
PEEK 65 March-May, 1987
Volume 8, No. 3-5

The Unofficial OSI Journal
Column One
Things have been moving once
more back in the East. This is
most welcome news. Herewith
are the highlights from a letter
recently received;

AN OPEN LETTER TO
DISTRIBUTORS AND
DEALERS OF OSI AND OBI
COMPUTER SYSTEMS

We are pleased to announce
that, as of April 1987, the
complete technology "ot,. o,hio
Scientific (OSI), including trade
names, copyrights, and
manufacturing rights, ,has been
purchased by DevTech
Corporation (OBI) of Denver,
Colrado. As you know, OSI and
OBI have long supported a
common market.

Our primary purpose in this
acquisition is to restore OSI
products to the marketplace as
quickly as possible. We are
acutely aware of the difficulties
caused by policies of former
OSI corporate owners, and we
know that the prolonged
interruption in supply must be
resolved on an urgent basis.
OBI's excellent professional
team is now meeting this
challenge.

Although the Aurora,' OH
facilities have been

Inside This Month r -," . -.-

Livesay's 65816' ' ps'ge 2
Tiny Compiler, ,page 6
New DOS & Stuff page 15
Simple 65D Accounting page 19
Terminal for ,CIS", , , page 34

permanently closed" Jim, Cross
,will be maintaining gener:al
sales offices (in) CtJ1agrin Falls,
OH. In addition, ! Thonias~
Jablonski has joined' the neYJ
effort as applications and'
support specialist for the 700
series.

Those of you who have been
purchasing OBI products
already know Mike Ammon as
general manager of the Denver
manufacturing operation.

Perhaps the worst problem
historically with OSI has been
poor communications, both at
the corporate and market
levels. I wish to emphasize that
our policy is precisely the
opposite. Open communication
channels are mandatory in any
good business activity.

Meanwhile, we will keep you
informed by bulleting
concerning resumed

production schedules, new,
products" and other
developments of' ,interest'. 'We .

, .1'~ • I

appreci~~e ,your patience,
tolerance', and dedication to the '
OSI, and DB!' products, and we
hope you, will join with us in a
brighter future.

Cordially, .
F. Mark Bojarzin
President
DevTech Corporation

sincerely congratulate
everyone involved in this
development. It's the best thing
that could have happened to
the user community. PEEK[65]
hasn't had a chance to develop
lines of communication with the
new company yet, b'ut I
certainly intend to do so, and I
apologize

Continued on page 14

PEEK[65] March-May 1

The New 65816 CPU with
Double-Density Disk
Controller Boards

by David Livesay

As some of you may know, I
have in the past few years
worked on a system which
adapts a 68000 system to the
OSI as an attatched processor.
During this time, I have also
been wor~ing on two boards
which should be of particular
interest to the hobbiest and
business users of OSI systems.
The new boards are:' first of all,
a new CPU board using the
65816 microprocessor and
secondly, a combined SCSI
controller . and double-density
floppy disk controller. Both
boards have been designed to
offer both high-quality and a
reasonable cost to the OSI
user. All of the IC's are on
sockets and ribbon cable

Copyright 1986 PEEK[65]
All rights reserved
Published monthly
Editor: Richard L. Trethewey

Subscription Rates
US

Air Surface
$22

Canada & Mexico (1st class)
$30

Europe $42 $40

Other Foreign $47 $40

All subscriptions are for one year and
are payable in advance in US dollars.
For back issues, subscriptions, or
other information, write to:

PEEK[65]
P.O. Box 586
Pacifica, CA 94044
415-359-5708

Mention of products by trade name in
editorial material or advertisements
contained herein in no way constitutes
endorsement of the product or
products by this magazine or the

publisher.

PEEKr651 March-Mav 2 .

headers are provided for all I/O
ports. The configuration of the
board connectors allows the
use of readily available printer
and serial cables.

The 65816 CPU Board
. The processor 'card is a 48-pin
OSI-compatible board with the
following features:

(1) 65816 microprocessor
running at 3 or 4 MHz.
(2) 256K of RAM
(3) 128K of ROM'
(4) 8 or 16K Monitor PROM
(5) Parallel printer p'ort
(6) Standard OSI serial port
(7) Spare serial port
(8) OSI type disk controller with
OSI real-time controller.
(9) Connector for small plug-in
board with math chip, clock,
and software interrupt
controller.
(10) New expansion bus
(11) Interface for DTACK
680XX system
(12) Usable in any single-user
48-pin system .
(13) Use as stand-alone serial
system by adding power supply
and disk drive.

The CPU
The CPU is a 65816 running at
2, 3, or 4 MHz. A power-on
reset circuit is built in and is
also connected to the 48-pin
bus and the new expansion
bus. The clock circuit includes a
wait state controller to slow
.down the clock for slow
devices.

48-pin OSI Bus
This is the $tandard OSI 48-pin
bus except that the power-on
reset circuit is connected to pin
13. and a disable circuit
(described below) is:connected

to pin 12. All of the address and
data lines are fully buffered.

New Bus
A new bus has been built into
the board which facilitates
adding on such items as more
memory or a new display
board. Signals are provided
that would allow the use of
DMA. All of the address and
data signals' are fully buffered
and separate from the 48-pin
bus and the board bus.

OSI Disk Controller and
Real Time Clock
The disk controller is a
standard OSI type disk
controller except that no
adjustments are required. This
is accomplished by using two
PALs to replace the two one
shots, capacitors" and
potentiometers used on the
standard OSI controller.
Switching between 8" and 5-
1/4" data rates is accomplished
with a jumper. The real-time
clock is just a standard OSI
circuit. The PALs were used to
save board space and save the
time required to adjust the disk
controller. As it turns out, the
hardware comes out to be
about the same in cost.

Serial Ports
There are two serial ports on
the board. One of them is the
same as a standard OSI serial
port (except for an improved
interface driver) with baud rates
of 300 to 19.2K. The other
serial port uses a 6551 and the
baud rate is software selectable
from 50 to 19.2K. This second
serial port provides, in addition
to the Receive Data and
Transmit Data signals, lines for
Data Carrier Detect, DataSet

Ready, Data Terminal Ready,
Ready To Send, and Clear To
Send. The standard serial port
was retai ned to allow fu II
compatibility with the existing
OSI software for serial systems.
The serial ports have RS-232
signal compatibility and a 10-
pin connector is provided on
the board for each port. This
allows a ribbon cable with a 10-
pin header on one end and a
DB-9 connector on the other.
The DB-9 pin-out is the same
as the IBM PC-AT and will
allow the use of AT-series
cables.

Parallel Port
The parallel port is a standard
OSI Centronics port. A
connector is provided which
will allow connection of a
ribbon cable with a DB-25
connector on one end and a 26-
pin connector on the other. The
pin-out of the DB-25 connector
is compatible with the IBM
parallel port and allows the use
of any IBM compatible cable for
connecting the printer.

Hardware Interrupt
A hardware interrupt vector
controller has been built into
the board. This allows 8
separate hardware interrupts to
be generated. When the
hardware interrupt is detected,
the interrupt vector is changed
by switching which part of the
Monitor PROM is being
addressed. Interrupt 0 will
always be the same as the
normal OSI interrupt. The three
lines defining the 8 hardware
interrupt vectors are available
on the new bus.

Monitor PROM
The Monitor PROM allows up to

16 computer configurations to
be defined with the use of a 4
position dip-switch. The
standard selections will allow
selecting (1) standard OSI
serial system, (2) video system,
(3) new video system with IBM
keyboard, (4) booting from a
standard disk, (5) booting from
SCSI hard disk, and (6) booting
from a new high-density disk
and several combinations of
the above. There will, in fact, be
more possibilities than will be
used. This will allow the user of
the system to add new
functions and still retain the
standard monitor.

DT ACK Interface
This is a parallel interface
which allows the connection of
one of Digital Accoustics'
68000 systems. This was
described in a prior issue of
PEEK[65], so I won't go into it
here other than to say that this
parallel interface could also be
used as a high speed interface
to other devices;

New Math Chip
Included on the board is a
small interface connector for a
small add-on board which will
hold a math chip, a date and
time clock, and a software
interrupt vector generator. The
software interrupt generator will
detect the "BRK" code, decode
the next byte, and generate on
of 256 software interrupt vector.
Interrupt 0 will be the standard
OSI interrupt. The software
interrupt generator will operate
in native mode only to avoid
problems with existing software
(Native. mode is the 65816
mode, while 6502 mode is
called emulation mode).

Memory and Hardware
Address Mapping
All of the on-board OSI
hardware is decoded to the
standard OSI locations. This is
accomplished with the use of a
custom-programmed logic
device, a PAL, and can be
changed to allow more memory
in bank 0 by locating the
hardware at $FOOO and up. The
standard configuration' is such
that any address'space which
is not used by hardware' on the
board or on another :OSI board
is used by the HAM. ,All of the
hardware is decoded 't6 ~use no
more than 128 bytes. The 256K
of RAM is decoded to be in
bank 0 (as described above),
bank 1, bank 2, and bank 3.
The PROMs are decoded to be
in bank 254 and bank 255.
Again, since the decoder is
programmable, this can be
changed.

Interface To Standard OSI
Computers
One of the problems with
installing a 65816 processor on
the 48-pin bus is that the
existing boards don't know that
the upper 8 bits of the 24-bit
addresses that the 65816 used
are multiplexed on the data
bus. This means that to a
standard OSI board, address
$00489A (bank 0, $489A) looks
the same as address $FF489A
(bank 255, $489A). This, of
course, leads to data bus
conflict on a read, and writing to
more than one location on a
write. This would never do.
Since I have already designed
and sold two other boards
which were designed to
anticipate a 65816 board
installed on the 48-pin bus, I
had to configure the. board so

PEEK[65] March-May 3

that the upper 8 address lines
which are multiplexed on the
data bus and the address lines
are always enabled. Since
there won't be too many boards
used on the 48-pin bus when
you use one of these 65816
CPU boards (you can throw out
all memory boards, OSI disk
controller boards, etc.) I
decided that the easiest thi ng to
do was to provide a disable
signal to the other boards that
will become active whenever
any 8ANK other than bank 0 is
addressed. This means that
other boards in the system will
need to be modified.' I have
looked at all of the common
boards that might be in the
system, such as the 540 video
display board or the various
hard disk controller boards, and
have found that by cutting one
trace and adding one jumper,
you can use the disable signal
to tell the board that it should
ignore the addresses, For those
who will never use a board on
the 48-pin bus that is designed
t6 work with the 65816, I have
provided another way to avoid
memorY conflict. Any time that
we don't address bank 0, the
address lines on the 48-pin bus
are tri-stated, and the pull-up
resistors on the bus will force
them high. This will generate
an address of $FFFF, which is
in the Monitor ROM and won't
be recognized by any of the
boards on the 48-pin bus.

Use As A Stand-Alone
Computer
The CPU board has a separate
power connector for use in a
stand-alone system. All that you
need to supply to use this
boards as a complete serial
system is a power supply, the

PEEK[65] March-May 4

disk drives, and the terminal.

65816 Software
In order to use the 65816, we
will need to have some
software that will take
advantage of the expanded
memory space and new
instructions of the 65816. This
means that we will need to
have an assembler for the
65816. Since I wrote an
assembler for the 68000 a few
years ago, I already have the
core of an assembler that could
be adapted for the 65816. The
most difficult part is to make it
wo~ fur 6502, 65C02, and
65816's all at once. The work is
at this time about 80%
complete. I feel that all of our
efforts to write a new DOS
should be oriented towards the
65816.

Converting OSI Systems to
65816 CPU
The conversion of OSI
computers is relatively
straightforward. For example, if
you have a C4 or C8, you will
need to remove the CPU board
and any memory boards that
are installed. The 540 board
will need to be modified to add
a wait diode and two jumper
wires. This can be done in
about ten minutes. The reset
wires need to be connected to
a new two-pin connector
(supplied) and the new CPU
board can now be installed. As
stated earlier, the serial ports
can be connected with 08-9
connectors on a ribbon cable. If
you remove the A-15 board
from a C4 or C8, you can add a
small adapter plate that will
accept the connectors. The
C8's also have several unused
mounting holes that will accept

08-25 connectors. If you have
a C3 serial system without a
hard disk, you can take
everything out of it except for
the NEC Spinwriter interface
board (a modified 470) and
simply installed the I/O port
cables and the reset cable.

The SCSI And Double-
Density Floppy Disk
Controller
This board contains two major
sections. The SCSI controller
consists' of principally an NCR
5380 SCSI controller chip
along with the necessary
interface and glue chips. The
interface is through a standard
50-pin connector as defined by
the SCSI standard. The
controller. will support up to 8
devices. At this time, more and
more hard disk manufacturers
are coming out with disk drives
which include embedded SCSI
controllers. Several companies
also package hard disk
systems with SCSI interfaces.
For example, any of the units
sold for use with the Apple
Macintosh can be used. The
SCSI interface should perhaps
be described in another article.

The second major section of
the board is the floppy disk
controller. This controller is built
around a Western Digital 2793
controller chip which can be
used in single or double
density formats with 3-1/2", 5-
1/4", or 8" disk drives. This
controller will allow reading
and writing almost any disk
format used today. All of the
clock rates and density
selection are controlled with
software and the board will
therefore support several types
of disk drives at one time. Four

disk drives can be controlled at
one time. Two connectors are
provided for the disk drives.
These are a 34-pin connector
for the 3-1/2" and 5-1/4" and a
50-pin for 8" drives. Another
feature of the disk controller is
the inclusion of a disk controller
bus switch. This bus switch
allows the disk drives, under
software control, to be
connected to either the new
controller or the standard OSI
controller. The board interfaces
to the OSI controller with the
use of a short ribbon cable
which plugs into the new
controller board and into the
data separator board, which in
turn plugs into the OSI
controller. This makes for a very
neat and compact package.
The board also includes an 8K
RAM which can be selected in
two banks of 2K, plus two
banks of 2K, which are bank
switched to the same memory
location. This is for use in
standard OSI systems where
the standard OSI CPU board is
used. When the board is used
in a system with the 65816
CPU, the RAM will not be used.

This board was designed to
decode the 65816 addresses
on the data bus and can,
therefore, be used with the new
CPU board without any
modifications.

Software
This board has, in fact, been
finished for about 9 months, but
the software has been slow in
coming. The reason for this is
that I didn't want to simply
mimic the standard OSI disk
format. The intention was to
provide a new DOS for use with
the new controller when used

under OS-65D. I have set up
this DOS for use with the new
high-density 5-1/4" or 3-1/2"
disks which hold 1 .2
megabytes. This DOS will also
work with double-sided 8" disks
or, with some modification,
single-sided 8" drives. Other
configurations could be
supported, but I don't intend to
do it. I will, however, write a
program which will allow
reading IBM PC and PC-AT text
files.

".CMD". If the command file is
found, it, is loaded ,and
executed.

As previously mentioned, the
files' are dynamic, which means
that if the file grows in length,
then the DOS vyill aUpcate more
sectors to the'file.'lr(orderto
maintain the maximum sp,~ed, I
hi:iVe'decided thatl won't'iliow
the fi"les, to become fragmented
in s,uch .. a: way that the-disk

, drive 'head,' has to 'step'ln'ahd
'out to: rind all of the' .. : sectors.

Obviously, a' new DOS was 'instead,anytlme'ci me 'needs to
required to support the 1.2 be lengthened,we"1'6dk':{or 'the
megabyte drives. The major' next available 'seCtor 'which is
changes are a new Catalog towards 'the' inside of the 'disk.
and the support of dynamic file This also has the disadvantage
sizes. The catalog support files of forcing us tcrno(ireuse
with names of 11 characters sectors from fiies"that have
plus extension of 3 characters. been deleted. This is ,_not too
The catalog stores the type of bad in' that' repacking the" disk
file and the time and date. will ~liminate the problem. ,' ..

The new DOS for the new disk
controller' doesn't replace the
existing DOS, but instead is
used,whenever the new drives'
are selected. I have called the '
new floppy drives "F" through "I"
and the first hard disk
connected to the SCSI
interface is device "J". This new
DOS support all of the current
650 functions, such as LOAD
and SAVE. BLOAD and BSAVE
functions have also been
added. The directory program
is also resident. New functions'
can be added as external DOS
functions by writing a new
function and placing it in a file
with an extension of "CMD".
When DOS searches the
dispatch table and doesn't find
the command you issued, it
searches the current drive for a
file with the same name as the
command (with the extension

'" I intend to write so'ftw~lre to 'use
the new controller' whti'os-
65U, but haven't started. This
software, would not make any
changes to OS-65U other than
to provide the ,drivers fo'r'the
controller' board 'and. the
interface to OS-65U.lf anyone
is fnterested in writing, the
software for using this board
with OS-65U, feel free' to
contact me via PEEK[65].

~
Now we come to the hard
questions like "How much does
it cost?" The' CPU board will
range in cost from about $320
for a minimum configuration
with only 64K of 'memory
installed, to a little over $400 for
a board with 256K of RAM. The
SCSI with floppy controller will
be about $300 with software.
These are preliminary prices

PEEK[65] March-May-S

and could be reduced by about TINY COMPILER' COMMANDS
10% if the boards could be built
in quantities of at least 25 at a Legal variables: A - Z

time.

Tiny Compiler

by David E Pitts

(Editor's Note: The following
is a summary, of the
documentation for Pitts', Tiny
Compjler fo~ OS-65D J3ASIC ,as
of 1981., David released the
,OSI versio.n into. the, public
doma'in with the pmviso,Jh,at it
only be used, ordJSlsyst~,m~. 1

, 'ask, that you ,abide ,by 'that
'request. I,; mocHfied ",David's
" .. original, code to irTlpliment, the
'" ,DI$K! keyword.)

,; :The Tiny Compiler can prod!Jce
, relocatable object, code and the

USR(X) 'routine' allows linkage
of, th~s~ .objec,t codes .such,that
Ia,rg'e muti nes can be cr,eated.,

, " ~oth the object cod,~ 10Gation
" and, the variab~e table. Ipc:ation

are chosen by the, user, thus
allowing mUltipie machine, code
rqutines ·to, .• u'~e the" ,~ame i

variable ,table • or a".different
variable, tables. "The, object
code is stand ,alone and' does
not addr.ess ROMs,or 08':650. ,
It uses a 16 bit arithmetic stored
in standard LSB-MSB format
and uses the Accumulator' to ,
hold the LSBand the' X register
to hpld the MSB. Only, posftive
intergers are used, but the user
can utilize two's, compliment to
create dummy negative
integers. No page zero
locations are used and the only
working locations are the zero
and first locations in the
variable table" which is, 54

PEEK[65] March-May 6

A = nnn (where 0 <= nnn <= 65535)
A = B
A = B + C A = B + nnn A = B OR C A = B OR nnn
A = A + C A = A + nnn A = BAND C A = BAND nnn
A d B - C 'A ~ B ~ nnn,
A = PEEK(B) A = PEEK(nnn)
POKE A, B POKE A, nnn
GOSUB nnn 'GOTO nnn
A = D * B A = D * nnn A = BrC A = B/nnn

,·(where 0 <= D <= C <= 25~",O<= B <= nnn <= 65535 above)

IF A=BTHEN GOTO nnn
IF A=B THEN GOSUB nnn
IF A<>B THEN GOTO nnn

,IF A<>B THEN GOSUB nnn
I~ ~~B THEN GOTO nnri
IF 1\<13 THEN GOSUB nlm

, IF, A=nnn ' THEN ~" .. .
IF A<>nnnTHEN .. .

PRINT A

RETURN
STOP
REM

PRINT'rinri 'A" (prints at$DOOO+n)

INPUT A

CLEAR,

DISK!

Retrie~e~ one keypress. Returns 0,7 9 or
~SCII value of Alpha k~y. ,

• machine cod~ screen clear

. .,' .
~ccepts OS-65DDISK! commands~ Do~s not
~upport DISK PUT, DISK GET, DISK OPEN, ,
or DISK CLOSE. ,',

FOR I = ,A TO B
FOR I = nnnTO B
FOR "I '= A 'to' B STEP nnn (nnn can"be '+ or' ::..') ,
'FO~ I '= ATO D 'STEP nnn ;"
FOR I = PEEK(nnn) TO B STEP mmm
FOR I ='iEEK(C)'TO B STEP nnn . \ . .' . ~ ~ ". ."

, NEXTX (X opti'onal)

,~ultiple statements per line ~re allowed'exceptfbr
'IF A= THEN GOSUBnnn which must be at the end of the,
line.

TabLe 1

GENERAL LAYOUT

Line #

8000
8005-8015
8020-8055
806·Q-8250
9'000- 9050
9055-9150
9155-9190
9195-9215

9220-

MACRO CODES

Description

POKE object code
PEEK Source code
Set up integer, error check
POKE instruction codes
Initialization
MAIN LOOP
JUMP calculations
Run machine code & stop

Macro codes

9220-9290 A = #, check for +, - *, / etc.
9295-9330 PEEK
9335-9380 Multiplication
9385-9430 Division
9435-9515 IF ... THEN
9520-9535 USR(X)
9540-9545 GOSUB, GOTO
9550-9565 POKE
9570-9595 Self-modifying code for PEEK, POKE,
USR (X)
9600-9625 FOR
9630-9665 NEXT
10000-10180 DISK

bytes long. Self modifying code
is used for the PE~K, USR, and
POKE compilations. During the
first pass, the line numbers for
GaTOs and GOSUBs are
stored as addresses for the
JMP and JSR. Later this is
rep'laced by the absolute
adCfress ,using vectors
contained in the string
variables L$ and L3$. The
arith'rtletic 'routi;nesused are
f.rom 'William Barder:i's' ibo0k
"How to . Program
Microcomputers", 'Howard
'Sahls ,publishers.

Th'~ 'code generated by the
cornpiler is not as efficient as
an experienced, programmer
can write using" assembly
language, however, it is much
easier to have the compiler do
the dirty work Tohe speed of the
object code has been
compared to the interpreter
using nested FOR. .. NEXT loops
and found to be some 40 times
faster. This means that some
game program routines may
require delay loops.

" PEEK[65]. March-May 7

10 CLEAR
20 DISK!"CA D200=08,1

30 H=1:L=2000
40 FORK=HTOL

50 PRINT 1024 K
60 NEXT
7999 END
8000 POKEM,P:PRINTP:M=M+1:RETURN:POKE OBJ CODE
8005 P=PEEK(Q) :PRINTTAB(20) "TOKEN="iPi"LOC="iQ:Q=Q+1:IFP=32THEN8005

8010 IFP=QTHENC=2

8015 RETURN
; 80'20 IFP<650RP>90THEN8030 :REMCHECK ALPHA

8025 RETURN
8030 PRINT:PRINT"ERROR LINE# "iL$(L) :END
8035 IFP<4 80RP>5'7THENRETURN: NOT 0- 9

_,~ti46C$=C$+CHR$(P) :GOS6B8005:cioT08035
'. " ." (. ... '. ".'

8045'C:$=~'" : GOSUB8 035: IFC$=" "THENF=-l : RETURN

8050 F=VAL(C$)
.' 8055MB=INT (F/256) :LB=F-MB*256:RETURN

8060 GOSUB8235:GOSUB8085:GOSUB8185:GOSUB8225:GOSUB8090
8065 GOSUB8185:RETURN:REMLDX XXZZ,Y+1 LDA XXZZ,Y
8070,c, GOSUB821 0: P=LB: GOSUB8 0 0 0: GOSUB8215: P=MB: GOSUB8 0.00: RETURN: LOAD

A&X
8075 P=160:GOSUB8000:RETURN:LDY#
8080
GOSUB8235:GOSUB8170:GOSUB8085:GOSUB8220:GOSUB8170:RETURN:REMSTA,Y
8085 P=200:GOSUB8000:RETURN:INY
8090 P=136:GOSUB8000:RETURN:DEY
8095 P=121:IFS=164THENP=249:GOT08110:BEG OF SBC,ADC,AND,ORA

8100 IFS=168THENP=57:GOT08110:AND

8105 IFS=169THENP=25
8110 GOSUB8245:RETURN
8115 P=24:IFS=164THENP=56:REMCLC OR SEC

8120 GOSUB8000:RETURN
8125 P=96:GOSUB8000:RETURN:RTS
8130 P=16:GOSUB8000:RETURN:BPL
8135 F=(V4-64)*2+ZZ+256*XX:GOSUB8055:GOSUB8140:RETURN:ROL
8140 P=46:GOSUB8240:RETURN:ROL
8145 P=10:GOSUB8000:RETURN:ASL A
8150 P=72:GOSUB8000:RETURN:PHA
8155 P=104:GOSUB8000:RETURN:PLA
8160 P=202:GOSUB8000:RETURN:DEX
8165 P=153:GOSUB8000:RETURN:STA QQPP,Y
8170 P=153:GOSUB8245:RETURN:STA XXZZ,Y

PEEK[65] March-May 8

I

8175 P=240:GOSUB8000:RETURN:BEQ
8180 P=LB:GOSUB8000:P=MB:GOSUB8000:RETURN
8185 P=185:GOSUB8245:RETURN:LDA XXZZ,Y

8190 P=lS5:GOSUB8000:RETURN:LDA QQPP,Y
8195 P=144:GOSUBSOOO:RETURN:BCC
8200 P=176:GOSUB8000:RETURN:BCS
8205 P=208:GOSUBSOOO:RETURN:BNE
8210 P=169:GOSUBSOOO:RETURN:LDA#
8215 P=162:GOSUBSOOO:RETURN:LDX#
8220 P=13S:GOSUBSOOO:RETURN:TXA

8225 P=170:GOSUB8000:RETURN:TAX
8230 P=217:GOSUB8245:RETURN:CMP XXZZ,Y
8235 GOSUB8075:P=(Vl-64)*2:GOSUB8000:RETURN:VAR TABLE LOt
8240 GOSUBSOOO:P=LB:GOSUBSOOO:P=MB:GOSUBSOOO:RETURN
8245 GOSUBSOOO:P=ZZ:GOSUBSOOO:P=XX:GOSUBSOOO:RETURN:VAR TABLE ADDR

8250 P=O:GOSUBSOOO:GOSUBSOOO:RETURN
8425 REM- LINE REFERENCED BY OLD LINE #9427

8527 F=8955:GOSUB8055:GOSUBS180
9000 DIML$ (50) ,L3$ (50) :POKE2S8'S, 0
9005 PRINT :PRINT :PRINTTAB (20) j "TINY COMPILER 1.1" :PRINT :PRINT

9010 X=PEEK(122)+256*PEEK(123)-5
9011 PRINT"TOP OF BASIC PROGRAM= "jX:PRINT
9015 Q=PEEK(120)+256*PEEK(121) :L=l
9016 PRINT"FOR DEFAULT ENTER '0'"
9020 INPUT"DESIRED LOC(DECIMAL) OF OBJ CODE(32768 DEFAULT)"jM
9025 IFM<XTHENM=3276S

9030 MM=M:INPUT"LOC OF VARIABLE TABLE (33792 DEFAULT) "jVT
9035 J=0:N=1:L=0:L3$(1)="0":R=0:IFVT<XTHENVT=33792
9040 INPUT"RELOCATE OBJECT CODE"jC$:C$=LEFT$(C$+" "~1)

9041 IFC$<>"Y"THEN9050

9045 INPUT"DECIMAL ADDRESS"jR:R=R-M
9050 F=VT:GOSUBS055:XX=MB:ZZ=LB:REM MSB & LSB-VAR STOR
9055 M1=PEEK(Q)+256*PEEK(Q+1) :X=PEEK(Q+2)+PEEK(Q+3) *256
9060 PRINT:PRINT"LINE "jXj"LOC= "jM:L=L+1:Q=Q+4
9064 C$=STR$(X) :Y=LEN(C$)-l
9065 L$(L)=RIGHT$(C$,Y)+STR$(M) :IFX>7999THEN9155

9070 C=0:GOSUB8005:IFC=2THEN9070
9075 IFP>64ANDP<91THENGOSUB9220:GOT09145:A=

9080 IFP=135THENGOSUBS005:GOSUB9220:GOT09145:LET
9090 IFP=136THENX=76:GOSUB9540:REM GO TO

9095 IFP=13STHENGOSUB9435:REM IF
9100 IFP=140THENX=32:GOSUB9540:REM GOSUB
9105 IFP=141THENGOSUBS125:REM RETURN
9110 IFP=143THENGOSUBS125:REM STOP
9115 IFP=129THENJ=J+1:GOSUB9600:REM FOR

", 'i

PEEK[65] March-May 9

9120 IFP=130THENGOSUB9630:J=J-1:REM NEXT

9125 IFP=150THENGOSUB9550:REM POKE

9130 IFP=128THENGOSUB8125:GOT09155:REM END

9135 IFP=142THENQ=M1:GOT09055:"REM"

9136 IFP=151THEN9700
9137 IFP=154THEN9900

9138 IFP=132THEN9950
9139 IFP=148THEN10000:DISK
9140 GOSUB8005
9145 PRINT:PRINT"P1= ";PEEK(Q-1)
9146 IFPEEK(Q-1)=58THEN9070:REM CHECK FOR COLON
9150' Q=M1:PRINT:GOT09055
9155 C=VAL(L3$(1» :PRINT:PRINT"JUMP VECTORS":IFC<lTHEN9190

9160 N=N-1:FORY=lTON:C=VAL(L3$(Y»:XX=PEEK(C)+256*PEEK(C+1) :Zz=o
9165 FORX=lTOL:S=LEN(L$(X»:FORJ=lTOS:IFMID$(L$(X),J,l)<>"

"THEN9168
9166 V2=VAL(RIGHT$(L$(X),S-J» :V1=VAL(LEFT$(L$(X),J-1» :GOT09170
9168 NEXT:GQT09175
9170 IFXX=V1THENZZ=V2+R:PRINT"JUMPTO";V1;"ADDR=";ZZ
9175 NEXT:IFZZ=OTHENPRINT"NO ADDR FOR ";XX:GOT09185
9180 MB=INT(ZZ/256) :LB=ZZ-MB*256:POKEC,LB:POKEC+1,MB
9185 NEXT
9190 PRINT(M-MM)/256;"PAGES,TOP=";M:PRINT
9191 PRINT:PRINT"(l) EXECUTE PROGRAM":PRINT"(2) EXIT":PRINT
9192 INPUT" YOUR CHOICE ";Y$:K=VAL(Y$) :IFK=lTHEN9200
9193 IFK<>2THEN9191

9195 END
9200 FORX=VTTOVT+54:POKEX,0:NEXT

9205 PRINT"RUNNING":X=INT(MM/256) :Y=MM-X*256:POKE575,X:POKE574,Y
9210 X=USR(X) :PRINT:INPUT"PRINT VARIABLE TABLE ";Y$:Y$=LEFT$(Y$+"
" , 1)

9211 IFY$<>"Y"THENEND
9214 FORX=2T054STEP2:M=VT+X:Y=PEEK(M) :Q=PEEK(M+1)

9215 PRINTCHR$(X/2+64);Y+256*Q:NEXT:STOP

9220 GOSUB8020:V1=P:GOSUB8005:IFP<>171THEN8030:REM "="
9225 GOSUB8005:IFP=187THEN9295:PEEK

9230 IFP=176THEN9520:USR
9235 GOSUB8045:IFF=-lTHEN9245:REM F=-l IF NOT INTEGER
9240 GOSUB8070:GOSUB8080:RETURN:A=#

9245 V2=P:V4=V1:GOSUB8005:IFP<1630RP>172THENQ=Q-1:GOT09290:A=B
9250 S=P:GOSUB8005:GOSUB8045:V3=P:IFS=165THEN9335:REM *
9255 IFS=166THEN9385:REM /
9260 IFF=-lTHENV8=P:GOT09270:A=B+NNN
9265 V8=64:GOSUB8070:V1=V8:GOSUB8080:Q=Q-1

9270 V1=V2:GOSUB8060:V1=V8:V2=V8:GOSUB8235:GOSUB8115:GOSUB8095

PEEK[65] March-May 10

1 ,

9275 V1=V4:GOSUB8235:GOSUB8170:GOSUB8220:REM STOR LSB:TXA
9280 V1=V2:GOSUB8235:GOSUB8085:GOSUB8095:REM ADD MSB
9285 V1=V4:GOSUB8235:GOSUB8085:GOSUB8170:GOSUB8005:RETURN
9290 V1=V2:GOSUB8060:V1=V4:GOSUB8080:GOSUB8005:RETURN: A=B
9295 GOSUB8005:IFP<>40THEN8030: "("
9300 GOSUB8005:GOSUB8045:V4=V1:V1=P:IFF=-lTHEN9315
9305 GOSUB8075:P=0:GOSUB8000:GOSUB8190:GOSUB8180:GOSUB8215
9310 P=O :GOSUB8000 :V1=V4 :GOSUB8080 :GOSUB8005 :.RETURN
9315 GOSUB8005:IFP<>41THEN8030: H)"

9320 X=10:GOSUB9580:REM ABOVE MODS CODE
9325 GOSUB8075:P=0:GOSUB8000:GOSUB8190:GOSUB8250
9330 GOSUB82r5:p=0:GOSUB8000:V1=V4:GOSUB8080:GOSUB8005:RETURN'
9335 S=163:V1=V2:GOSUB8060:GOSUB8150
9340 IFF=-lTHENV1=V3:GOSUB8060:V1=64:GOSUB8080:GOSUB8005:GOT09350
9345 GOSUB8070:V1=64:GOSUB8080
9350F=0:GOSUB8055:GOSUB8070:V1=V4:GOSUB8080
9353 GOSUB8155:GOSUB8215:P=8:GOSUB8000
9355 P=24:GOSUB8000:GOSUB8135
9360 F=F+1:GOSUB8055:GOSUB8140:GOSUB8145:GOSUB8195:P=33:GOSUB800~
9365 GOSUB8150:V1=V4:GOSUB8235:P=185:GOSUB8245:P=24:GOSUB8000
9370 GOSUB8075:P=0:GOSUB8000:GOSUB8095:V1=V4:GOSUB8235:GOSUB8170
9375 GOSUB8085:GOSUB8185:GOSUB8075:P=1:GOSUB8000
9377 GOSUB8095:V1~4:GOSUB8235
9380 GOSUBB085:GOSUB8170:GOSUB8155:GOSUB8160
9383 GOSUB8205:P=210:GOSUB8000:RETURN
9385 S=164:IFF=-lTHENV1=V3:GOSUB8060:GOSUB8005:GOT09395
9390 GOSUB8070
9395 GOSUB8225:GOSUB8210:P=0:GOSUB8000:V1=64:GOSUB8080
9400 V1=V2:GOSUB8060:V1=V4:GOSUB8080:GOSUB8215:P=17:GOSUB8000
9405 F=M+R+15:GOSUB8055:P=76:GOSUB8240:GOSUB8075:P=0:GOSUB8000
9410
GOSUB8185:GOSUB8115:GOSUB8085:GOSUB8095:GOSUB8130:P=4:GOSUB8000
9415 P=24:GOSUB8000:F=M+R+9:GOSUB8055:P=76:GOSUB8240:GOSUB8075
9420 P=0:GOSUB8000:GOSUB8170:GOSUB8115:GOSUB8135
9423 F=F+1:GOSUB8055:GOSUB8140
9425 GOSUB8160:GOSUB8175:P=6:GOSUB8000:P=46
9427 GOSUB8425:F=M+R-34:GOSUB8055
9430 P=76:GOSUB8240:RETURN
9435

GOSUB8005:GOSUB8020:V1=P:GOSUB8005:IFP>1720RP<171THEN8030:REM=<
9440 V4=P:IFP=172THENGOSUB8005:IFP<>170THEN9480:REM<>,<
9445 V2=V1:GOSUB8005:V1=P:GOSUB8045:IFF<>-lTHEN9476
9446 GOSUB8060
9447 V1=V2:GOSUB8235:GOSUB8230:GOSUB8205
9450 GOSUB9500

PEEK[65] March-May 11

9455 P=7:IFV4=171THENP=10

9460 GOSUB8000:GOSUB8220:GOSUB8085:GOSUB8230
9465 IFV4=172THENGOSUB8175:GOT09475
9470 GOSUB8205
9475 P=3:GOSUB8000:GOT09540:IF =,<>THEN

9476 GOSUB8055:P=169:GOSUB8000:P=LB:GOSUB8000:P=162:GOSUB8000
9477 P=MB:GOSUB8000:Q=Q-1:GOT09447
9480 GOSUB8020:V2=P:GOSUB8235:GOSUB8185:GOSUB8225:GOSUB8085:REMIF<
9485 GOSUB9500:GOSUB8185:V1=V2:GOSUB8235:GOSUB8085
9487 GOSUB8230:GOSUB8195:P=11

9490
GOSUB8000:GOSUB8205:P=12:GOSUB8000:GOSUB8220:GOSUB8090:GOSUB8230

9495 GOSUB8175:P=5:GOSUB8000:GOSUB8200:P=3:GOSUB8000:GOT09540
9500 GOSUB8005:IFP<>160THEN8030:REMTHEN
9505 GOSUB8005:IFP<>136ANDP<>140THEN8030
9510 X=76:IFP=140THENX=32:REMGOTO OR GOSUB

9515 RETURN
9520 GOSUB8005:GOSUB8005:GOSUB8005:IFP<>41THEN8030:REMUSR
9525 GOSUB8005:GOSUB8075:P=1:GOSUB8000:GOSUB8190
9530 GOSUB8225:GOSUB8090:GOSUB8190:GOSUB8180
9532 X=8:GOSUB9585:P=32:~OSUB80DO
9535 GOSUB8250:RETURN
9540 GOSUB8005:GOSUB8045:IFF<10RF>7999THEN8030

9545 P=X:GOSUB8000:L3$ (N)=STR$ (M) :N=N+1:GOSUB8180:Q=Q-1:RETURN
9550 GOSUB8005:GOSUB8020:V1=P:GOSUB8005:IFP<>44THEN8030:REM ","
9555 GOSUB8005:GOSUB8045:IFF=-lTHEN9570:REM F=-l IF NOT INTEGER
9560 V4=LB:X=14:GOSUB9580:GOSUB8075:P=0:GOSUB8000
9565 LB=V4:MB=0:GOSUB8070:GOSUB8165:GOSUB8250:Q=Q-1:RETURN
9570 X=21:V2=P:GOSUB9580:V1=V2:GOSUB8060
9575 GOT08250
9580 GOSUB8060
9585 GOSUB8075:P=0:GOSUB8000:GOSUB8165:F=M+X+R:GOSUB8055
9590 GOSUB8180:GOSUB8085:GOSUB8220:GOSUB8165:GOSUB8180
9595 RETURN:SELF MOD CODEFOR 3BYTE IND ADDR,Y
9600 GOSUB8005:V7(J)=P:GOSUB9220:Q=Q-1:GOSUB8005:IFP<>157THEN8030

9605 V6(J)=M-1:GOSUB8005:V5(J)=P:GOSUB8005:T(J)=1:V4=163
9610 IFP<>162THENQ=Q-1:RETURN
9615 GOSUB8005:IFP=164THENV4=P:GOSUB8005

9620 GOSUB8045:T(J)=F:Q=Q-1:IFV4=164THENT(J)=65536-T(J)

9625 RETURN
9630 GOSUB8005:IFP<650RP>90THENQ=Q-1:REM NEXT

9635 V1=V7(J) :GOSUB8060:V1=V5(J) :GOSUB8235:GOSUB8230:GOSUB8205
9640 P=10:GOSUB8000:GOSUB8220:GOSUB8085:GOSUB8230
9645 GOSUB8205:P=3:GOSUB8000:P=76:GOSUB8000:F=M+26+R:GOSUB8055
9650 GOSUB8180:F=T(J) :GOSUB8055:GOSUB8070:S=163:V1=V7(J)

PEEK[65] March-May 12

1 ,

r

9655 GOSUBS235:GOSUBSl15:GOSUBS095:GOSUB8170:GOSUBS220:GOSUBSOS5
9660

GOSUBS 0 95: GOSUBS1 7 0: P=7 6: GOSUBS 0 0 0: F=V6 (J) +'1 +R: GOSUBS 055: GOSUB81S °
9665 RETURN
9670 REM L$()=DECIMAL # OF COMPILED LINE+DECIMAL ADDR OF OBJ LINE
9680 REM L3$()=DEC LOC OF LOW BYTE OF JMP OR JSR, N=# OF L3
9685 REM Q=LOCATION IN BASIC TO BE PEEKED
9690 REM L=LINE BEING COMPILED
9695 REM VT ·BEGINNING ADDR OF VARIABLE TABLE
9700 P=76:GOSUBSOOO:GOSUBS250
9705 REM M1=NEXT BASIC LINE TO BE COMPILED
9710 TA=M:GOSUBS005:GOSUBS045:PP=53440+ABS(F)
9720 IFP<>34THEN9S00
9730 P=PEEK(Q) :Q=Q+1:IFP=340RP=OTHEN9750

9740 GOSUBSOOO:GOT09730
9750 P=0:GOSUBSOOO:F=M:GOSUBS055
9760 POKETA-2,LB:POKETA-1,MB

9770 GOSUBS075:P=255:GOSUBSOOO:GOSUBSOS5
97S0 GOSUBS190:F=TA:GOSUBS055:GOSUBS180
97S5 GOSUBS175:P=5:GOSUB8000

9790 GOSUBS165:F=PP:GOSUBS055:GOSUBS1S0
9795 GOSUBS205:P=245:GOSUBSOOO
9797 IFPEEK(Q-1)=34THEN9140
979S GOT09150
9800 GOSUB8020:M=M-3:V1=P:GOSUBS060

9810 P=134:GOSUBSOOO:P=33:GOSUB8000:P=133:GOSUB8000
9820 P=34:GOSUBSOOO:RESTORE
9850 FORI=OT05S:READP:GOSUBSOOO:NEXTI
9S52 DATA 160,4,169,0,133,32,162,17,20S,7
9S54 DATA 165,32,56,233,10,16,3,24,144,3

9856 DATA 133,32,56,38,34,38,33,202,240,5
985S DATA 3S,32;24,144,231,165,32,24,105,4S
9860 DATA 153,0,212,165,34,20S,9,165,33,20S
9S62 DATA 5,169,32,136,16,240,136,16,199
9870 F=PP:GOSUBS055:POKEM-1S,LB:POKEM-17,MB
9890 GOT09140

9900 RESTORE:FORI=OT05S:READP:NEXT

9910 FORI=lT031:READP:GOSUBSOOO:NEXT:GOT09140
9920 DATA 160,0,169,32,153,0,215,153,0,214,153,0,213
9930 DATA 153,0,212,153,0,211,153
9940 DATA 0,210,153,0,209,153,0,208,200,20S,229
9950 GOSUBS210:P=63:GOSUBSOOO:P=141:GOSUBSOOO
9960 F=61440:GOSUBS055:GOSUBS180:P=32:GOSUBSOOO:REM - $FOOO ?
9965 F=9014:GOSUBS055:GOSUBS1S0:REM- CHANGED TO JSR $2340
9970 P=201:GOSUBSOOO:P=5S:GOSUBSOOO:GOSUBS130:P=3:GOSUBSOOO

PEEK[65] March-May 13

9972.P=56:GOSUB8000:P=233:GOSUB8000:P=48:GOSUB8000
9974 GOSUB8215:P=0:GOSUB8000
9975 GOSUB8005-GOSUB8020:V1=P:GOSUB8080
9980 GOSUB8210:P=32:GOSUB8000:P=141:GOSUB8000:F=53509
9985 GOSUB8055:GOSUB8180 ~.

9990 GOT09140

"- --,

10000 GOSUB8005:IFP=33THENGOSUB8005:IFP=34THEND$="":GOT010020

10010 GOT08030:REM NOT DISK!"
10020 GOSUB10160:IFP=340RP=OTHEN10040
100~0 D$=D$+CHR$(P) :GOT010020
10040 D$=D$+CHR$(13) :DL=LEN(D$) :REM- ADD <CR> TO STRING
100'45 IFP=OTHENQ=Q-1:REM- BACK UP ON E.O.L.
10050 P=32:GOSUB8000:P=247:GOSUB8000:P=44:GOSUB8000

1006D F=M+22:SA=F:GOSUB8055
10065 GOSUB8210:P=LB:GOSUB8000:P=133:GOSUB8000
10070 P=225:GOSUB8000:GOSUB8210:P=MB:GOSUB8000:P=133:GOSUB8000
1008-0 P=226:GOSUB8000:GOSUB8210:P=DL:GOSUB8000
10090 P=141:GOSUB8000:F=11501:GOSUB8055:P=LB:GOSUB8000
10100 P=MB:GOSUB8000:P=32:GOSUB8000:F=10884:GOSUB8055
10110 P=LB:GOSUB8000:P=MB:GOSUB8000:P=32:GOSUB8000

10120 P=247:GOSUB8000:P=44:GOSUB8000:P=76:GOSUB8000
10130 F=SA+DL:GOSUB8055:P=LB:GOSUB8000:P=MB:GOSUB8000
10140 FORK=lTODL:P=ASC(MID$(D$,K,l» :GOSUB8000:NEXTK

10150 GOT09140
10160 P=PEEK(Q) :PRINTTAB(20) "TOKEN="iPi"LOC="iQ:Q=Q+1
10170 IFP=OTHENC=2
10180 RETURN

Continued from Page 1

for not contacting you
personally.

There's a lot of exciting things
happenning in the ' OSI
community as we begin to
bridge the gaps between the 8
and 16/32-bit worlds. The new
DB-II systems breathe new life
into old applications and hold
the promise for even better
performance on systems that
have long been the unsung
champions in that department.
As PEEK[65] readers are the
beneficiaries/victims of many

PEEK[65] March-May 14

previous incarnations of a
single company,. we haven't
seen as large a leap forward in
potential since _ MA/COMM
bought the company from the
Cheikyfs.

Thanks. We all wish DevTech
the best of luck in all they do.

Back on the home front, Dave
Livesay tells us all about his
65816 CPU board. Dave will
soon be moving back to
California, so if you need to
contact him, you can do so via
PEEK[65]'s post office box. I
have shared some of my
thoughts on a new operating

system and other issues. Bob
Best of the KAOS user group in
Australia presents his simple·
OS-65D v3.3-based accounting
system. And there are a couple
of other treats here and there.

Keep those disks and letters
coming, folks. PEEK[65] is still
very much in need of new
articles to publish. Don't forget,
uploading on CompuServe is
free of standard connect
charges, so it's usually even
cheaper than the cost of
sending a diskette. And PEEK
pays you for your help! So,
please pitch in. Thanks!

Musings on a New Disk
Operating System and the

Future

by Richard L. Trethewey

This article isn't going to be
very specific about many of the
things it discusses. The reason
for that is that I want to discuss
a piece of code I haven't written
yet the imfamous "new
operating system". We're at a
real crossroads now because
there are three, count 'em,
three CPU boards available for
the 65816 microprocessor: the
OS-II Denver Board, Paul
Chidley's CxP board, and
David Livesay's new board
described elsewhere in this
issue. Since most of us who are
interested in a new operating
system will be using one of the
latter two boards or opting for
the 65802 and keeping our
current hardware, I'll keep my
discussions centered around
those two boards.

The first thing you notice about
the design of both of these
boards is that in addition to the
new microprocessor, they make
use of a lot of hardware that
isn't in a vanilla OSI system.
For example, Paul's board uses
a new ACIA chip and Dave has
interfaces for many different
disk drives. This points up a
fundamental problem that
needs to be addressed. If any
operating system is to flourish,
it must be able to support all of
these options and make
provisions for future
improvements.

The history of OSI operating
systems, OS-65U in particular,
makes it clear that a stable

interface to the operating
system is imperative. If you
begin to support POKEs and
PEEKs that alter the operating
system's behavior, the memory
locations have to remain in one
place or you obsolete any
piece of software that depends
on them each time you upgrade
the operating system. In this
manner, you end up with
spaghetti code with JMPs to
JMPs and JSRs to branches
and your operating system
ends up fragmented all over its
allotted space and taking an
inordinate amount of time just
winding its way through all of
the patches. Its certain that the
first few efforts to write a new
operating system will be
plagued with occasional bugs.
By starting off sensibly right
now, we can prepare for this
eventuality and avoid making
the same old mistakes.

As I've mentioned many times
before, I have been working
with an Apple Macintosh
computer for several years
now. A key element in the Mac
is the operating system. That
operating system uses
something called "device
independent 1/0". What that
boils down to is that 1/0
functions are routed through
pieces of software called
"device drivers" which performs
its task with specific hardware
devices but based on a uniform
operating system command or
"function call".

OS-650 and OS-65U have a
form of device independence
for character 1/0. By setting a bit
in a particular, byte, calls to the
character input and output
routine are routed to device-

specific routines built into the
operating system. However,
these individual routines are
hard-coded into the operating
system and can only be altered
by patching them. This has
been acceptable for the most
part because there have only
been a limited number of
peripheral dEwi,ces that were
supported by '-0$1. However,
the new CPU 'boards; are
quickly changing', that. a'nd I
expect even more changes: '

In the Macintosh operating
system (and I'm sure many
others as well), the device
drivers are small modules of
code with special headers
which hold an offset from the
start of the module to the
locations of the starts of the
various 1/0 commands the
module supports. In a strictly
6502-based environment, we
would almost certainly need to
specify blocks of memory to be
allocated to such code because
the branching instructions of
the 6502 are so limited in their
ability to be position-
independent. It would be
possible to include a system
akin to a linking loader when
the device driver is installed,
but that technique suffers from
size and speed overheads that
become restrictive. However,
the 65816 instruction set
includes a couple of commands
that make writing independent
code practical.
Most operating systems since
CPIM have used a table-driven
form of command interface,
whereby the operating system
is entered at a static location in
memory and the program is
then routed to the code to
execute the desired function

PEEK[65] March-May 15

based on the contents of this
table. My proposal is that we try
this method for device drivers to
whatever extent seems
appropriate.

The Macintosh operating
system is based on a handfull
of basic commands for 1/0:
Open, Close, Status, Control,
Read, and Write. When
combined with a table of
command parameters, these 6
calls can handle all of the
needs of input and output. Thus
the headers of the device
drivers would consist of a table
of six two-byte values which are
the offsets to the above
commands within the software
module. However, applications
software still needs to be routed
at the operating system level
and not work by directly
accessing device drivers in
memory since the application
can't. know where the driver
may be in memory, nor should
it.

Thusfar, we have outlined
some of the goals of the
operating system.
Implimentation takes extra
planning. We have decide to
use a table-based command
interface. Note that this does
not preclude a string-based
interface being a part of the
operating system so that a user
can execute operating system
commands from his keyboard
or via a text-generating
application. At the lowest level,
the operating system still
depends on the same six
commands described above.
However, variations on those
commands to perform more
complicated tasks - largely
those dealing with disks. A key

PEEK[65] March-May 16

question is how many
commands are we going to
allow the operating system to
support?

No matter how many slots we
allocate for our table, it is
almost inevitable that we'll want
more. 16 is always a nice
number to use in micros (OS-
65D supports 19 text-based
commands), but that seems
skimpy so let's double that and
plan for 32 command slots.
However, the last slot is going
to be reserved for a dispatch
vector to additional commands,
allowing for endless (albeit
potentially cumbersome)
expansion.

One of the other benefits of the
65816 is that because the
accumulator and the X and Y
registers can hold a full 16-bits
of data. Thus we can specify
that on entry to the operating
system, a particular register
must hold a. pointer to a
command parameter list. This
technique further facilitates
position independence since it
releases the operating system
from being responsible for
allocating a specific amount of
memory at a particular location
for these parameter lists.
Similarly, it helps allow for
device independence. All we
need are two or three bytes to
hold this pointer. Such a
parameter list might well look
like the following:

Qffs~t M~gning

$00 Driver ID #
$01 Result code
$02 I/O
Reference #
$03 RAM Address

$06 # of bytes
SOB File
Position Offset
$10 I/O Mode
$11 Current
Position
$16 Logical EOF
$lA Physical
EOF
$lF I/O Name
Ptr
$22 ... future use

Certainly the above list is
incomplete and inaccurate in
addressing the needs of all
conceivable uses, but it does
point us in the directions I think
we should take. Not all
operating system calls will
need or use all of these
parameters either, but by
defining the list ahead of time,
at least in part, it helps layout
the tasks the operating system
will need to perform.

Meanwhile, back at the ranch,
the operating system itself has
some bookkeeping to do. The
operating system has to be
prepared to handle all 1/0 calls.
Naturally, it has to maintain a
list of open drivers and where
the modules reside in memory
(ah yes memory. We need to
talk about that, too) so that calls
asking for access to those
drivers can be properly routed.
It may be wise to automatically
open the console input and
output drivers on boot-up and
leave them permanently open.
A control call can be used to
reset or initialize them each
time an application starts up,
but they'll always be needed as
long as the system is running.

,
!

Of course, the most pressing
need of OSI owners is a more
efficient file manager. One of
the biggest reasons that OSI
systems run so fast is that disk
files have always been
physically contiguous. That is,
we allocate a specific number
of contiguous tracks on a
diskette for each file. The files
cannot grow or'shrink based on
operating system calls, but can
only be created and deleted by
utility programs. Most operating
systems on' other micros
allocate additional space to
disk files as they need it, but do
so by using any available track
or sector. This leads to a
phenomenon known as
"fragmentation", where parts of
the file, are scattered all over
the diskette,.in no particular
order. '

The operating system that Dave
Livesay has written and
described in his article limits
fragmentation - by only
allocating successively higher
tracks. This is a·good idea to a
certain extent, but I think it's.
probably best to only prioritize
higher tracks, but if needed, the
operating system should be
allowed to allocate a lower
track and use all available
space on the diskette if need
be. The primary cost of such a
technique of allocating disk
space is speed. It will simply
take longer for files to be
loaded, programs to be
launched, and for many other
operations because the disk
drive will then have to read
tracks in a non-sequential
order.

Two big hurdles loom in my
vision of writing the code to

support this file system. First,
we have to design a diskette
directory that is capable of
allocating space in this manner.
While it is simple enough to set
and clear flags that represent
the individual sectors on a
diskette, there is more
information that also needs to
be tracked. The operating
system must have an efficient
method for finding all of the
sectors allocated to individual
files, and to be able to
determine their logical position
within these files. Second, it
must be able to keep track of
how many bytes each file
holds, the physical capacity of
the sectors allocated to the file,
an 1/0 pointer,' and we'll
probably want to track files by
"type" - program, data, etc.
Natur~lIy, there will also have
to· be operating system
commands which' will let'
programs have access to this
information in one form or·
another.

If you've be.en keeping track of
the technical details of any of
the new (Le. post-1980)
microcomputers, . you'll know
that they all have paid
considerable attention to
memory management. The
most notable of these is the IBM
PC. The INTEL
microprocessors used in PC's
and clones made it convenient
to limit applicatio'n and
operating system to the lowest
640K of memory. Like the
history of OSI with their original
4K and 8K models, memory
costs made anything larger
very expensive anyway, so it
didn't seem like a bad idea at
the time. Of course,
programmers stubbornly found

things to do with the computers
that made even 640K seem
restrictive. And, as these things.
usually go,' people found ways
around the limitation. However,
even today, many of the
memory expansion boards
available for IBMs aren't.·
compatible with each other.
There are a couple of·
standards now, but not all of the
problems have been resolved ...
You're probably going to be
hearing a lot about problems
with the 80386 used in the new ~
IBMs, as well as lim,itations:jn ..
the n.ew· OS/2 .' ,operating'
system"

At least with ttie 65816, we ':
don't . have many memory:·
expansion problems. Since all-,
of the various CPU boards are
supporting their own methods
of expansion, you'll be able to
upgrade. within a specific path
and remain softwa're
compatible with everyone else
in terms of memory addressing ..
But since this extra memory is a
new frontier for OSI u$ers, I.
think its a good idea to talk
about memory management in .
terms of software. My idea is to
have the operating system
allocate· memory to all
programs by request. That is,
when an application is started,
the operating system will
allocate memory to hold the
program. From there, the
application will be able to make
calls to the operating system to
reserve memory.

A simple 32-byte list stored in
each bank will allow marking a
page of memory in that bank as
being "available" or "in use".
This will allow multiple
programs to reside in memory

PEEK[65] March-May 17

lsimultaneously without
[conflicts. Things like desk
'accessories or "Terminate and
'Stay Resident" programs and
.other things to co-exist.
Naturally, this means fencing
off a piece of memory in each
bank. Fortunately, the 65816
can treat any memory as the
6502's "page 0" and has other
features that reduces the
impact you might expect from
this restriction. However, I
believe that it will be at least a
goal of most of us to transport
current OS-65D and OS-65U
software to high banks in
memory, thus it seems
reasonable to consider roping
off memory starting above
$FOOO in each bank for these'
and other purposes, since
these locations are relatively
unused in most programs.

. Speaking of porting software, it
is logical to assume that one of
the first tasks is going to be to
port our belov~d Microsoft
BASIC in one form or another.
Doing this is not simple since
Microsoft may take a dim view
of any redistribution 6f BASIC.
That's a major hurdle that must
be addressed if any significant
improvements are going to be
made to the language itself. We
can likely patch the current
version to operate in any
environment we come up with,
but it will still have all of the little
foibles we have come to know
and hate.

Our best bet for an up-to-date
language is FORTH. The
people from FORTH Interest
Group have (or soon wilL.. I
haven't looked) a 65816-based
FORTH that will be available as
source code for a reasonable

Peek[65] March-May 18

fee. Once we've made it our
own, we can expand and
distribute it at will since FORTH
has always been in the public
domain (except for certain
commercial implimentations). A
lot of OSiers are FORTH
enthusiasts and I'm sure we
can count on them for support.

To wind things up here, I want
to remind those of you who may
be hesitant about investing in a
new CPU board, with all that
entails, that there is a lower
cost alternative. Don't forget
that the 65802 chip is a plug-in
replacement for your 6502

. which will is also software
compatible with the 65816. It
does have some restrictions,
and since you'll still be running
at 2 MHz, some of what we may
do with the new operating
system may not have as much
speed as you'd like. But overall,
it represents an opportunity to
get your feet wet without going
for broke.

As I get more familiar with the
new microprocessors and the
new CPU boards, I'll try to keep
everyone informed. I'm very
excited about this stuff and I
think you will be too.

Sign Up for
CompuServe!

CompuServe
kits with a

subscription
$25.00 connect-

time credit are now
available directly from
PEEK[65] for only $32.00
plus shipping. That's 20%
off the regular price of
$39.95. This kit includes
the
Manual.

CompuServe User's

In addition
access to
files and
CompuServe

to giving you
the OSI-related

bulletin board, a
account can be

your gateway to a wealth
of information and
communications servIces
such as MCI Mail, the
Online Airline Guide, and
the CompuServe Mall for
shopping at home. Send for
your kit now!

,

,
A Simple Personal

Accounting System for the
C1P

by Bob Best
courtesy of the KAOS
Newsletter

(Editor's Note: This article
and the accompanying
programs ran over several
months in the KAOS newsletter.
I have edited the programs and
text slightly where I saw
something that needed
clarifying, but most of the
programs are untouched. The
author used a value of 10 for
routing output to the screen and
the printer. I changed this to 3
to reflect what I believe. is most
commonly used here in the
U.S. Note that the programs
that can send output to the
printer should be altered by
adding the command "DV=2" at
the very start so that output is
still seen on the screen when
the printer is not selected.
While written for the C1 P-MF,
the software should also run as
is on the C4P-MF as written or
with slight modification, on 8
inch systems as well.)

Before giving the history and
explaination to the following
accounting programs, I would
like to thank Ed Richardson for
the hours of help and also
Graeme Reardon for the article
in KAOS many months ago.

Through my association with
the Scouting movement over
the past few years, I was asked
to help on the committee as
treasurer. The job is not hard,
but the state of the records
showed a better system was

Track 0 Not Used

Track 1 Named as "GENL01"

Track 2 Named as "GENL02"

Track 3 Named as "GENL03"

etc. 1 1
Track 12 Directory

etc. 1 1
Track 30 Named as "GENL30"

etc. l Blank - for future'use

possible.

The principle of the "double
entry system" of bookkeeping is
kept alive on the two disks
which are needed to run my
accounts. Disk 1 holds OS-65D
v3.3 with BEXEC*, Copier,
Zero, Create, and the
accounting programs. Disk 2
holds only the data files and the
directory, To simplify this set
up, I have used the Tutorial
Disk 5 of OS-65D v3.3, as it
holds many of the utilities
necessary to establish and
back up the files. Figure 1 is a
diagram of the data disk and
describes it better than I can
with words. Each track as

shown is used as a separate
. "account", such as "Electricity";

"Taxes", "Petty Cash", etc.

My files are detailed, a fact that
might not be necessary for
other groups/users. Larger files
of 2 tracks or more might be
necessary to handle the
volume for a year's business.

Setting Up
(1) Decide on the number of
accounts necessary to track
money as it comes in and goes
out.
(2) Decide on the maximum
number of transactions per
account per year.
(3) Initialize your data diskettes.

PEEK[65] March-May 19

. '
", ~

(4) Establish the directory on
the data disk with the accounts
named "GENL01", "GENL02",
etc. The programs will be
looking for these names.
(5) Run "ZERO" to write to files.
(6) Make a copy of your OS-
650 v3.3 Tutorial Disk 5, and
delete all of the files except the
utilitiy programs mentioned
above.

The program in Listing 1, called
"NAME", allows you to establish
the "0" record with the name
each account is to be used for.

The program in Listing 2, called
"INPUT2", starts "putting"
transactions into accounts.
Some points to watch: (1) The
net total of your input for your

. transactions is transferred to
"GENL30", which I call my Cash
Account. Please alter the name.
in the program if you have
changed from my set-up (see
line 2860). A total of the
postings to this account will
give you the balance of your
account at the bank (reversed)
if you have no outstanding
checks, etc. (2) This· only'
applies to clubs. and users who
are carrying forward a balance.
An account will have to be
started for the previous balance
carried over. (3) The total of
receipts put into the accounts
can be verified to the total input
if you "batch" your credits and
debits separately. Note that the
routines in lines 3125, 3170,
3210, etc. use a period (".") as a
prompt and indicator of the field
length (ie. maximum entry
length).

Listing 3 is my amended
"BEXEC*" program. It shows
the overall system set-up and

Peek[65] March-May 20

how the accounting programs
and system utilities mesh.

Listing 4 shows the program "P
STAT". With it you will start to
see some results from the
transactions input. This
program prints all or some of
the statements of accounts.

As part of the "double-entry"
system of bookkeeping, if is
necessary to check that the
input balances for all accounts.
The check of the accounts is
made via a "Trial Balanc·e". This
audit is made when all ;the
statements are printed. To put it
in simple terms, it checks that
all the +'s equal all of the -'so

Listing 5 is the program named
"ADJUST". It is used to correct
those errors that have been
input into files during the
period. The reversal of the
transaction has to be a
complete one. For example, an
original inRut of $1020.10 has
to be revs'rsed out in total to
your "Cash Account" and the
new amount put back in
($1020.13). If the reversal is not
handled in this way, it will affect
your true turnover.

Listing 6 is the program "F
STAT". This program prints
your final record of receipts and
payments .. Just because you
have run this program, it is not
necessarily the final act. In fact, .
this report could be used during
the year to check if your budget
is running to plan.

Finally, this small nucleus of
programs gives you the very
basic details 6f a cash book.
There are many other programs
that could access the files to

give more detailed reports.
Such reports could deal with
profitability, cost control, and
aged invoices, to name a few.

The programs were written with
my limited knowledge of the
"DOS", so there is much disk
drive activity and wasted space
on the tracks. Hopefully, there
is a fix for these problems and it
will be published in later copies
of KAOS.

ATTENTION: DEALERS!

PEEK[65] needs new .

subscribers and you need
new customers, and
together we can make it

happen with our. own Co-op
advertising program. This
program pays dealers for
signing up . new subscribers
with free ad space in
PEEK[65]. Just five paid
subscriptions will earn a
1/9th page advertising
credit in PEEK[65].

Call or write today for
details and your free
promotional materials.
Making a PEEK[65]
subscription a part of
every sale is painless and
profitable. This time, "Co-
op" pays you.

6000 REM- THIS PROGRAM IS SELF-EXPLANITORY
6002 PRINT "THIS PROGRAM IS TO RUN AFTER DATA FILES ARE READY"

6005 GOSUB 6350: PRINT! (28): REM- PROGRAM "NAME"
6010 PRINT:PRINT "Enter "iCHR$(34)i"EXIT"iCHR$(34)"i TO FINISH":PRINT:PRINT

6020 INPUT "What is the GENL number (XX) "iZE$
6025 PRINT! (28): IF ZE$ = "EXIT" OR ZE$="exit" THEN 6200
6030 PRINT:PRINT"Please put the DATA disk in the drive now"
6040 PRINT:INPUT "What is the NAME/USAGE for this account "iRA$
6050 IF LEN(RA$»20 THEN 6300
6060 Z$ = "GENL" + ZE$: Z$ = MID$(Z$,1,6)

6065 TRAP 6250
6070 DISK open, 6, Z$

6090 DISK get,O
6100 HM$="OO": HM=O
6110 PRINT#6, HM$i", "iRA$
6120 DISK PUT
6130 PRINT! (28)
6140 PRINT"DATA IS STORED": GOSUB 6350
6150 GOTO 6010
6200 PRINT"Please put the system disk in drive and press <RETURN>"

6210 INPUT "OK "iX$
6215 TRAP 6310
6220 IF X$="" THEN RUN"BEXEC*"

6230 GOTO 6200
6250 PRINT! (28)i"You have the wrong disk in the drive":PRINT
6260 TRAPO: GOSUB 6350: PRINT! (28): GOTO 6010
6300 PRINT"Name is too long. 20 Characters Maximum": GOTO 6040
6310 PRINT"Are you ready": GOTO 6350: PRINT! (28): TRAPO: GOTO 6010
6350 FOR I = 1 TO 3000: NEXT I: RETURN

LLstLn9 1

2000 PRINT! (28): REM- PROGRAM "INPUT2"

2010 PRINT"Before running this program, have you set up the disk"
2020 PRINT:PRINT"files properly by running the naming program?"

2030 PRINT:PRINT"Care must be taken as your files will be incomplete"
2040 PRINT:PRINT"if you do not follow the steps."

2050 PRINT:PRINT:INPUT "Enter 'C' if you wish to continue "iY$
2060 IF Y$="C" OR Y$="c" THEN 2080
2070 RUN"BEXEC*"
2080 PRINT! (28): D=O: DV=2

2090 PRINT:PRINT"Make sure that you have the DATA DISK in the drive"
2100 PRINT" NOW!! !":PRINT:PRINT:PRINT: GOSUB 3330

PEEK[65] March-May 21

2110 INPUT "Do you want this input printed"; X$: IF X$=~Y"THEN DV=3
2120 PRINT:PRINT:INPUT"What is the date of the report ~;W$
2130 PRINT! (28): REM- Screen Clear
2135 POKE 8994, DV: PRINTTAB (20) ; "Report Dated ",;W$
2136 PRINT!PRINT~PRINT
2137 DISK.! "10 ,,02"
2150 REM-Works out the riumber of transactions in account'
2160 ,REM * * * * **"* * **'* * * * * * *'* *** ** * * * * * * * * * * * ** * * * * * * * * * * * * *
2165 TRkP 3340
2170 INPUT "What account is the transiction to go to ";ZE$
2175 PRINT !(28)
2180 Z$="GENL"+ZE$
2190 Z$=RrGHT${Z$~6)
2210 DISK open,6,z~
2220 POKE 12042,,32: POKE 12076,6: REM- Sets the record sizes
2230 DISK get,O
2240 INPUT#6, HM$,RA$
2250 HM=VAL(HM$): PRINT! (28)
2260 PRINT:PRINT
2270 REM **
2280 REM Input of Transactions
2300 PRINT! (28)
2310 DISK! "10 ,02": PRINT! (28)
2320 PRINT"There are";HM;" entries in the file ";RA$
2330 PRINT:PRIN~
23'40 PRINT"Enter "jCHR$ (34) j "EXIT" jCHR$ (34) j" to finish entries"
2350 HM=HM+1: DISK GET, HM
2360 GOSUB 3i20: PRINT
2370 GOSUB 3160: PRINT
2380 GOSUB 3200: PRINT
2390 GOSUB 3240: PRINT
2400 GOSUB 3290: PRINT
2410 PRINT"Length of field is too long": RETURN
2420 REM ***
2430 REM Routine for correction of mistakes
2440 PRINT! (28): PRINT"Are these details correct ???"
2450 PRINT:PRINT"Enter field number to be altered or (Y) if all OK"
2460 PRINT TAB(1}j"1"jTAB(13)j"2"jTAB(34}j"3"j
2470 PRINT TAB(44);"4"jTAB(49)j"$";"5"
2480 PRINT: PRINT TAB(1)jN$j TAB(13}jO$j TAB(34}jP$;
2490 PRINT TAB(44}jQ$j TAB(49}j"$"jT$
2500
2510
2520
2530

PRINT:PRINT"Your Answer "; G$
IF G$="1" THEN GOSUB 3120: GOTO
IF G$="2" THEN GOSUB 3160: GOTO
IF G$="3" THEN GOSUB 3200: GOTO

Peek[65] March-May 22

2440
2440
2440

2540 IF G$="4" THEN GOSUB 3240: GOTO 2440
2550 IF G$="5" THEN GOSUB 3290: GOTO 2440
2560 IF G$="Y" OR G$="y" THEN 2580
2570 GOTO 2440
2580 PRINT#6, N$i", "iO$i'"·, "iP$j", "jQ$j", "jT$

2590 A = VAL (Q$+T$) : D = D+A
2595 D = D*~00/100
2600 DISK PUT
2610 PRINT! (28)

2620 POKE 8994,DV: REM- POKE Command to turn on printer
2630 PRINT N$j TAB,(11)jO$j TAB (31) ,jp$j TAB(40)jQ$j

2640 Z=LEN(T$): PRINT TAB'(45) j"$"j TAB(56-Z)jT$j
26'50 PRINT TAB (,60) j Z$
2660 GOTO 2310

2670 REM ***
2680 REM Routine to put the new number of transactions up,
2690 HM=HM-1: HM$=STR$(HM)
2700 DISK GET,O
2710 PRINT#6, HM$
2720 DISK PUT

2730 PRINT! (28)

2740 INPUT "Do you wish to input another account njY$

27'50 IF Y$<>"Y" AND Y$<>"y" THEN 2770
2760 GOTO .2170
2770 POKE 8994,DV

2780 PRINT TAB(45)j"--------------"
2790 X=LEN (D$)

2800 PRINT TAB(45)j"$"j: PRINT USING "###l##.##"jD

2810 PRINT: PRINT TAB(45)j"--------------"
2820 DISK!~IO ,02"

2830 D = D*-l

2840 REM **
2850 REM Input total transactions to cash account
2860 DISK OPEN, 6, "GENL30"
2870 POKE 12042,32: POKE 12076,6
2880 DISK GET,O

2890 INPUT#6, HM$,RA$
2900 HM = VAL (HM$)
2910 HM=HM+1
2920 DISK GET,HM

2930 M$="CASH ACCOUNT": N$="XXXXXX"
2940 D$=STR$(D): J$=LEFT$(D$,l)

2950 DD=LEN(D$): EE$=RIGHT$(D$,DD-1)

2960 PRINT#6,W$j", "jM$j", "jN$j", "jJ$j", "jEE$

2970 DISK PUT

PEEK[65] March-May 23

2980 HM$ = STR$(HM)

2990 DISK GET,O
3000 PRINT#6, HM$i", "iRA$

3010 DISK PUT
3020 PRINT! (17,25,10)i"D A T A S TOR E D"

3030 GOSUB 3330
3040 DISK CLOSE, 6
3050 PRINT! (17,O,18)i"Place System Disk in drive, and"

3060 INPUT "press <RETURN> to continue "iB$

3070 IF B$="" THEN·RUN"BEXEC*"

3080 PRINT "Continued further input OK": GOSUB3330: GOTO 2410

3090 REM The End
3100 REM ***

3110 REM Subroutines for input of transactions
3120 PRINT"Date of Item (DD/MM/YY)"
3125 PRINT TAB(35)i" ~ .. ·~ .. "iCHR$(13)iTAB(35)i: INPUT N$
3130 IF N$="EXIT" OR N$="exit" THEN 2690

3140 IF LEN(N$)<9 THEN RETURN
3150 GOSUB 2410: GOTO 3120
3160 PRINT "Details of Payee or Favour-ee"
3170 PRINT TAB(35)i" "iCHR$(13)iTAB(35)i:INPUT 0$

3180 IF LEN(0$)<18 THEN RETURN
3190 GOSUB 2410: GOTO 3160
3200 PRINT"Detail number of check or receipt"
3210 PRINT TAB(35) i" "iCHR$(13) iTAB(35)i: INPUT p$

3220 IF LEN(P$)<7 THEN RETURN
3230 GOSUB 2410: GOTO 3200
3240 PRINT "Dr (-) or Cr (+)"
3245 PRINT TAB(35)i" ... "iCHR$(13)iTAB(35)i: INPUT Q$
3250 IF Q$="+" OR Q$="-" THEN 3270

3260 GOTO 3240
3270 IF LEN(Q$)<2 THEN RETURN
3280 GOSUB 2410: GOTO 3240
3290 PRINT"Amount XXXXXX.XX"
3295 PRINT TAB(35)i" "iCHR$(13)iTAB(35)i: INPUT T$

3300 M=VAL(T$): IF M=O THEN 3290

3310 IF LEN(T$)<10 THEN 2440
3320 GOSUB 2410: GOTO 3290
3330 FOR I = 1 TO 1000: NEXT I

3335 RETURN
3340 PRINT"You have the wrong disk in the drive"

3350 TRAP 0
3360 GOTO 2000

Listin9 2

Peek[65] March-May 24

'.

1 REM POKE 133,126: DISK!"CA 7FOO=12,5": DISK!"GO 7FC6"
5 POKE 133,126: CLEAR: POKE 14172,8: POKE 14170,16
10 POKE 2888,0: POKE 8722,0
20 X=PEEK(10950): POKE 8993,X: POKE 8994,X: DIM AL%(39)
30 IF PEEK(57088)=223 THEN POKE 9794,37
40 DEF FNA(X) = 10*INT(X/16)+X-16*INT(X/16)
50 DEF FNB(X~ = 16*INT(X/10)+X-10*INT(X/10)
100 GOSUB 50000
105 PRINT: PRINT"OS-65D3.3 Accounting Disk"
110 PRINT" by Bob Best Nov 1985":PRINT
115 PRINT" 1 > Naming of accounts (or usage)"
120 PRINT" 2 > Input transactions to general ledger"
130 PRINT" 3 > Print Statements of Accounts"
140 PRINT" 4 > Adjustments of Accounts"
160 PRINT" 5 > Create Blank Data Diskette"
170 PRINT" 6 > Create Data Diskette with files"
180 PRINT" 7 > Final Statement of Receipts and Payments"
190 PRINT" 8 > Single or dual disk drive copier"
200 PRINT" 9 > Zero the Data Files"
890 PRINT:PRINT

900 PRINT "Type the number of your selection "i

910 INPUT "and depress <RETURN> "iS$: IF S$="PASS" THEN 60000
915 IF LEN(S$)<>l THEN RUN
920 S=INT(VAL(S$)): IF S<l OR S>9 THEN RUN
980 GOSUB 50010
989 PRINT" " . ,
990 ON S GOSUB 1000,2000,3000,4000,5000,6000,7000,8000,9000
998 IF P$="PASS" THEN 60000
999 GOTO 100
1000 RUN "NAME"

2000 RUN "INPUT2"

2153 FORI=T1TOT2:T$=RIGHT$(STR$(I+100),2)
2155 PRINT" Track "iT$
2160 DISK!"IN "+T$

2162 POKE 10304,169: POKE 10305,32: POKE 10549,201: POKE 10550,32
2164 DISK!"SA "+T$+",l=DOOO/"+p$
2166 POKE 10304,177: POKE 10305,254: POKE 10549,209: POKE 10550,254
2167 NEXT
2170 IF S=6 THEN RETURN
3000 RUN IIp STAT"

3010 GOSUB 50000: PRINT "Type in the name of the file that you";
4000 RUN "ADJUST"

4232 PRINT "Data Disk Create Utility": PRINT: PRINT
5000 PRINT "Data Disk Create Utility": PRINT: PRINT
5010 PRINT"Be sure the Tuto~ial Disk is in Drive A": PRINT

PEEK[65] March-May 25

5020 GOSUB 10200: DISK!"SE A": DISK!"CA 5COO=11,2"
5030 DISK!"CA 5000=11,3": DISK!"CA 5EOO=11,4":DISK!"CA 5FOO=11.5"
5033 IF S=6 THEN DISK!"CA 5COO=11,6"
5035 GOSUB 5100: DISK!"GO 2768": DISK!"SA 12,1=5COO/1"
5040 DISK!"SA 12,2=5DOO/1":DISK!"SA 12,3=5EOO/1"

5050 DISK!"SA 12,4=5FOO/1": IE:' S=6 THEN GOSUB 6000
5070 GOSUB 50010
5080 PRINT"Your diskette is now ready for data files":PRINT
5090 PRINT: GOTO 5505
5100 GOSUB 50010
5105 PRINT"Hernove your Tutorial Disk from Drive A and":PRINT

5110 PRINT"replace it with your blank diskette":PRINT: GOTO 10200
5505 PRINT"Rernove your blank diskette from Drive A and":PRINT
5510. PRINT"replace it with your Tutorial Disk": PRINT: GOTO 10200
6000 P$="8"; T1=1: T2=10: GOSUB 2153
6010 T1=13: T2=27; GO TO 2153
7000 RUN"F STAT"
8000 X=PEEK(8960): POKE 133,X: RUN"COPIER"

9000 RUN "ZERO"
10200 INFUT "Press <EEl'URN> to continue ";P$: RETURN

50000 ST=11984:FCRII=OT036:READ SC:POKE ST+II,SC:NEXT:RESTORE
50010 IFPEEK(8999)=58THEN PRINTCHR$(27)iChR$(21) :POKE56832,1:RETURN

50015 POKE 8955,208
5002U POKE 8956,346: X=USR(X): RETURN
50030 DATA 169,208,141,219,467 169,32,162,0,157,0,208,232
50040 DATA 208,250,172,219,46,200,140,219,46,192,232,240,10
50050 DATA 192,216,208,235,160,224,169,14,208,239,96
59000 POKE 741,76:POKE 750,78:POKE 2073,173:POKE 2893,55:POKE 2894,8
59010 POKE 2888,27: X=2EEK(8960): POKE 133,X
59020 RETURN

60000 GOSUB 59GOO
60010 C;OSUB 50000: Cj,EAR

60020 PRINT"The system is now open for modification."

Listing 3

4000 REM 7his j.s ~he Print Statement Program
4010 PRINT "~-'lease put the dat.a disk in the disk drive now" :PRINT
4020 INPUT "and press <RETURN> when ready "iL$

4030 IF 10$=="" THEN 4050

4040 RUN"BEXEC*"
4050 DIM E$(39) ,F(39) ,F$(39)
Ll060 DV=2
4070 PRINT:PRINT:PRINT"This allows statements to be printed"

Peek[65] March-May 26

4080 PRINT:PRINT
4090 PRINT! (28) : INPUT "What is the statement date ";W$
4100 PRINT:PRINT
4110 INPUT "Do you want to print it ";Y$: IF Y$="Y" THEN Dv=3

4120 PRINT:PRINT
4130 INPUT "Do you want them all (Y/N) ";V$
4140 IF V$="Y" OR V$="y" THEN 4490

4150 INPUT "What account number do you want ";ZE$
4160 Z$="GENL"+ZE$: Z$=RIGHT$(Z$,6)

4170 GOSUB 4240
4180 INPUT "Do you want another ";X$: IF X$="Y" THEN 4150
4190 POKE 8994,2: PRINT"Please put the system disk in drive and"
4200 INPUT"press <RETURN> to return to main menu ";C$
4210 RUN"BEXEC*"
4220 REM ***

4230 REM Print Routine
4240 POKE 8994,DV: REM POKE for printer start
4250 PRINT TAB(23);"ACCOUNT ";Z$
4260 DISK OPEN,6,Z$
4270 POKE 12042,32: POKE 12076,6
4280 IF B=12 THEN GOSUB 4600: GOTO 4440
4285 TRAP 4615
4290 DISK GET,O
4300 INPUT #6, HM$,RA$
4310 HM=VAL(HM$): IF HM=O THEN GOSUB4600: GOTO 4440
4320 PRINT TAB(23);RA$: PRINT: PRINT
4330 DISK!"IO ,02"
4340 HM=VAL(HM$): FOR NO=l TO HM: DISK GET,NO
4350 INPUT#6, N$,O$,P$,Q$,T$
4360 POKE 8994,DV
4370 PRINT N$;TAB.(11);O$;TAB(31);P$;TAB(40);Q$;
4380 Z=LEN(T$): PRINT TAB(45);"$";TAB(56-Z);T$
4390 A=VAL(Q$+T$)
4400 D=D+A: D=D*100/100: NEXT
4410 PRINT TAB(45);"--------------"
4420 X=LEN(D$): PRINT TAB(45);"$";: PRINT USING"XXXXXX.##";D
4430 PRINT:PRINT TAB(45);"--------------"
4440 PRINT:PRINT:PRINT:PRINT
4450 DISK!"IO ,02"

4460 E$(B)=RA$: F(B) = D

4470 DISK CLOSE, 6
4480 D=O: RETURN

4490 REM **

4500 REM Calculation of File Name on Complete Listing
4510 FOR B = 1 TO 38

PEEK[65] March-May 27

4520 IF B<10 THEN 4580
4530 J$=STR$(B): J$=RIGHT$(J$,2)

4540 RC$="GENL": Z$ = RC$+J$

4550 GOSUB 4240
4560 NEXT B

4570 GOTO 4620
4580 J$=STR$(B): J$=RIGHT$(J$,l): J$="O"+J$

4590 GOTO 4540
4600 PRINT "There are NO TRANSACTIONS ON "iZ$.
4610 RA$="O": D=O: RETURN

4615 PRINT"!!! ERROR !!! IN TRACK HEADER": TRAP 0 : GOTO 4620

4620 REM * * * * * * * * * *"* *"* * * * * * ** ** * * * * * * * * * ** * * * * * * * * * * * * * * * * * *
4630 REM Trial Balance Print

4640 INPUT "Do you want the Trial Balance "iG$

4650 IF G$="Y" OR G$="y" THEN 4670

4660 GOTO 4190

4670 POKE 8994,3
4680 PRINT:PRINT:PRINT:PRINT TAB(25)i"Trial Balance ~':PRINT:PRINT:PRINT

4690 FOR B = 1 TO 39

4700 F$(B)=STR$(F(B»

4710 IF LEFT$(F$(B),l)="-" THEN GOSUB 4830
4720 IF LEFT$(F$(B),l)=" " THEN GOSUB 4840

4730 J=O: NEXT B
4740 PRINT:PRINT:PRINT"Total -'S = $"i: PRINT USING"######.##"iK
4750 PRINT:PRINT"Total +'S = S"i: PRI~T USING"######.##"iH: PRINT

4760 IF H=K*-l THEN PRINT"Difference = $"i:PRINT USING"######.##"iJ: GOTO

4190
4780 PRINT:PRINT"An ERROR has occurred in your records. Please check"

4790 PRINT "that each total input has been posted to your"

4800 PRINT "Cash Account correctly."

4810 PRINT

4820 PRINT: GOTO 4190
4830 F(B)=VAL(F$(B»/100: H=H+(F(B)*100): RETURN

LLstLng 4

5000 REM This program lets you adjust previously input transactions.
5005 PRINT! (28): REM PROGRAM "ADJUST"

5010 PRINT"Make sure Data Disk in now in drive!":PRINT:PRINT

5020 PRINT"This program lets you pass adjustments on accounts":PRINT
5030 INPUT "What is the date of the change "iY$

5040 PRINT:PRINT

5050 Zl$="O"
5060 INPUT "What is the account number "iZ1$

Peek[65] March-May 28

5070 N$="O" :0$="0" :p$="O" :Q$="O" :R$="O" :RA$="O" :D$="O" :V$-'!O" :U$="O"
5080 RA$="O": X$="O"
5090 PRINT:PRINT
5100 A$="GENL"
5110 Z$=A$+Zl$: Z$=RIGHT$(Z$,6)

5120 PRINT"Details of the transaction to be reversed":PRINT
5130 INPUT "Detail Number "iN$

5140 PRINT

5150 INPUT "Amount $"iM$

5160 DISK OPEN,6,Z$: GOSUB 5670
5170 D$=RA$

5180 IF HM=O THEN PRINT"NO INFORMATION ON FILE": GOTO 5730
5190 FOR NO = 1 TO HM: DISK GET,NO
5200 INPUT#6, W$,O$,P$,Q$,T$
5210 IF P$=N$ AND T$=M$ THEN 5240
5220 NEXT NO
5230 PRINT"NO TRANSACTION FOUND": GOTO 5730

5240 PRINT! (28) :PRINT:PRINT"Transaction to be reversed ???"
5250 PRINT:PRINT"Account "iZ$i" used for "iRA$

5260 PRINT:PRINT"Date"iTAB(20)iW$

5270 PRINT:PRINT"Detail"iTAB(20)iO$
5280 PRINT:PRINT"Detail No. "iTAB(20)iP$

5290 PRINT:PRINT"Amount"iTAB(20)i"$"iT$

5300 PRINT:INPUT "Is this the transaction "iB$

5310 IF B$="Y" OR B$="y" THEN 5330
5320 GOTO 5730
5330 RR$="Reversed "
5340 R$=RR$+Y$

5350 L$="O": PRINT#6,W$i", "iR$i", "iP$i", "iQ$i", "iL$

5360 DISK CLOSE, 6

5370 HM=O: RA$="O"

5380 REM **
5390 REM Routine to put new transaction up on file
5400 INPUT "Account that the reversal is to go to "iU$

5410 X$=A$+U$: X$=RIGHT$(X$,6)
5420 DISK OPEN,6,X$: GOSUB 5670
5430 HM=HM+1: DISK GET, HM
5440 V$=RA$: M$=RR$+Z$

5450 PRINT#6, Y$i", "iM$i", "iP$i", "iQ$i", "iT$

5460 DISK PUT

5470 GOSUB 5700

5480 REM **
5490 REM Print Report - No Option
5500 POKE 8994,3

5510 PRINT TAB (15) i "Reversal Report Dated" iY$

PEEK[65] March-May 29

5520 PRINT:PRINT
5530 PRINT"Original Transaction on account - "iD$
5540 PRINT W$i TAB(ll)iO$i TAB(31)iP$i TAB(40)iQ$i
5550 PRINT TAB(45)i"$"i: PRINT USING"######.##"iT$: PRINT
5560 PRINT"What is now on file - "iD$

5570 PRINT W$i TAB(ll) iR$i TAB(31)iP$i TAB(40)iQ$i
5580 PRINT TAB(45)i"$"i: PRINT USING"######.##"iL$:PRINT
5590 PRINT "New Transaction now on file - "iV$

5600 PRINT Y$i TAB(ll)iM$i TAB(31)iP$i TAB(40) iQ$i
5610 PRINT TAB(45) i"$"i: PRINT USING"######.##"iT$

5620 POKE 89514,2: INPUT "Do you want to reverse another "iE$
5630 IF E$="Y" OR E$="y" THEN 5050
5640 PRINT:PRINT"Please put System Disk back in drive and"
5650 INPUT "press <RETURN> when ready "iF$
5660 IF F$="" THEN 5750
5670 POKE 12042,32: POKE 12076,6
5680 DISK GET,O: INPUT#6, HM$,RA$: HM=VAL(HM$)

5690 RETURN
5700 HM$=STR$(HM): DISK GET,O: PRINT#6, HM$i",' "iRA$
5710 DISK PUT
5720 RETURN
5730 INPUT "Do you want to try again "iC$
5740 IF C$="Y" OR C$="y" THEN 5050
5750 RUN "BEXEC*"

Li-sti-nl,J 5

8000 REM This is the Print Final Statement Program

8010 PRINT! (28): REM- PROGRAM "F STAT"

8020 PRINT"Please put the data disk in the drive now!": PRINT
8030 INPUT"Press <RETURN> when ready "iL$
8040 DV=2: IF L$="" THEN 8050
8050 DIM E$ (39),F (39) ,F$ (39),E (39)
8070 PRINT! (28): INPUT "What is the statement date "iW$

8080 PRINT:PRINT
8090 INPUT "Do you want to print it "iY$: IF Y$="Y" THEN DV=3
8100 GOTO 8340
8110 INPUT "Put System Disk in drive and press <RETURN>"i CC$
812-) IF CC$="" THEN RUN"BEXEC*"

8130 REM **
8140·REM Installation of totals into memory for later printing
8150 DISK OPEN,6,Z$
8160 POKE 12042,32: POKE 12076,6

8170 TRAP 8480

Peek[65] March-May 30

8180 DISK get,O
8190 TRAP 0
8200 INPUT #6,HM$,RA$

8210 HM=VAL(HM$): IF HM=O THEN GOSUB 8460: GOTO 8420
8220 FOR NO = 1 TO HM
8230 DISK GET, NO
8240 INPUT #6, N$,O$,P$,Q$,T$
8250 A$=Q$+T$
8260 IF Q$="-" THEN 8280
8270 IF q$<>"-" THEN 8310

8280 A=VAL(A$): D=D+A: IF B=30 THEN 8330
8290 T=T+A .. _.,..;-
8300 NEXT NO: RETURN

8310 A=VAL(A$): K=K+A: IF B=30 THEN 8330
8320 U=U+A
8330 NEXT NO: RETURN

8 3 4 0 REM * j; * * * * * * * * * * * * *
8350 REM Calculation of file name on complete listing
8360 FOR B = 1 TO 38
8370 IF B<10 THEN 8440

8380 J$=STR$(B): J$=RIGHT$(J$,2)
8390 RC$="GENL": Z$=RC$+J$
8400 GOSUB 8150

8410 E$(B)=RA$: F$(B)=RA$: E(B)=K: F(B)=D: K=O: D=O
8420 NEXT B

8430 GOTO 8500

8440 J$=STR$(B): J$=RIGHT$(J$,l): J$="O"+J$
8450 GOTO 8390

8460 PRINT "There are NO TRANSACTIONS ON "iZ$
8470 RA$="O": D=O: RETURN

8480 PRINT"!!! ERROR!!! IN TRACK HEADER": TRAPO: GOTO 8490

8490 REM ***
8500 REM Statement of Receipts and Payments
8510 POKE 8994,DV

,'\ t~ :. I

8520 PRINT:PRINT:PRINT TAB(21)i"Statement of Receipts and Payments"
8530 PRINT:PRINT TAB(32)i"for "iW$: PRINT

8540 PRINT TAB(15)i"Receipts"i TAB(53)i"Payments":PRINT

8550 FOR B=lT029: REM CHANGE ***************************
8560 IF E(B)=O AND F(B)=O THEN 8630
8570 IF F(B)=O THEN 8610
8580 IF E(B)=O THEN 8620

8590 PRINT E$(B)i TAB(25)i: PRINT USING"######.##"iE(B)i

8600 PRINT TAB(37)iF$(B)i TAB(60)i: PRINT USING"######.##"iF(B): GOTO 8630
8610 PRINT E$(B)i TAB(25)i: PRINT USING"######.##"iE(B): GOTO 8630
8620 PRINT TAB(37)iF$(B)i TAB(60)i: PRINT USING"######.##"iF(B)

PEEK[65] March-May 31

'f!"

0630 NEXT B
8640 BB=E(30)+F(30): IF E(30)+F(30) >1 THEN 8670
8650 EE=BB+T:PRINT TAB(37)iF$(B)iTAB(60)i: PRINT USING"######.##"iBB

8660 GOTO 8680
8670 DD=BB+U:PRINT E$(B)i TAB(25):~ PRINT USING"######.##"iDD
8680 PRINT:PRINT TAB(25)i"======== i TAB(60)i"=========="
8690 IF DD=O THEN DD=U: IF EE=O THEN EE=T
8700 PRINT TAB(25) i: PRINT USING"######.##"iDDi
8710 PRINT TAB(60) i: PRINT USING"######.##"iEE
8720 PRINT: PRINT TAB(25)i"=========="i TAB(60)i"=========="

8730 POKE 8994,2: INPUT "Do you want another copy "i AA$
8740 IF AA$="Y" OR AA$="y" THEN 8490

8750 GOTO 8110
8760 PRINT TAB(37) iF$(B)i TAB(60)i: PRINT USING"######.##"iF(B)

LLstLn9 6

Book Bonanza!
Sam's Service Manuals
The hardware enthusiast's best friend. These are the only professional guides available
for servicing and modifying your OSI equipment. They include full schematics, block
diagrams, wave form tracings, parts lists, and diagnostic tips. They were written for the
pre-1980 series of OSI systems, but since OSI never has changed that much they are still
valuable no matter when your computer was made.
C1 P Sam's Regular: $7.95
C4P Sam's Regular: $15.00
C2/C3 Regular: $30.00

65V Primer

Sale: $4.00
Sale: $7.50
Sale: $15.00

This is an introductory guide to machine code that shows you how to program your video
system using the Monitor ROM. An excellent tutorial on the fundamentals of machine
code.

Regular: $4.95 Sale Price: $2.50

Assembler/Editor - Extended Monitor Manual
Until recently, OSI included the Assembler/Editor and Extended Monitor software with
all copies of OS-650. However, even when it was free, there was little documentation
accompanying the disks. If you've been looking for instructions on these two programs,
this is the book for you!

Regular: $6.95 Sale Price: $3.50

See Previous Issues for more Book Bargains! Please include reasonable postage

Peek[65] March-May 32

Software
S pectacu I ar~

C1 P/Sup-erboard Cassettes
OSI Invaders
Biorhythm
SpaceWar
Basic Math
Hectic
Cryptography

Hangman
Zulu 9
Add Game
High Noon
Annuity I
Sampler

Star Trek
Racer
Advertisement
Tiger Tank
Math Intro.

C4P/CBP Cassettes
Sta tistics I . Frustration Sp~ce War Battleship
Annuity II Mastermind Trig. Tutor Powers
Bomber Loan Finance Star Trek Zulu 9
Stock Market Annuity I Math Intro Mathink
Metric Tutor A.C. Control Blackjack High Noon
Electronics Equ. Star Wars Math Blitz Calendar
Prgmble. Calc. Checking Acct.

Assortment of
10 for jus.t
$20.00 !

Specify your
preferences,
but due to limited
Quantities, some
substitutions

. will be made.

Sargon II Chess Software Extended Monitor
Disk version f.or C8 .. C4 .. or C 1 (specify)
Regular $34.95 Sale Price $ 15J~8

Cassette version for C8 .. C4 .. or C 1 (specify)
Regular $29.95 Sale Price $ 18.88

Cassette version for all systems
Regular $58.88

Sale Price $15.00

PEEK[65] ~arch-May Page 33

A Simple Terminal
Program for CompuServe

The program presented here is
very simple. It provides basic
communication with a remote
host. It also supports
downloading files from
CompuServe using . their ,"A"
protocoL

What· is a protocol? It is a format
fo'r exchanging information. via
modem. The parties on each
end of the connection agree to
send special signals to one
another to make sure that the
information has been received
as sent. The i'nformatiotl'is sent
in small blocks which are often
referred to as "packets". At the
end of each packet, a special
character (or sometimes
characters) is sent that is a
calculation based on the
contents' of the packet. If the.
receiver's calculations on the
data received agrees with this
special character; he signais
the sender to send the next
packet. If not, he sends a
different signal to tell the
sender to try again. If the effort
fails a certain number of times,
then both parties stop trying.

This program will run on any
OSI disk-based system. On
serial systems, it will support up
to 1200 baud, but video
systems will be limited to 300.
Sorry, guys. To configure the
program, make sure you
change the value of "MOOAOR"
to reflect the address of the
serial port you've connected
your modem to. In addition, you
may need to change "CON FIG"
to alter the speed. See Eddie
Gieske's article on the 6850
ACIA chip in a previous

PEEK[65] March-May Page 34

2

3

4

5

6

7

e
9

o 0 14 0 0 14
[+--T-------~~~] o 15 0 . 15

.10.

11

12 .

13

! ~ ::
o 19

o 0 20
. 0 21

00 22

00 23

00 24
0

025 o
Modem

4

5

0 0

0
0
o

6 ,00

e
9

10

11

12

13

o
00
00
, 0
°0 O·

0°
Computer

16

17

18

19

20

21

22

23

24

25

Directly_wi~e pins 2J 3J and 7. On the tonnector to
be attatched to the mod~mJ jumper pins 4J 5J and 6.
On the connector to be attatched to thecomputer J

jumper pins 7 and 8.

, PEEK[65] for details on
changing this value. You
shou~ on~ change bHs 0 and
1 of this byte, which control the

. baud rate. The other bits will
give you 8 data bits, 1 stop bit,
and no parity - a setting which
will give you good results with
just about any host system.

Once assembled, the program
resides in the transient
language area of OS-650,
beginning at $0200. Note that if .
you want to move the program
to a higher location (to attatch it
to a BASIC program, for
example), you'll have to add
code ,to save BASIC's page
zero contents. If you do end up
running this program from
BASIC, don't forget to adjust
your point of entry to reflect

whether OS-650 is in . the
operating system or language
context. If you're unsure of
those terms, keep it simple and
don't try to move the program.

Note that this program cannot
create files on its own like more
sophisticated terminal
programs. You'll have to
prepare for downloading by
creating the files you need
ahead of time. Its best to do as
much of this kind of thing off
line, since CompuServe starts
counting as soon as you
receive the greeting after
you've entered your password.

The advantage of being able to
use the A Protocol is twofold.
First, you save money by
getting error-free transfers.

Second, protocol transfers can
accomodate full 8-bit bytes
(another reason for the 8 data
bits setting), so we aren't
limited to· simple program
listings in ASCII. We can
transfer exact images of
program and data files. Further,
machine code programs can
also be exchange without need
for source code or assembling.

Once you arrive in the
Computer Club Forum on
CompuServe ("GO CLUB"),
leave me a message if you
need help. Just address the
message to "SYSOP" and
leave it in section 8. You'll be
prompted for all of this
information when you leave
your message.

There's a lot of on-line help
available on CompuServe. In
fact, you can enter "HELP" at
any prompt on the system and
there will always be some
waiting for you. I've also posted
a couple of files that you can
read on-line that will help you
with some OS I-specific
problems.

The files for OSI are in section
8 of the Data Library in the
Computer Club forum. To enter
the Data Library, just enter
"OL8". To examine the files
available, enter "BRO", which
stands for "BROWSE". You'll
see all of the files, one by one,
with a description of each. To
download the file whose listing
you're seeing, enter "0" at the
"(R 0 M)" prompt. The system
will ask you which· protocol you
want to use. Be sure to select
the "A" protocol from the menu.
The system will ask you to enter
a filename for your computer.

10
20
30
40
50
60
70
80
90
100
llO
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
680
690
700
710
720
730

SPECIAL TERMINAL EXECUTIVE
WRITTEN BY RICHARD L. TRETHEWEY
ll/1/83

OS-65D EXTERNALS

TMP2 =$FB
TMP =$FD
MAXMEM =$2300

INFLAG =$2321
OUFLAG =$2322
INCH =$2340
OUTCH :=$2343
DISC =$265C
SECT =$265E
PAGES =$265F
ADRLX =$2660
ADRHX =$2661
TRAKX =$2662
HOME 0 =$2663
SEEKX =$26A6
MRKT =$267A
LOAD =$2754
UNLOAD =$2761
SAVEX =$27D7
CALLX =$295D
SELECT =$29C6
ERROR =$2A4B
OS65D3 =$2A51
ERRSU =$2A7D
DEFAUL =$2AC5
SRCSIZ =$2BE9
SWAP =$2CF7
CRLF =$2D6A
STROUT =$2D73
PRBYTE =$2D92
DIRTRK =$2DC4
TXTBUF =$2E1E
DIRBUF =$2E79
CRSCHR =$32E2
HZLPRT =$33CO
KEYIN =$3590
CASECK =$3A5F
SRCSTR =$3A79

LOCAL EXTERNALS

SAVADR =$01
SOH =$01
ETX =$03
INDEX =$04
EOT =$04
KEYNUM "=$06
CHKS =$OD
ORN =$OE
SO =$OE
NRN =$OF
SI =$OF
SLEN =$10
EFFLAG =$ll
DLE =$10
ACK =$2E
NAK =$2F
INBUF =$2280
MDCTRL =$F7D3
STATUS =$FCOO

PEEK[65] March-May Page 35

Since this information is
passed in the signal that tells
our terminal program a file
transfer is beginning, I used it to
designate both the file name
and its drive location. Thus,
when CompuServe asks you
for a file name for your system,
respond with the name of the
file you created, followed by a
slash ("!,,), followed by the letter
that corresponds to the drive
which that file resides on (A
through D). For example;

MYFILE/A

would tell the terminal program
to save the incoming data in the
file named "MYFILE" located on
drive A. Its that simple. If the ..
terminal program can't find the
file you've named, you'll be·
asked to enter the drive and file
name by hand.

There's a lot more that could
easily be added to this
program. For example, you may
want to add the ability to
capture incoming text in disk
files or to send other files.
Documentation on the A
protocol is available in the
Programmer's Forum on
CompuServe.

Have funll hope we'll see you
on-line soonl

PEEK[65] March-May Page 36

740 MODEM =$FC01
750
760 ASSEMBLY CONSTANTS
770
780 CTRLA =$01
790 CTRLB =$02
800 CTRLC =$03
810 CTRLD =$04
820 CTRLU =$15
830 LF =$OA
840 BS =$08
850, CR =$OD
860 SP =$20
870 SKIP2 =$2C
880 ESC =$lB
890 DEL =$5F
900
910 *=$0200
920 JMP START
930
940 .PNAME JSR STROUT
950 CURFIL .BYTE 'XXXXXX'
960 .BYTE $00
970 RTS
980 ESCBYT .BYTE $lB
990 CLSBYT .BYTE $lC
1020 RESLO .BYTE $00
1030 RESHI .BYTE $00
1040 FIFTH .BYTE $00
1079 STTK .BYTE $00
1080 ENDTK .BYTE $00
1090 STKPTR .BYTE $00
1100 BFENPG .BYTE $00
1110 COUNT .BYTE $00
1120 MODADR .WORD $FCOO
1130 CONFIG .BYTE $16
1140 TOTAL .BYTE $00
1150
1160 DRSEL JSR STROUT
L170 .BYTE CR,LF, 'Drive (A/B/C/D) ? ',0
1~80 JS~ GETSTR
1190 LDA INBUF
1209 JSR CASECK
1210 CMP #'A
1220 BCC DRSEL
1230 CMP #' E
1240 BCS DRSEL
1250 DRS1 AND #$F
1260 CMP DISC
1270 BEQ DRS2-3
1280 STA TOTAL
1290 JSR SWAP
1300 LDA TOTAL
1310 JSR SELECT
1320 BCS DRS2
1330 JSR HOMEO
1340 JSR SWAP
1350 JMP CRLF
1~60 DRS2 LDA #$06
1370 JMP ERROR
1380
1390 SCRCLR LDA ESCBYT
1400 JSR OUTCH
1410 LDA CLSBYT
1420 JMP OUTCH
1430

1440 START LOA #WARM
1450 LOY #WARM/256
1460
1470
1480
1490
1500 0

1510
1520
1530
1540
1550
1560
1570
1580 STA1
1590
1600

JSR ERRSU
LOA OEFAUL+1
STA INFLAG
STA OUFLAG
JSR SCRCLR
LOA #$05
STA $OEOO
LOX MRKT+1
CPX #49
BEQ STA1
LOA #$08
.BYTE SKIP2
LOA #$04
STA $363C

1610
1620

WARM START RE-ENTRY POINT

1630 WARM JSR SWAP
1640 WARMNS LOX #$FE
1650
1660 MENU
1670
1680

TXS
JSR STROUT
.BYTE CR,LF
.BYTE ' Terminal

Executive',CR,LF,LF
1690 .BYTE '(1) Exit to 65D',CR,LF
1700 .BYTE i(2) Enter Terminal
Mode',CR,LF,LF
1710 .BYTE ' Your Selection? ',0
1720
1730
1740
1750
1760
1770
1780
1790
1800

JSR GETSTR
JSR SCRCLR
LOY #$00
LOA INBUF, Y ,
JSR CASECK
CMP #'1
BEQ EXIT
CMP #' 2
BEQ TERM

1810 IN ERR JSR STROUT
1820
1830
1840
1850

.BYTE 'INVALID ENTRY'

.BYTE CR,LF,LF,$OO
JMP MENU

1860 EXIT
1870

JSR SWAP
LOA #OS6503

1880
1890
1900
1910
1920
1930
1940
1950
1960

LOY #OS6503/256
JSR ERRSU
JMP OS6503

TERM JSR GOTERM
JMP MENU

STRING INPUT ~OUTI~~

1970 GETSTR LOY #$00
1980 GETS1 JSR INCH
1990 STA INBUF,Y
2000 CMP #CR
2010
2020
2030
2040
2050
2060
2070

BEQ GETS2
CMP #DEL
BEQ BKSPC
CMP #OEL+$20
BEQ BKSPC
INY
BNE GETSl

2080 GETS2 STY TMP2
2090 JMP CRLF
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200

BKSPC TYA
BEQ GETS1
PHA
JSR STROUT
.BYTE BS,BS,SP,SP,BS,BS,O
PLA
TAY
DEY
JMP GETS1

2210 GETANS JSR GETSTR
2220 LOA INBUF
2230 JSR CASECK
2240 CMP #'Y
2250
2260
2270
2280
2290

RTS

INPUT FILE NAME AND FIND IT
IN THE DIRECTORY

2300 FNOFIL JSR STROUT
2310 .BYTE 'File Name? ',0
2320 LOY #$00
2330 LOA #SP
2340 FNOFO STA CURFIL,Y
2350 INY
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470

CPY #$06
BNE FNOFO
JSR GETSTR
LOY #$00

FNDFl LDA INBUF,Y
CMP #CR
BEQ FNOF2
STA CURFIL,Y
INY
CPY #$07
BNE FNOF1
JSR STROUT

2480 .BYTE CR,LF
2490 .BYTE 'TOO LONG',CR,LF,LF,O
2500 JMP FNOFIL
2510 FNOF2 TYA
2520 BEQ FNOFIL
2530 FNOF3 LOA #$01
2540 STA COUNT
2550 FNOF4 JSR SWAP
2560 JSR OIRIN
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660

JSR SWAP
LDY #$00
LDX #$00

FNDF5 LOA CURFIL,X
JSR CASECK
STA TMP
LDA DIRBUF,Y
JSR CASECK
CMP TMP
BNE FNOF6

2670 INY
2680 INX
2690 CPX #$06
2700 BNE FNDF5
2710 BEQ FNDF8
2720 FNDF6 INY
2730 BEQ FNOF7

PEEK[65] March-May Page 37

2740
2750
2760
2770
2780
2790 FNDF7
2800
2810
2820
2830
2840

INX
CPX #$08
BNE FNDF6
LDX #$00
BEQ FNDF5
INC COUNT
LDA COUNT
CMP #$03
BNE FNDF4
SEC
RTS

2850 FNDF8 LDA DIRBUF,Y
2860 JSR BCDH
2870
2880
2890
2900
2910
2920
2930
2940

STA STTK
INY
LDA DIRBUF,Y
JSR BCDH
STA ENDTK
CLC
RTS

2950 GOTERM JSR SETPTR
2960 LDA SRCSIZ
2970 CMP #$08
2980 BEQ GOTRM1
2990 LDA #$OC
3000 GOTRM1 CLC
3010
3020
3030
3040
3050
3060
3070

ADC ADRHX
STA BFENPG
JSR SETUP
LDA #ERRTRM
LDY #ERRTRM/256 . ..,.'
JSR ERRSU
LDA #$00

3080 TAY
3090 GOTRM2 STA SAVADR,Y
3100
3110

INY
BPL GOTRM2

3120 TSX
3130 STX STKPTR
3140 JMP PO
3150
3160 ERRTRM JSR SWAP
3170 LDX STKPTR
3180 TXS
3190
3200
3210
3220

LDA #CTRLU
JSR XMIT
JMP PO

3230 SETUP LDA #$34
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390

STA MDCTRL
LOX OEFAUL+1
LOA INLO-1,X
STA CNSLIN+1
LDA INHI-1,X
STA CNSLIN+2
LOA OUTL2-1,X
STA CNSLOU+1
LDA OUTH2-1,X
STA CNSLOU+2
LDA MOOAOR
STA XIN+1
STA X1+1
STA GTR3+1
STA GTR4+1
CLC

PEEK[65] March-May Page 38

3400
3410
3420
3430
3440
3450
34·60
3470
3480
3490
3500
3510 GTR3
3520
3530 GTR4
3540
3550
3560
3570
3580
3590
3600

INLO
INHI
OUTL2
OUTH2

ADC #$01
STA X2+1
STA X3+1
LDA MODADR+1
STA GTR3+2
STA GTR4+2
STA X1+2
STA X2+2
STA XIN+2
STA X3+2
LDA #$03
STA STATUS
LDA CONFIG
STA STATUS
RTS

.BYTE TTYIN,KEYIN

.BYTE TTYIN/256,KEYIN/256

.BYTE TTYOUT, HZLPRT

.BYTE TTYOUT/256,HZLPRT/256

3610 TGLDUP LDA P9
3620 EOR #$OC
3630 STA P9
3640
3650 MAIN LOOP ENTRY POINT
3660

JSRXIN
BCC P3
AND #$7F
CMP #SI
BNE P2
JMP PRTXX
JSR CNSLOU
JSR CNSLIN
BEQ PO
CMP #CTRLO
BEQ TGLOUP
CMP #CTRLB
BEQ BACK
CMP #DEL
BEQ P7
CMP #OEL+$20
BNE P8
JSR STROUT
.BYTE BS,SP,$OO
LOA #BS
JSR XMIT
BIT CNSLOU
JMP PO

3670 PO
3680
3690
3700
3710
3720
3730 P2
3740 P3
3750
3760
3770
3780
3790
3800 P6
3810
3820
3830
3840 P7
3850
3860
3870 P8
3880 P9
3890
3900
3910
PORT
3920

ROUTINE TO SEND CHARACTER OUT MOOEM

3930 XMIT
3940 Xl
3950
3960
3970
3980
3990 X2
4000
4010

PHA
LOA STATUS
LSR A
LSR A
BCC Xl
PLA
STA MODEM
RTS

4020
4030

MAIN EXIT POINT

4040 BACK LOA #$03

4050 B2
4060
4070 B3
4080
4090
4100
4110
4120
4130
4140
4150
4160

STA STATUS
LDA #$11
STA STATUS
LDA #60
STA MDCTRL
JSR SCRCLR
LDX STKPTR
TXS
LDA #WARM
LDY #WARM/256
JMP ERRSU

4170 WRIT LDA #$01
4180 STA SECT
4190
4200
4210
4220

LDA SRCSIZ
CMP #$08
BEQ WRIT1
LDA #$OC

4230 WRIT1 STA PAGES
4240 JMP WRITE
4250
4260 REED LDA #$01
4270 STA SECT
4280
4290

JMP READ

4300 SETPTR JSR SETADR
4310 LDA ADRLX
4320 STA SAVADR
4330 LDA ADRHX
4340 STA SAVADR+1
4350 RTS
4360
4370 FILSEL JSR DRSEL
4380
4390
4420
4430
4440 NOTF
4450
4460
again? ',$00

JSR FNDFIL
BCS NOTF
RTS

JSR STROUT
.BYTE 'FILE NOT FOUND',CR,LF,LF
.BYTE 'Did you want to try

4470 NOTF1 JSR GETANS
4480 BEQ FILSEL
4490 LDX STKPTR
4500 TXS
4510 JMP PO
4520
4530 CNSLIN JMP $FFFF
4540
4550 CNSLOU JMP $FFFF
4560
4570 ; SERIAL CONSOLE INPUT ROUTINE
4580
4590 TTYIN LDA STATUS
4600 LSR A
4610 BCC TTYIN2
4620 TTYIN1 LDA MODEM
4630 AND #$7F
4640 RTS
4650 TTYIN2 LDA #$00
4660 RTS
4670
4680
4690

SERIAL COUNSOLE OUTPUT ROUTINE

4700 TTYOUT PHA
4710 TTY01 LDA STATUS

4720
4730
4740
4750

LSR A
LSR A
BCC TTY01
PLA

4760 TTY02 STA MODEM
RTS

MODEM INPUT ROUTINE

4770
4780
4790
4800
4810
4820
4830
4840 X3
4850 X4
4860
4870
4880
4890

XIN LDA STATUS
LSR A
BCC X4
LDA MODEM
RTS

READ A SECTOR OF THE DIRECTORY
TRACK INTO "DIRBUF"

4900 DIRIN LDA #DIRBUF
4910 STA ADRLX
4920 LDA #DIRBUF/256
4930 STA ADRHX
4940 LDA COUNT
4950
4960
4970
4980
4990
5000
5010
5020
5030

STA SECT
LDA DIRTRK
JSR BCDH
STA TRAKX
JSR SEEKX
JMP READ+3

BCD TO HEX CONVERSION. ROUTINE

5040 BCDH PHA
5050
5060
5070
5080
5090
5100
5110

AND #$FO
LSR A
LSR A
LSR A
LSR A
TAX
LDA #$00

5120 BCDH1 CLC
5130 ADC #$A
5140 DEX
5150 BNE BCDH1
5160 STA TMP
5170 PLA
5180 AND #$F
5190 CLC
5200
5210
5220
5230
5240

ADC TMP
RTS

COMPUTE AND SET DISK BUFFER ADDRESS

5250 SETADR LDA #$00
5260 STA ADRLX
5270 LDA MAXMEM
5280
5290
5300
5310
5320
5330
5340
5350

SEC
SBC SRCSIZ
SBC #$02
STA ADRHX
RTS

WRITE BUFFER TO DISK

5360 WRITE JSR SETADR
5370 JSR LOAD

PEEK[65] March-May Page 39

,;, -

5380
5390
5400
5410
5420
5430
5440
5450
5460
5470

JSR SAVEX
JMP UNLOAD

READ DISK TO BUFFER

READ JSR SETADR
JSR LOAD
JSR CALLX
JMP UNLOAD

5480 IDSTR .BYTE '#CPMPMMI,CC"PA, ',CR
5490
5500 PRTCL LDY #$00
5510 PRTC1 LDA IDSTR,Y
5520 JSR XMIT
5530 INY
5540 CMP #CR
5550 BNE PRTC1
5560 PRTC2 RTS
5570
5580 PRTPO LDX STKPTR
5590 TXS
5600 LDA #ERRTRM
5610 LDY #ERRTRM/256
5620
5630
5640
5650
5660

JSR ERRSU
LDA #171
STA CRSCHR
JMP PO

5670 PRTXX LDA #22
5680 STA CRSCHR
5690
5700 PRTXXO JSR XIN
5710 BCC PRTXX1
5720 AND #$7F
5730 CMP #ESC
5740 BEQ PRTXX2
5750 CMP #SO
5760 BEQ PRTPO
5770 JSR CNSLOU
5780 PRTXX1 JSR CNSLIN
5790 BEQ PRTXXO
5800 CMP #CTRLC
5810 BEQ PRTPO
5820 CMP #DEL
5830 BEQ PRTXBS
5840 CMP #DEL+$20
5850 BNE PRTXX5
5860 PRTXBS JSR STROUT
5870 .BYTE BS,SP,$OO
5880 LDA #BS
5890 PRTXX5 JSR XMIT
5900 JMP PRTXXO
5910
5920 PRTXX2 JSR PRTXIN
5930 AND #$7F
5940 CMP #'I
5950 BNE PRTXX3
5960 JSR PRTCL
5970 JMP PRTXXO
5980
5990 PRTXX3 CMP #'A
6000 BEQ PRTXX6
6010 JMP PRTXXO
6020
6030 PRTXX6 LDA #PRTERR

. :~

PEEK[65] March-May Page 40

6040 LDY #PRTERR/256
6050 JSR ERRSU
6060 PRTC3 JSR PRTXIN
6070
6080
6090
6100

CMP #SOH
BNE PRTC3
LDA #$00
STA CHKS

6110 PRTC4 JSR PRTXIN
6120 STA ORN
6130 JSR PRTCHK
6140 PRTC5 JSR PRTXIN
6150 STA SLEN
6160 JSR PRTCHK
6170 LDY #$00
6180 JSR PRTXIN
6190 STA KEYNUM
6200 JSR PRTCHK
6210 PRTH1D JSR PRTXIN
6220 CMP #ETX
6230 BEQ PRTH1
6240 JSR PRTCHK
6250 AND #$7F
6260 STA INBUF,Y
6270 JSR CNSLOU
6280 INY
6290 BNE PRTH1D
6300 PRTH1 JSR PRTXIN
6310 CMP CHKS
6320 BEQ PRTH2
6330
6340
6350

LDA #NAK
JSR XMIT
JMP PRTC3

6360 PRTH2 JSR SETPTR
6370 LDY #$00
6380 PRTH3 LDA INBUF,Y
6390 CMP #' /
6400 BEQ PRTH4
6410 INY
6420 BNE PRTH3
6430 JMP PRTH59
6440 PRTH4 LDA #CR
6450 STA INBUF,Y
6460 INY
6470 LDA INBUF,Y
6480 AND #$OF
6490 JSR DRS1
6500 LDY #$00
6510 LDA #SP
6520 PRTH5 STA CURFIL,Y
6530 INY
6540 CPY #$06
6550 BNE PRTH5
6560 LDY #$00
6570 JSR FNDF1
6580 BCC PRTH6
6590 JSR PNAME
6600 JSR STROUT
6610 .BYTE ' NOT FOUND',CR,LF,O
6620 PRTH59 JSR FILSEL
6630
6640 PRTH6 LDA SLEN
6650 CMP # 'D
6660 BEQ PRTH61
6670 JMP PRTSEN
6680 PRTH61 LDA STTK
6690 STA TRAKX

6700
6710
6720
6730
6740
6750
6760
6770
6780

JSR SWAP
JSR SEEKX
JSR SWAP

PRTH7 LOA #ACK
JSR XMIT

PRTCN LOY #$00
STY EFFLAG
STY CHKS

6790 STY PRTSAV+1
6800 PRTCN1 JSR PRTXIN
6810 CMP #SOH
6820 BEQ PRTCN2
6830 LABRT LOA #NAK
6840 JSR XMIT
6850 BNE PRTCN
6860 PRTCN2 JSR PRTXIN
6870 JSR PRTCHK
6880 STA NRN
6890 ! CMP #'0
6900 BNE PRTCN3
6910 LOA #'9+1
6920 PRTCN3 SEC
6930 SBC ORN
6940 CMP #$01
6950
6960
6970
6980
6990
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140

. 7150
7160
7170
7180
7190
7200

BNE LABRT

LOA #$3B
STA PRTSAV+2

PRTCN4 JSR PRTXIN
CMP #ETX
BEQ PRTPEN
CMP #OLE
BNE PRTCN6

PRTCN5 JSR PRTXIN
SBC #$40
JMP PRTCN8

PRTCN6 CMP #EOT
BNE PRTCN8
INC EFFLAG
BNE PRTCN9

PRTCN8 PHA
JSR CNSLOU
PLA

PRTSAV STA $FFFF
INC PRTSAV+1
BNE PRTCN9
INC PRTSAV+2

PRTCN9 JSR PRTCHK
JMP PRTCN4

7210 PRTPEN JSR PRTXIN
7220 CMP #OLE
7230 BNE PRTPE1
7240 JSR PRTXIN
7250 SBC #$40
7260 PRTPE1 CMP CHKS
7270 BNE LABRT
7280 LOA #$00
7290 STA PRTXF1+1
7300 LOA #$3B
7310 STA PRTXF1+2
7320 PRTXFR LOY INOEX
7330 PRTXFO LOA PRTXF1+1
7340
7350

CMP PRTSAV+1
BNE PRTXF1

7360
7370
7380
7390
7400
7410
7420
7430
7440

LOA PRTXF1+2
CMP PRTSAV+2
BEQ PRTXF3

PRTXF1 LOA $FFFF
STA (SAVAOR),Y
INY
BNE PRTXF2
INC SAVAOR+1
LOA SAVAOR+1

7450 CMP BFENPG
7460 BEQ PRTNXT
7470 PRTXF2 INC PRTXF1+1
7480 BNE PRTXFO
7490 INC PRTXF1+2
7500 BNE PRTXFO
7510 PRTXF3 LOA #$FF
7520
7530
7540
7550
7560
7570
7580
7590
7600
7610
7620
7630
7640
7650
7660
7670
7680
7690
7700
7710
7720
7730
7740
7750
7760
7770
7780
7790
7800
7810
7820
7830
7840
7850

STA (SAVAOR),Y
STY INOEX
LOA EFFLAG
BNE PRTOUN
LOA NRN
STA ORN
LOA #ACK
JSR XMIT
JMP PRTCN

PRTOUN JSR SWAP
JSR WRIT
JSR SWAP
LOA #ACK
BNE PRTQT

PRTNXT JSR SWAP
JSR WRIT,
LOA TRAKX
CMP ENOTK
BEQ PRTERR
INC TRAKX
JSR SEEKX
JSR SWAP
JSR SETPTR
LOY #$00
BEQ PRTXF2

PRTERR JSR SWAP
JSR CRLF

PRTABT LOA #CTRLU
PRTQT JSR XMIT

JMP PRTXXO

7860 PRTCHK PHA
7870 ASL CHKS
7880 AOC CHKS
7890 AOC #$00
7900 STA CHKS
7910 PLA
7920 RTS
7930
7940 PRTXIN JSR XIN
7950 BCC PRTX1
7960 RTS
7970 PRTX1 JSR CNSLIN
7980 BEQ PRTXIN
7990 CMP #CTRLC
8000
8010

BNE PRTXIN
PLA

PEEK[65] March-May Page 41

8020 PLA
8030 JMP PRTABT
8040
8050 BUMPRN LOA ORN
8060 CLC
8070 AOC #$01
8080 CMP #'9+1
8090 BNE BUMPR1
8100 LOA #'0
8110 BUMPR1 STA ORN
8120 RTS
8130
8140 PRTMSK CMP #SP
8150 BCS PRTMS1
8160 PHA
8170 LOA #OLE
8180 JSR XMIT
8190 PLA
8200 CLC
8210 AOC #$40
8220 PRTMS1 JMP XMIT
8230
8240 PRTSEN LOA STTK
8250 STA TRAKX
8260 JSR SETPTR
8270 JSR SWAP
8280 JSR SEEKX
8290
8300
8310
8320
8330
8340
8350

JSR REEO
JSR SWAP
LOA #$00
STA COUNT
JSR PRTRPG
JSR BUMPRN
LOA #ACK

8360 JSR XMIT
8370 PRTS41 JSR PRTXIN
8380 CMP #ACK
8390 BEQ PRTS5
8400 JSR CNSLOU
8410 BNE PRTS41
8420
8430 PRTS5 LOY #$00
8440 STY CHKS
8450 STY EFFLAG
8460 LOA #SOH
8470 JSR XMIT
8480 LOA ORN
8490 JSR XMIT
8500 JSR PRTCHK
8510 PRTS6 LDA OIRBUFiY
8520 CMP #$FF
8530
8540
8550
8560

BNE PRTS8
LOX KEYNUM
CPX #'A
BEQ PRTS10

8570 PRTS8 JSR PRTCHK
8580
8590
8600
8610

PHA
JSR PRTMSK
PLA
JSR CNSLOU

8620 INY
8630 BNE PRTS6
8640 BEQ PRTS11
8650 PRTS10 INC EFFLAG
8660 PRTS11 LOA #ETX
8670 JSR XMIT

PEEKf651 March-Mav PaQ'e42

8680 LOA CHKS
8690 JSR PRTMSK
8700 PRTS12 JSR PRTXIN
8710 CMP #ACK
8720 BEQ PRTS14
8730 CMP #NAK
8740 BEQ PRTS15
8750 JSR CNSLOU
8760 JMP PRTS12
8770 PRTS14 JSR BUMPRN
8780 JSR PRTRPG
8790 LOA EFFLAG
8800 BNE PRTS16
8810 PRTS15 JMP PRTS5
8820
8830 PRTS16 LOA #$00
8840 STA CHKS
8850 LOA #SO~
8860 JSR XMIT
8870 LOA ORN
8880 JSR PRTCHK
8890 JSR XMIT
8900 LOA #EOT
8910 JSR PRTCHK
8920 JSR XMIT
8930 LOA #ETX
8940 JSR XMIT
8950 LOA CHKS
8960 JSR PRTMSK
8970 JSR PRTXIN
8980 CMP #ACK
8990 BNE PRTS16
9000 PRTSQ JMP PRTXXO
9010
9020 PRTRPG LOA COUNT
9030 CMP PAGES
9040 BNE PRTRP2
9050 LOA TRAKX
9060 CMP ENOTK
9070 BEQ PRTRP3
9080 INC TRAKX
9090 JSR SETPTR
9100 JSR SWAP
9110 JSR SEEKX
9120 JSR REEO
9130 JSR SWAP
9140 LOA #$00
9150 STA COUNT
9160 PRTRP2 LOY #$00
9170 LOA (SAVAOR),Y
9180 STA OIRBUF,Y
9190
9200
9210
9220
9230

INY
BNE PRTRP2+2
INC COUNT
INC SAVAOR+1
RTS

9240 PRTRP3 INC EFFLAG
9250 RTS
9260
9270 .ENO TRM

Term-Plus
A smart terminal program running under OS-
65D V3.3 which allows capturing and
transmitting to and from disk. Term-Plus
also supports error-free file transfers and
cursor addressing on CompuServe.
Memory size does not limit the size of files
that can be captured or transmitted. Video
systems get enhanced keyboard driver
with 10 programmable character keys. 10
programmable function keys on both serial
and video systems. Utilities included allow
translating captured text files into OSI
source format for BASIC and Assembler
programs or into WP-2N.JP-3 format,
translating OSI source files into text files
for transmitting to non-OSI systems, and
printing captured text files. Runs on all
disk systems, mini's or 8", except the C1 P
MF. $35.00.

Term-32
Same as Term-Plus, but for OS-65D V3.2.
Video system support includes enhanced
keyboard driver, but uses V3.2 screen
driver. $35.00.

Term-65U
Patterned after Term-Plus, Term-65U is a
smart terminal program for OS-65U (all
versions) running in the single user mode.
Allows capturing text to disk files. Term-
65U will transmit text files, or BASIC
programs as text. The program will also
send WP-3 files as formatted text and can
transmit selected fields in records from OS
DMS Master files with sorts. Includes
utilities to print captured text files or to
convert them into WP-3/Edit-Plus or
BASIC files. $50.00

ASM-Plus
ASM-Plus is a disk-based assembler
running under OS-65D V3.3 that allows
linked source files enabling you to write
very large programs, regardless of system
memory size. ASM-Plus assembles
roughly 8 to 10 times faster than the OSI
Assembler/Editor and is compatible with
files for that assembler. ASM-Plus adds
several assembly-time commands (pseudo
opcodes) for extra functionality. Included
is a file editor for composing files that
allows line editing and global searches.
$50.00

Edit-Plus
Styled after WP-3-1, although not quite as
powerful, Edit-Plus allows composing and
editing WP-3 compatible files and to have
those files printed as formatted text. Edit
Plus uses line-oriented editing, as
opposed to the screen editing of WP-3,
and also allows global search and replace.

Edit-Plus fixes problems in WP-3 including
pagination, inputs from the console, and
file merging(selectable line numbers from
the merged file). Edit-Plus can perform a
trivial right-justification, but it does not
support true proportional spacing.
Requires OS-65D V3.3. or OS-65U V1.44
(specify) $40.00

Data-Plus 65U Mail Merge
A program to insert fields from OS-DMS
Master files into WP-3 documents. Output
can be routed to a printer or to a disk file
for printing later or for transmission via
modem using Term-65U. Insertions are
fully selectable and are properly formatted
into the output. Perfect for generating form
letters. $30.00

Data-Plus Nycleus
Data-Plus Nucleus is a replacement
package to' the OS-DMS Nucleus from
OSI. All of the programs from the original
except SORT have been duplicated and
enchanced and new software, the MC-DMS
Interface, has been added. The name "MC
DMS" stems from the extensive use of
machine code support built into the utilities
to replace slower, BASIC code. Features
include; (1) MC-DMS Interface code
supports up to 8 Master files
simultaneously without requIring
OPEN/CLOSE commands under Level 3 at
every file access. The only 65U software
support needed for Level 3 file access is
semiphores, and it does not conflict with
any software transients like COMKIL. This
produces a significant increase in speed.
READ, WRITE, and FIND commands
operate on the field level. FIND skips over
embedded garbage between fields, and
automatically stops on the last record in
the file. (2) Machine code DIR utility. Ultra
fast. Automatic paging. "C interrupt. Can
selectively list by file type or can search
for file name matches with wildcards. (3)
Machine code file manager. Creates,
deletes, or renames files in a flash. The file
manager is linked to the Master/Key file
creation utility. (4) Machine code file
transfer/merge. Grabs up to 30 records per
pass. Single/dual drive. Fully selectable
field specifications. Also allows searching
for matches in source and destination files
for linked merges. (5) Machine code
single/dual drive floppy diskette copier.
Moves up to 7 tracks per pass. (6) Disk
based mailing label printer. Stores printing
format designs on disk. Selectable fields
and record range, Key file access,
searches, and more. (7) Disk-based report
writer. Stores report format designs on
disk. Same features as above, but with
formatted columns by type and width. (8)

Edit-Plus 65U. Most of the same features
as the 65D version, but with a smaller
workspace. Suitable for correspondence
and form letters. (9) Data-Plus Mail Merge.
Complete documentation allows
implimenting the MC-DMS Interface into
your own applications. $150.00

OSI-CALC:
SPREADSHEET PROGRAM

OSI-CALC has been a smash
hit here at PEEK[65].
Written entirely In BASIC

" ",by Paul Chidley of TOSIE,
the program gives you a 26
column by 36 row
spreadsheet with many
features. Don't let the fact
that it's written in BASIC
fool you. It's VERY FAST.

Each cell can contain text or
numeric data or a fonnula
which computes its results
based on the contents of
the other cells.
Spreadsheets can" be stored
on disk, and the program
does very nice printing too.

OS I-CALC requires 48K of
memory and OS-65D V3.3.
Specify video or serial
system and mini-floppy or
8" disks. Price $10.00 plus
$3.70 shipping ($13.70
total).

PEEK[65] March-May Page 43

·11 IIII
The Unofficial OSI Users Journal

P.o. Box 586
Pacifica, CA 94044
415 -993-6029

DELIVER TO:

Bulk Rate

US Postage
PAID

PaCifica, CA
Permit "'92

Zip Code 940'1'1

GOODIES for 05'
IIEEIIIII

Users~

Name

The Unofficial OSI Users Journal

C1 P Sams Photo-Facts Manual. Complete schematics, scope waveforms and board photos. All you
need to be a C1 P or SII Wizard, just

C4P Sams Photo-Facts Manual. ·Includes pinouts, photos, schematics for the 502, 505, 527,540 and
542 boards.,·A ba~gain at', ' I

C2/C3 Sams··PhotocFacts·Manual. 'The facts you neec to repair the'larger'OSI computers. Fat with
useful information, but just. , "

': J (' •

OSI's Small Systems Journals. The complete set, July 1977 through April,1978, bound and reproduced
by PEEK (65).'Full'set onl~' . ' . .l,. " ,.' ,

,
Terminal Extensions Package' lets you program like the mini-users do, with direct cursor positioning,
mnemonics and a number formatting function much more powerful than a mere "print using." Requires
65U.

RESEQ - BASIC program resequencer plus much more. Global changes, tables of bad references,
GOSUB's & GOTOs, variables by line number, resequences parts of programs or entire programs,
handles line 50000 trap. Best debug tool I've seen. MACHINE LANGUAGE - VERY FASTI Requires 65U.
Manual & samples only, $5.00 Everything for

Sanders Machine Language Sort/Merge for OS-65U. Complete disk sort and merge, documentation
shows you how to call from any BASIC program on any disk and return it orany other BASIC program
on any disk, floppy or hard. Most versatile disk sort yet. Will run under LEVEL I, II, or III. It should cost
more but Sanders says, " ... sell it for jus!..."

KYUTIL - The ultimate OS-OMS keyfile utility package. This implementation of Sander's SORT IMERGE
creates, loads and sorts multiple-field, conditionally loaded keyfiles. KYUTIL will load and sort a keyfile'of
over 15000 ZIP codes in under three hours. Never sort another Master File.

Assembler Editor & Extended Monitor Reference Manual (C1 P, C4P & Cap)

65V Primer. Introduces machine language programming.

C1P, C1P MF, C4P, C4P OF, C4P MF, cap OF Introductory Manuals ($5.95 each, please specify)

Basic Reference Manual - (ROM, 650 and 65U)

C1P, C4P, cap Users Manuals - ($7.95 each, please specify)

How to program Microcomputers. The C-3 Series

Professional Computers Set Up & Operations Manual - C2-0EM/C2-0/C3-0EM/C3-0/C3-A/C3-BI
C3-C/C3-C'

TOTAL

$7.95 $ _____ _

$15.00 $ _____ _

'$30.00'$ ' ____ -'----:

$15.00 $ _' _____ _

$50.00 $ _____ _

$50.00 $ _____ _

$89.00 $ _____ _

$100.00 $ ____ _

$6:95 $ _____ _

$4.95 $ _____ _

$5.95 $ _____ _

$5.95 $ _____ _

$7.95 $ _____ _

$7,95 $ _____ --,-

$8.95 $ _____ _

$

CA RelSident3 add 61 SalelS Tax $

C.O.D. orders add $1.90 $

Postage & Handling $ 3.70

Street ___________________________ _
TOTAL DUE $

City ____________ _ State Zip POSTAGE MAY VARY FOR OVERSEAS

(,

• I

.,

