

Overall, U-Word performed well. The
on-line help screens made it easy to
use even though I didn't have any
documentation to guide me. The
program’s compatibility and flexibility

_are sure to make it popular, especially

with those who have been locked out
of word processing by incompatible
hardware. Best of all, at $237.09, it's
priced right.

Finally_! An 0S-65U based word processor that's
fast, easy to use, user configurable, actively
supported, and available now! -

SOFTOUCH, Inc. announces the release of
“U-WORD"' for Ohio Scientific Challenger and 200
series computers. This powerful word processor
works on single user, timeshared, and
multiprocessed [*‘Portland board’’] computers.

e Very fast editing [machine code]
¢ Printer selectable at time of printout

~® On-line help screens

e Menu-driven configuration

“U-WORD’’ Version 1.0 is available NOW for $2379°

; SOFTOUCH N

3120 Far Hills Avenue ¢ Dayton, Ohio 45429

* [513) 288-3473

page 10 PEEK[65] September, 1966

8 More K for the 610 Board

by Scott Larson

Just because the C1P/Superboard was
designed almost 19 years ago, doesn't
mean that it can't take advantage of
many of the new chips that are
becoming available. This is a simple
example of how you can improve your
old computer with new technotogy.

A fully populated 610 board has 48
2114 static memory chips to give the
C1P atotal of 32K, but still leaves 8K of
memory space unused. This design
has other flaws as newer static
memory chips have been created that
have much more memory to a chip,
use less power, and best of all, are
much cheaper. The © *4 chip (seen in
ads as HM6264LP-15) has 8K by 8
bits in a single 28 pin package, which
is the equivalent of 16 2114's and a
74LS138 in one chip. The 610 board
providesall the neccesary signals for
the chip and is very easily connected
to its 4@ pin socket to fill the last 8K
space to give the CIP a total of 4@K.
This chip has dropped in price_over
100% in the past year, and is available
from JDR Microdevices, Jameco and
other major companies for only $4 or
$5. The only other materials needed
are a 28 pin DIN socket for the chip, a
4@ pin DIN plug for J2 on the 61@
board, and a 74LS88 for a small
amount of decoding.

Only one small modification is needed
to the 610 board. When an 8K block is
addressed on the 610 board, a gate in
U8 (74LS2@) provides the DD (data
direction) line. Since all the inputs of
this gate are used, we have to
disconnect one of the inputs to the
gate (U8 pin 13), connect one of the
inputs. (U18 pin 12), and the chip
select for the new 8K (U183 pin 11) to
an AND gate. The output is then
connected to the gate (U8 pin 13). The
rest of the connections to the 8K chip
are shown in this table:

Support Your Local
OSl Dealer or Vendor

Chxx

Function 618 board

fia J2-pin
Al J2-pin
A2 J2-pin
A3 J2-pin
A4 J2-pin
A3 J2-pin
A6 J2-pin
A7 J2-pin
Ag J2-pin
A9 J2-pin
A8 J2-pin
Al J2-pin
R12 J2-pin
De J2-pin
Dt J2-pin
D2 J2-pin
b3 J2-pin
D4 J2-pin
DS J2-pin
D6 J2-pin
D? J2-pin
CE NOT U1B-pin
R/U US-pin
R/U NOT US-pin
+5
+5
GND

19 -
LS 8
13

cut here

Pe— +5V

Jage 11

14

CE 6264 pin 20

Figure 1

The 6264 uses so little power (and
dissipates no measurable heat), it can
take power directly from the 600 or
510 board. After making these
onnections, 1 had only one small
problem. One of the data lines couldn't
function with the added load (not
surprising considering that there are
14 2114 chips connected to it). So I
simply connected the data input of the
chip to the 8T28 buffer input and let

-the 8T28's on the 600 board handle it.

I have low power 2114's on my 618
board, but some might not so I have
included a table of the data inputs of
all the data lines in case some have
more trouble than I did. If your data
comes back with bits missing, simply
disconnect the appropriate line from
|2, and connect it to the input pin in
the table below;

Line Input

19 U13-pin 2

1]} U13-pin 12

02 Ui3-pin 5

03 U13-pin 9

D4 Ul4-pin 2

D5 Ul4-pin 12

06 Ut4-pin 5

e UH4-pin a

PEEK[65] September, 1986

7990 PRINT: sr = URL(y$): IF sr<ki OR sr>tn THEN 7580

7600 INPUT “Enter the RECORD NUMBER you wish to end with =; u$
7610 PRINT: er = URL(y$): IF er<sr OR er>tn THEN 7600

7620 ns = k@: INPUT "Did you want to do amy sorts ~; y$

7630 PRINT: IF LEFT$(y$+~ ~,k1) <> "y~ THEN 7738

7648 INPUT “How many sorts did you wont to do *; y$

7650 PRINT: ns=URL(y$>: IF ns=k® THEN 7620

7660 DIM ss$(ns), sf(ns): FOR x = k1 TO ns

7678 PRINT "Sort 8", x: PRINT: GOSUB 8011

7688 PRINT: INPUT “Search in which FIELD NUMBER °; y$

7690 PRINT: sf(x)>=UAL(u$)>: IF sf{x)<kl OR sf(x»>nf THEN 7678
7708 PRINT "Search for what STRING in "; n$(sf(x));: INPUT" "; y$
7718 PRINT: ss$(x) = y$: 1 = LEN(ss$(x)?): IF 1 => fI(sf(x)) THEN 7700
7720 NEXT x: PRINT .
7738 INPUT "Enter the DEVICE NUMBER for this printing *; y$

7740 PRINT: dv = VAL(y$) OR PEEK(8993): REM Rlways echo to console!
7758 r6 = sr: x1 = ki

7768 GOSUB 388 IF a$(k1) = "“P" THEN 7840

7761 IF ns = k8 THEN GOSUB 7911: GOTO 7830

7770 go$="pass”: FOR k = k1 T0O ns: 11=LEN(ss$(k)): 12=LENCa$(sf(k)))
7788 FOR j = k1 T0 12

7798 IF HMIDCa(sfCk)), j, 11) = ss$(k) THEN 7810

7888 NEXT j: go$="fail": GOTO 7620

7810 j = 12: NEXT j

7820 NEXT k: IF go$="pass” THEN GOSUB 7911

7830 IF x1 > ac THEN GOSUB 7888: x1 = ki

7840 IF r6 <> er THEN r6 = r6 + k1: GOTO 7760

7830 IF x1 <> ki THEN GOSUB 7688

7868 INPUT “Press <RETURN} to contlnue ", y$: RUN

7879 REM- Print Labels

7880 FOR] = ki TO nl: FOR k = k1 TO ac: PRINT®dv, TRB(tack)); p$(l k);
7890 p$Cl,k) = "°: NEXT k: PRINT®dv: NEXT 1

7980 FOR 1 = k1 TO sk: PRINT®dv: NEXT 1: RETURN

7910 :

7911 FOR In = k1 TO nl: IF 1f(ln) = k@ THEN 7919

7912 xp = k1: xq = ki

7913 x = k@

7914 ¢ = ASCMID$CISCIn, k1), xp, k1D)

7915 xp = xp + ki1: IF ¢ = ASCC™,”) THEN 7917

7916 x = x*kt + UALCCHR$(c)): IF xp < LENCI$CIn k1)) THEN 7914
7917 p$cin,x1) = p$lin,x1) + a$(x>: IF xp > LENC1$(In, k1)) THEN 2919
7918 p$cin,x1)> = p$cln,x1) + HID$C1$CINn, k2> ,xq, k1): xg=xq+k1: GOTO 7913
7919 NEXT In: x1 = x1 + ki1: RETURN '
7998 END

7999

8900 REM- Display Fields

8018 PRINT 1¢(28);"File: =; f$: PRINT

8011 PRINT = ®"; TABC(k4); "Field Name™; TAB(32); “Length™: PRINT
88208 FOR k = k1 TO nf: PRINT k; TAB(k4); n$k); TAB(34); fl(k)>k1
8830 NEXT k: RETURN

8940 : .

11180 = = k1:REM- Gather Directory

11181 FOR k = k8 TO ht: ut(k) = kB: $(k)="": NEXT k

11185 DISK!"ca 2e?9=" + di$ + RIGHT$(STR$(s) k1)

11110 FOR i = di YO di + pg-kt STEP k8: IF PEEK(i) = e THEN 11150
11120 st = FNa(PEEK(Ci+k6)): et = FNa(PEEK(i+k?))

11130 FOR j = k@ TO k5: f$(st) = f$(st) + CHR$(PEEK(i+j)): NEXT j
11148 1$¢st) = $(st> + CHRE(sL) + CHR$(el)

11146 FOR k = st T0 et: ut(k) = k1: NEXT k

11150 NEXT i: IF s=ki THEN s=k2: GOTO 11185

11169 RETURN

11170 : i

136080 REM- Open a DMS-65D Master File on Device 6

13010 TRAP 58008: GOSUB 56080

123620 INPUT "Fila Nama "; f$: PRINT: IF LENCf$)>kS THEN 13029
43030 IF LEN(T$)<k3 THEN 1$ = f§ + " ~: GOTO 13030

43640 1$ = ¢ + "9": DISK open, kb, f$: TRAP @

43050 st(k6) = FNa(PEEK(9802)): et(k6) = FNa(PEEK(9883))

43090 16=k9: GOSUB 218: INPUT®K6,eodf

43008 i6=28: GOSUB 218: INPUT®KG,bodf

13180 i6=31: GOSUB 218: INPUT®*k6,rl

13118 i6=42: GOSUB 218: INPUTSK6,nr

413128 i6=53: GOSUB 210: nf=k@

43130 INPUT#K6,y$,k: nf = nf+ki

13148 i6 = (PEEK(9132) + PEEK(9133)*pg) ~ bs(kb)

13150 i6 = i6 +(FNa{ PEEK(9884) > - FNa{ PEEK(9862)) »* s

13168 IF i6 < bodf THEN 13130

13178 IF PEEK(GB04) = PEEK(9802) THEN 13198

13189 DISK!"ca 3a?e=" + RIGHT$(STR$(FNa(PEEK(9882))),k2) + =, 1"
13198 i6 = 53: GOSUB 218: DIH n$(nf), f1(nf),i6(nf),a$nf):i=ke

13200 FOR k= k1 TO nf: INPUTSK6,n$Ck), f1Ck): i6CkI=i: i=i+fl(k): NEXT k
13218 tn = INT((eodf-bodf)/rl1): RETURN
13220

260998 REM- Report Hriter

200919 PRINT "DMS-63D Report Writer™: PRINT: GOSUB 13009

20028 INPUT "Enter tha TITLE for this report “; ti$

20938 PRINT:. GOSUB 8611 .

20040 INPUT “How many FIELDS will be printed on each line =; y$
20058 PRINT: ac=URL(y$>: IF ac<k!l OR ac>nf THEN 20840

page12 PEEK[65] September, 1986

SAM the (S)elf {A)ware -
(M)icrocomputer

by Richard E Reed

In the misty winter dawn shining
through the tawdry ghetto windows of
his lab the scientist (obviously mad)
stoops over the tangle of wires and
boards on the operating table. His
fingers can be seen hovering above
the petrified caterpillars, clicking
toggle switches and closing
momentary contacts. In the early
morning stillness his feverish voice
echoes,... pontificating like GOD as the
customary lights (albeit tiny) flash off
and on in sync with his actions.

“Clear his experience banksi!l” (clear
the memory..)

"Start his character records” {Set some
counters to zero..)

“Initialize the life forces!!!” (Turn it on,
you dummy...)

There is a flurry of activity among the
lights. The haggard and unkempt form
arises in triumph.

"He works! He’s working! Ha ha ha ha
hat He's working !l

"SAM is born!” (to nobody) "Look at.
him,--he works!li*

Nine days before I had locked myself
in the run-down room on motel row in
Fresno, armed with an OS1 bare board,
a couple of bread boards from Radio
Shack, some LEDs, switches, a bag of
ICs, and the intention to create SAM. I
added some junk food and drinks, and
for a week and a half I lost track of
time while 1 attempted to put my
ideas in silicon and electric fields.

I confess! I was an OSI addict from
the word go. I bought one of their first
bare boards and ICs to populate it. I
had already acquired my 6502 from
MOS Technology as soon as they
announced it for an unbelievable
$2500. 1 learned to program in
machine language while waiting for
the boards to arrive, and decided to
whet my skills with an ambitious
project.

I am also an Al (A)rtificial
(I)ntelligence freak (not the Al that is
being palmed of as such today, where

28070 na =

20080
20099
20189
20118
20120
20130
28133
28136

20148 ma

20141
20142
208143
28144
208145
20146
28158
20168
28179
201868
20190
20200
20210
20220
202308
20240
28230
20268

DIN 1nCac), tacac)

k@: FOR x = k1 TO ac: PRINT “Current TAB is"; ma
PRINT: GOSUB 8011: PRINT

PRINT "Enter the FIELD NUMBER for position™; x; * *
INPUT y$: PRINT: 1=UAL(y$): IF 1<k1 OR l)nf THEN 20088
PRINT "Enter the TRB SETTING for position”; x; " ~;
INPUT y$: PRINT: ta(x) = UAL(y$): IF tax k@ THEN 20135
IF ta(x) <= ma THEN PRINT “T00 FAR LEFT": GOTO 20110
InCx) = 1: t = f1An(x>>: IF t > LEN(n$C1)) THEN 20140
t = LENC(n$(1))

= ta(x) + t: NEXT x: PRINT: pe = ma

PRINT “Page Width is currently ~; pw

INPUT "Did you want to change this *; y$

PRINT: IF LEFTCu+* " k1> <> "y THEN 20150

INPUT “Enter new PRGE NIDTH *; y$

PRINT: x = UAL(y$)>

pw = x
PRINT f$; " contains”; tn; “records.": PRINT

INPUT “Hhat RECORD NUMBER you wish to start with *; y$
PRINT: sr=URL(y$>: IF sr<k1 OR sr>tn THEN 28168
INPUT “What RECORD NUMBER you wish to end with =; y$
PRINT: er=UAL(y$)>: IF er<sr OR er>tn THEN 20180
ns=k@: INPUT “Did you want to do any sorts ~; y$
PRINT: IF LEFTCu+* =, k1> ¢ “y* THEN 20318

INPUT “How many sorts did you sant to make ~; y$
PRINT: ns = URL(y$): DIN ss$ins), sfins)

FOR x = kt TO ns

PRINT “Sort % x: PRINT: GOSUB 8811: PRINT

INPUT “Sort in which FIELD NUMBER ~; y$

20279 PRINT: sf(x)>=UAL(y$): IF sf(x)<k1 OR sf(x)>nf THEN 206260
28280 INPUT “Hhat STRING did you want to search for ~; u$

20298 PRINT: ss${x)=y$: 1=LENCss$(x)): IF 1=>f1{sf(x)) THEN 282890
208309 NEXT x: PRINT

28318 ti = INTC (ma—LENCti$)) /k2): REM- Title centering

208328 INPUT “Hhich DEVICE NUMBER is this to be printed on *; y$
26338 dv=UAL(y$)> OR PEEK(8993)

208348 pn = k1: GOSUB 28450

26350 FOR rb = sr TO er: GOSUB 309: IF a$(k1)>="“P" THEN 20420
20368 IF ns = kB THEN 28418

20378 FOR x = k1 TO ns: 11 = LENCss$(x)): 12=LENCa$(sf(x)))
28389 FOR j = k1 TO 12: IF HID$<a$(sf(x)), j, 11) = s5$<(x)> THEN 20489
28390 NEXT j: x=ns: NEXT x: GOTQO 28428

20468 j = 12: NEXT j: MNEXT x

20419 GOSUB 28520

20428 NEXT rb6

28430 INPUT “Press <RETURN> to continue ~; y$: RUN

20440

20456 PRINTSdu,CHR$C12); TRB(pw-k8); "Paga”;pn: PRINTSdu

204608 PRINT®dy,TABCLi); ti$: PRINT®qu

28478 FOR 1 = k1 TO pw: PRINT®dv,™-";: NEXT 1: PRINT®dv

20480 FOR 1 = k1 T0 ac: PRINT®dv, TRB(tac1)); n$(In(1));: NEXT 1
20498 PRINT8du: FOR 1 = k1 TO pw: PRINTSdv,"~";: NEXT 1: PRINTSdv
28580 lc = k8: pn = pntk1: RETURN

28510

28528 FOR 1 = k1 TO ac: PRINT®dv, TRB(ta(1)); a$<InC1));: NEXT 1
28538 PRINTS#du: lc = le+k!: IF 1c>68 THEN GOSUB 20458

20348 RETURN

28556

50888 INPUT “Drive CA/B/C/D) *; u$: y$ = LEFT$C(y$+" * k1)

38818 PRINT: c = RSC(y$)>: IF c>az THEN ¢ = ¢ - tt

580828 IF c<aa OR c>RSC("D") THE HSQR80

50038 DISK!"se “ + CHR$(c): RETURN

56040 :

58080 REM- Show Fila Not Found

58018 PRINT: PRINT “FILE: ~;f$;" NOT FOUND“: PRINT
58020

58999 REM- Abort!

39089 GOSUB 60080: RUN

50810 :

60008 FOR k = k1 TO 3800: NEXT k: RETURN

a few language and logical functions
are being emulated). We're talking the
Frankensteinian variety, trying to
create viable beings. Now that my
own real computer was available I set
out in earnest to devise (in 4K total
RAM) a being with the following
properties:

1. He must start with no knowledge.
2. He must behave randomly at first.

3. He must learn to survive.

4. He must develop habits.

5. He must have virtue and vice.

6. He must behave unpredictably.
7. He must develop differently each
time he is run.

8. He must be able to forget.

9. The program must fit 256 bytes.
19. He must run in a 4K machine.
11. He must be expandable.

12 He must install in a robot

SAM fulfilled every specification. As
originally conceived, his senses and
his coin-flip decisions came from a
free-running counter I installed at
$4000 Hex The highly erratic TTL
gated clock ran at about 33MHz. SAM
operated in a world of 256
environmental situations {(one byte's
worth), and could act on each of these
in & different ways. His actions
affected a "good” and a "bad” counter
which tracked his progress.

A look at the random number counter
gave him an environmental situation.
He then went to a 2K block of memory
and examined 8 bytes to see if he had
dealt with that environment before.
(Each page of the 2K block epresented
a response, whlethe ndividualbyte
represented an environment.) In that
location two things were stored: the
value of the environment- reaction,
and the number of times it was used.
After his examination SAM knew
whether any reactions had been tried,
and (if so) which one had the highest
value

If no reactions were tried, SAM went
to the random number generator to
get one. By masking off the high order
5 bits he selected one of 8 behaviors.
Each behavior consisted of performing
an EXclusive-OR between the
environment and one of § arbitrarily
chosen bytes. The result was divided
into two 4-bit nybbles. The upper 4
bits gave a value of @ to 15 which
could be added to the good counter.
The lower nyble was added to the bad
counter. The two were combined to
yield a value from ® to 31. This was
stored in the low order 5 bits of the
appropriate memory location. Each
time this particular reaction was used
32 was added to the byte (up to a
maximum of 7 uses). This
incremented the upper 3 bits.

If the current environment had been
acted upon before, SAM checked to
see if it had been used a total of 7
times. If so, he repeated it
automatically. If not he went to the
random number generator and flipped
a 32-sided “coin”. If the result of that
flip was greater than the reaction
value, SAM went to the random
selection routine described above. If it
was smaller, he repeated the old

page 13 PEEK[65] September, 1986

reaction and added 32 to the use
counter if it was not at the maximum.

Once every action SAM would
examine a memory location {stepped
through from the beginning of the
memory block to the end, then around
again) to see if its combination had
been used 7 times. If not SAM xeroed
that location, forgetting he had ever
done anything with that
environment/reaction. This
constituted the complete SAM. In a
typical run of 48,000 moves his "good”
counter had advanced about 3.3 times
higher than the "bad”
(500000/156000), and his "habits
were fairly well established, ie: 93% of
his actions were on fixed memory.

SAM's design has proven to be very
flexible. A new environment can be
added with the addition of 2K of RAM
and a litlle overhead program to
switch between environments. He can
have 62 environments in a 64K RAM
The complexity of the environment or
the reactions can be altered virtually
by changing the memory atlocated to
them

Installation withun a robot merely
involves substituting sensory input
for the random generator, and outpu!
to motor devices instead of the
numeric reactions. In a simple
scenario SAM could receive energy for
"watering” plants. When his watering
can got low, he could receive "points’
for fetching more water. When hic
power was low he could switch back
to getting points for watering plants
If he were turned loose with either
the water in his bucket and power in
his battery, and these parameters
were provided in his environment, he
would soon teach himself his chores,
and manage to keep the plants
watered and his power up.

While SAM was originally written in
machine language, and his current
version is propriatary information I
am not free to share, I have written a
BASIC version which operates almost
identically with the original SAM but
which offers greater ease of user
modification, greater simplicity of
understanding, and more extensive
reporting of what has happened. That
listing is included for anyone who

page 14 PEEK[65] September, 1986

5 REM <<<<<<<< SAM w Richard Reed »>»>>>>>

10 GOTO 16060
108 IF N2/N9R = INT(N2/NOS)> THEN 2 = -2
110 Z = RND(Z): Z® = INT(Z*X%): RETURN

288 J% = ARCGE,FR) AND N1S: LS = AKCGK,FS) AND N28: HS = L8: RETURN
460 IF RSCR,S) < N2#% THEN RS(R,S) = AR(R,S)> AND NIk
418 S =S+ 1: IF S > N8 THEN S=N&: R =R + 1|

41S IFR > ? THEN R = NS
428 1 FS / 3 = INT(S/3) THEN 480
438 RETURN

588 IF ASCGR,FE> < N2% THEN AS(GE,FR) = AR(CK,FS) + 32

381 RETURN
668 IF P8 < 2 THEN RETURN

610 RESTORE: FOR K = N8 TO N3%+1: READ K$: PRINTEPR, TRB(BR*K);K$; :NEXT:PRINTSPS

626 RETURN
7606 BR(GR,FK) = BR(GK,FE> + 1: RETURN

50080 X8=0%: GOSUB D: FS=28: HE=NS: JS=NK: FOR I = N8 TO N3%: RR=A%(I,FS> AND N1IS
5819 IF R&>JS THEN HE=1: JR=RK: G%=1: LK = AS(I,FR) AND N2%

5620 NEXT 1

5030 X8 = N1%: GOSUB D: REH IF LS = N3% THEN 5108 .
5046 IF HRE>NE AND ((JS*1.452-8)>=Z% OR LS=N2%)> AND N2/58<>INT(M2/58) THEN S168
5058 X%=8: GOSUB D: GR=2%: J% = AKCGK,FR) AND Ni%: LS = AS(GK,FS) AND N28: HR=L%

3008 IF HE > N® THEN 3039
5188 T® = F& AND NOT CR(GS): K8 = T%

5110 LS = INTC(KS/16): H = K8 - LE * 16: N = 1?7 ~ L8 + H: IF N>38 THEN N = NiS

5120 IF SR = 1 THEN RETURN

S130 ATR = AR(GR,FX) AND 3t: IF ATE = N THEN RR(GR,FR) = AR(GK,FE> + N

3133 GOSUB E1: GOSUB 509: DY = INT(RS(GK,F%) / 32>

5140 IF LCR > 80 THEN PRINT#PR, CHR$(12): GOSUB 6@8: LC® = 1 '
SISB P =P +L8&: Q=0+ H: PAINT®PS, N2, Q, P, N, N, F8, GS, BR(GK,F8), DV
3160 N2 = N2 + 1: LCS = LCR + 1. GOSUB 480: IF Q < TU THEN 5088

5165 DI TS(32): DIN T18(32): PRINT#PS, CHR$(12)

0188 SR=1: FOR W= N8 TO N48: FOR I= N& TO N38: T1=(AR%CI,H)AND N2#)/32: FS=W:GS=I

D185 GOSUB 5160: T2 = N: T3 =Bg * |

5187 TE(N) = TR(N) + 1: TIS(N) = TIS(N) + BRCI, W) .
5198 PRINT#PS, TAB(T3); T1; T2; TAB(T3+7);B8CI,WY;: NEXT I:PRINT®PS,TABC115);H

5195 NEXT H: PRINT#PS, CHR$(12)

5200 FOR I= 1 TO 138: N$ = N$+"#" :Ni$ = R1$+"8": NEXT I
3220 FOR I = N® TO N1%: IF TI%CI> >AD® THEN ADS = TI18CI1)>

5225 IF T8(1) > RDS THEN ADS = TH(I)
5227 NEXT I

5238 IF RD® < 120 THEN 5308

5235 DI = INTC(RDS / 128> + 1

5248 FOR I= NSTON1S: TI18CI) = INT{(TISCID/DI>: TRCI)> = INT(TRC1)/DI): NEXT I
5360 FOR 1 = N® TO NiS: PRINT ®P%,1; TAB(S); LEFTS$(NS, T8CI))

5318 PRINT #PS, TAB(S); LEFT$(NI$, TIRCID): NEXT I: POKE 2728, 14: END

6600 DATA MOVE, POSITIVE, NEGATIVE, VALUE,+ UAL, ENVIR, REACT, USE, SIEVE

10889 0%=256: DIM AS(8,08), BR(S,08): ME=1:

N2=MR: D=188: E=280: E1=780

18010 28223456 :88= 14 :N8=0:No%=1:N18=3 1:N28=224 :N38="7 : N48=255 : NO%= 1080
10820 INPUT "Output Device”; P%: INPUT "Maximum value™; TV
10826 FOR I= 8 TO 7: CSCIX=INT(I* 36.428715): PRINT®PR, TAB(?*I); CR(I);: NEXT I

19827 GOTO 18040

18830 FOR I= @ T0 7: X%=08: GOSUB D: CR(I)=Z8: PRINTSPS, TRB(7*#1);Z8;: NEXT I

18048 PRINT *P&: PRINT sPS
10869 GOSUB 689: POKE 2728, 8: GOT0S089

may wish to experiment with SAM
themseives.

Lines 10009 to 10060 define
variables and set up the output
device, the total count SAM is
expected to attain, and 8§ random
reactions. Lines 100 and 110 are the
random number generator. N® is the
current event count, and every 1008
moves it selects a new random seed.
X& contains the maximum value to be
returned. Z8® is the new random
number.

200 gets the reaction value and the
use counter in J® and LR respectively
HZ&is a flag to show prior usage.

The subroutine at 480 to 439 operates
the memory “sieve™. Line 400 has
been modified to clear only the use

count rather than the whole byte for
reporting purposes. This fact has not
been used to modify the operation of
SAM. 410 cycles the lower address
byte, and when necessary, the page
number. 420 resets the page number
if the cycle has gone full circle. Line
415 was added to speed up the sieve
a little. Lines 500 and 510 increment
the use counter if it is less than
magimum.

The main program begins in line
5000, which picks up an
“environment™ from the random
number generator. Subroutine calls
and line calls are named variables
because of the increase in speed of
execution. Subroutine D is the random
generator. X% is the size limiter, Z% is
the returned number, and F% is the
environment variable.

\‘\V

5810 to 5030 look at all possible
reactions to see if any were used and
if there value is greater than the last
one found. In 5632 we get a 31-sided
coin flip, and if the reaction has the
maximum usage, we skip testing the
coin. Line 5040 sets some other skip
tests; the test involving j%*1.452-8
expands the acceptance/rejection
criteria by always excluding very bad
reactions and always using very good
ones; the test using N2/50 selects an
unused reaction every 56 moves so
that SAM can learn new habits from
time to time. Lines 5050 and 5060 get
new reactions and test them if the
coin flip warrants it. '

Lines 5100 through 5168 perform the

mathematical calculations involved in
performing a reaction, updating the
memory, printing the results, and
getting another environment. One line
that needs comment is 5125. It is a
conditional return that makes use of
the lines just above it for a subroutine
call from the tabulated reports
printed after line 5169.

AD$

UCSD Pascal/Fortran 8" for polled
keyboard $50, 502 board $30, D&N

proto board $26, bare 8@-column -

video board $25, Sams C2-C3 manual
$20. Ron Battle, 1011 Yale NE,
Albequerque, NM 87106

FOR SALE: 12 fully populated 520

-boards. Each provides 16K of static

RAM. Not tested. $50 00 plus shipping.
Contact PEEK[65]

FORTH $24.95. Utilities available ‘also.

Free catalog. Aurora Software, 37

South Mitchell, Arlington Heights, 1L
60005 '

Have you got something to sell? Why
not take out a classified ad in PEEK?
Ads cost 35 cents per word, not
including “price” words. Copy is due
30 days before the cover month.

ATTENTION: DEALERS!

PEEK[65] needs new subscribers and

you need new customers, and together

we can make it happén with our own

Co-op advertising program. This

program pays dealers for signing up

new subscribers with free ad space in

PEEK[65]. Just five paid subscriptions

will earn a 1/9th page advertising .
credit in PEEK(65).

Most dealers sell their own software
-with the systems they install. By
advertising in PEEK, you vastly
expand the potentiat market for your

= -products. And how many sales have
" you lost because you couldn't find the
- application yoéur customer wanted?

Dealer ads can be our own Yellow
Pages. Readers and customers win too
by increasing the number of uses for
their equipment.

Call or write today for details and
your free promotional materials.
Making a PEEK[65] subscription a part
of every sale is painless and
profitable. This time, “Co-op™ pays
you.

Watch
This

Space

Gro

page 15 PEEK[65] September, 1986

PEEK [65]

PO Box 586
Pacifica, CA 94044

415-359-5708

Name
Street
City

DELIVER To:

GOODIES for (5| Users)

PEEN (C5)

The Unofficial 0S| Users Journal

C1P Sams Photo-Facts Manual. Complete schematics, scope waveforms and board photos. All you
need to be a C1P or Sll Wizard, just

C4P Sams Photo-Facts Manual. Includes pinouts, photos, schematics for the 502, 505, 527, 540 and
542 boards. A bargain at

C2/C3 Sams Photo-Facts Manual. The facts you need to repair the larger OSI computers. Fat with
useful information, but just

0S!'s Small Systems Journals. The complete set, July 1977 through April 1978, bound and reproduced
by PEEK (65). Full set only

Terminal Extensions Package - lets you program like the mini-users do, with direct cursor positioning,
mnemonics and a number formatting function much more powerful than a mere “‘print using.”’ Requires
65U.

RESEQ - BASIC program resequencer plus much more. Global changes, tables of bad references,
GOSUBs & GOTOs, variables by line number, resequences parts of programs or entire programs,
handies line 50000 trap. Best debug tool I've seen. MACHINE LANGUAGE - VERY FAST! Requires 65U.
Manual & samples only, $5.00 Everything for

Sanders Machine Language Sort/Merge for 0S-65U. Complete disk sort and merge, documentation
shows you how to call from any BASIC program on any disk and return it or any other BASIC program
on any disk, floppy or hard. Most versatile disk sort yet. Will run under LEVEL I, 11, or Il1. It should cost
more but Sanders says, “...sell it for just...”

KYUTIL - The ultimate OS-DMS keyfile utility package. This implementation of Sander’'s SORT/MERGE
creates, loads and sorts multiple-field, conditionally loaded keyfiles. KYUTIL will load and sort a keyfile of
over 15000 ZIP codes in under three hours. Never sort another Master File.

Assembler Editor & Extended Monitor Beterence Manual (C1P, C4P & C8P)
65V Primer. Introduces machine language programming.

C1P, C1P MF, C4P, C4P DF, C4P MF, C8P DF Introductory Manuals (35.95 each, please specify)
Basic Reference Manual — (ROM, 65D and 65U)

C1P, C4P, C8P Users Manuals — ($7.95 each, please specify)

How to program Microcomputers. The C-3 Series

Professional Computers Set Up & Operations Manual — C2-OEM/C2-D/C3-QOEM/C3-D/C3-A/C3-B/
C3-C/C3-C’

TOTAL

CA Residents add 6% Saoles Tax
C.0.D. orders add $1.90
Postage & Handling

TOTAL DUE

Bulk Rate
U.S Postage
PAID
Pacifica, CA
Permit 92
Zip Code 94044

$7.95 §

$15.00 $
$30.00 $

$15.00 $

$50.00 $

$50.00 $

$89.00 $

$100.00 §

$6.95 $
$4.95 §

$5.95 §
$5.95 §
$7.95 §
$7.95 §
$8.95 §

®w» w0 o

3.70

S

State Zip POSTAGE MAY VARY F‘OR OVERSEAS

- e, - sdimettns ¥ .S

L~

