
The NetBSD Guide
(2008/02/19)

The NetBSD Developers

The NetBSD Guide
by The NetBSD Developers

Published 2008/02/19 18:52:52
Copyright © 1999, 2000, 2001, 2002 Federico Lupi
Copyright © 2003, 2004, 2005, 2006, 2007, 2008 The NetBSD Foundation

All brand and product names used in this guide are or may be trademarks or registered trademarks of their respective owners.

NetBSD® is a registered trademark of The NetBSD Foundation,Inc.

Table of Contents
Purpose of this guide..xvii

I. About NetBSD ..xviii

1 What is NetBSD?..1
1.1 The story of NetBSD..1
1.2 NetBSD features...1
1.3 Supported platforms...2
1.4 NetBSD’s target users...2
1.5 Applications for NetBSD...2
1.6 How to get NetBSD..2

II. System installation and related issues...1

2 Installing NetBSD: Preliminary considerations and preparations..2
2.1 Preliminary considerations...2

2.1.1 Dual booting...2
2.1.2 NetBSD on emulation and virtualization...2

2.2 Install preparations...2
2.2.1 The INSTALL document...3
2.2.2 Partitions..3
2.2.3 Hard disk space requirements..4
2.2.4 Network settings..4
2.2.5 Backup your data and operating systems!...4
2.2.6 Preparing the installation media...4

2.2.6.1 Booting the install system from CD..5
2.2.6.2 Booting the install system from floppy...5

2.3 Checklist...5
3 Example installation..7

3.1 Introduction..7
3.2 The installation process..7
3.3 Keyboard layout...7
3.4 Starting the installation...8
3.5 MBR partitions...12
3.6 Disklabel partitions...15
3.7 Setting the disk name..17
3.8 Last chance!..18
3.9 The disk preparation process..19
3.10 Choosing the installation media...20

3.10.1 Installing from CD-ROM or DVD...21
3.10.2 Installing from an unmounted file system..22
3.10.3 Installing via FTP...23
3.10.4 Installing via NFS..28

3.11 Extracting sets..29
3.12 System configuration..30
3.13 Finishing the installation..33

4 Upgrading NetBSD...36
4.1 Overview..36
4.2 The INSTALL document..36

iii

4.3 Performing the upgrade..36

III. System configuration, administration and tuning ..43

5 The first steps on NetBSD...44
5.1 Troubleshooting..44

5.1.1 Boot problems..44
5.1.2 Misconfiguration of /etc/rc.conf...44

5.2 The man command...45
5.3 Editing the configuration files..46
5.4 Login...47
5.5 Changing theroot password...47
5.6 Adding users...47
5.7 Shadow passwords..48
5.8 Changing the keyboard layout..48
5.9 System time..48
5.10 Secure Shell (ssh(1))...49
5.11 Basic configuration in/etc/rc.conf ..49
5.12 Basic network settings..50
5.13 Mounting a CD-ROM...50
5.14 Mounting a floppy..51
5.15 Installing additional software...51

5.15.1. Using packages from pkgsrc...51
5.15.2. Storing third-party software..52

5.16 Security alerts...52
5.17 Stopping and rebooting the system...52

6 Editing...54
6.1 Introducing vi...54

6.1.1 The vi interface..54
6.1.2 Switching to Edit Mode...54
6.1.3 Switching Modes & Saving Buffers to Files...55
6.1.4 Yanking and Putting...55

6.1.4.1 Oops I Did Not Mean to do that!...55
6.1.5 Navigation in the Buffer..55
6.1.6 Searching a File, the Alternate Navigational Aid..56

6.1.6.1 Additional Navigation Commands..56
6.1.7 A Sample Session..56

6.2 Configuring vi...57
6.2.1 Extensions to.exrc ..58
6.2.2 Documentation...58

6.3 Using tags with vi...59
7 rc.d System..60

7.1 The rc.d Configuration..60
7.2 The rc.d Scripts...61
7.3 The Role of rcorder and rc Scripts...62
7.4 Additional Reading...62

8 Console drivers..64
8.1 wscons..64

8.1.1 wsdisplay..64

iv

8.1.1.1 Virtual consoles...64
8.1.1.1.1 Getting rid of the messageWSDISPLAYIO_ADDSCREEN: Device busy

66
8.1.1.2 50 lines text mode with wscons...66
8.1.1.3 Enabling VESA framebuffer console..67
8.1.1.4 Enabling scrollback on the console...67
8.1.1.5 Wscons and colors...67

8.1.1.5.1 Changing the color of kernel messages......................................68
8.1.1.5.2 Getting applications to use colors on the console.......................69

8.1.1.6 Loading alternate fonts..69
8.1.2 wskbd...69

8.1.2.1 Keyboard mappings...69
8.1.2.1.1 Hacking wscons to add a keymap...71

8.1.2.2 Changing the keyboard repeat speed...71
8.1.3 wsmouse...72

8.1.3.1 Serial mouse support...72
8.1.3.2 Cut&paste on the console with wsmoused..72

8.2 pccons...72
9 X..74

9.1 What is X?..74
9.2 Configuration..75
9.3 The mouse..76
9.4 The keyboard..77
9.5 The monitor..77
9.6 The video card..77

9.6.1 XFree 3.x..77
9.6.2 XFree86 4.x..78

9.7 Starting X..78
9.8 Customizing X..78
9.9 Other window managers...79
9.10 Graphical login with xdm...80

10 Linux emulation..82
10.1 Emulation setup..82

10.1.1 Configuring the kernel...82
10.1.2 Installing the Linux libraries..82
10.1.3 Installing Acrobat Reader..83

10.2 Directory structure..84
10.3 Emulating /proc..84
10.4 Using Linux browser plugins...85
10.5 Further reading...85

Bibliography...85
11 Audio...87

11.1 Basic hardware elements..87
11.2 BIOS settings..87
11.3 Configuring the audio device..88
11.4 Configuring the kernel audio devices...88
11.5 Advanced commands..89

11.5.1 audioctl(1)..89

v

11.5.2 mixerctl(1)..89
11.5.3 audioplay(1)...89
11.5.4 audiorecord(1)..90

12 Printing..91
12.1 Enabling the printer daemon..91
12.2 Configuring/etc/printcap ..92
12.3 Configuring Ghostscript...93
12.4 Printer management commands...95
12.5 Remote printing..95

13 Using removable media...97
13.1 Initializing and using floppy disks..97
13.2 How to use a ZIP disk...97
13.3 Reading data CDs with NetBSD..98
13.4 Reading multi-session CDs with NetBSD..100
13.5 Allowing normal users to access CDs..100
13.6 Mounting an ISO image...101
13.7 Using video CDs with NetBSD..102
13.8 Using audio CDs with NetBSD..102
13.9 Creating an MP3 (MPEG layer 3) file from an audio CD..102
13.10 Using a CD-R writer with data CDs...103
13.11 Using a CD-R writer to create audio CDs..104
13.12 Creating an audio CD from MP3s..105
13.13 Copying an audio CD...105
13.14 Copying a data CD with two drives..105
13.15 Using CD-RW rewritables..105
13.16 DVD support...106
13.17 Creating ISO images from a CD..106
13.18 Getting volume information from CDs and ISO images..106

14 The cryptographic device driver (CGD)...108
14.1 Overview..108

14.1.1 Why use disk encryption?..108
14.1.2 Logical Disk Drivers..108
14.1.3 Availability...109

14.2 Components of the Crypto-Graphic Disk system...109
14.2.1 Kernel driver pseudo-device..109
14.2.2 Ciphers...109
14.2.3 Verification Methods..109

14.3 Example: encrypting your disk...110
14.3.1 Preparing the disk..110
14.3.2 Scrubbing the disk..111
14.3.3 Creating thecgd ..111
14.3.4 Modifying configuration files..112
14.3.5 Restoring data..113

14.4 Example: encrypted CDs/DVDs...113
14.4.1 Introduction..113
14.4.2 Creating an encrypted CD/DVD..113
14.4.3 Using an encrypted CD/DVD..116

14.5 Suggestions and Warnings..117

vi

14.5.1 Using a random-key cgd for swap...117
14.5.2 Warnings..118

14.6 Further Reading..118
Bibliography...118

15 Concatenated Disk Device (CCD) configuration..120
15.1 Install physical media...120
15.2 Configure Kernel Support...121
15.3 Disklabel each volume member of the CCD..121
15.4 Configure the CCD...123
15.5 Initialize the CCD device...123
15.6 Create a 4.2BSD/UFS filesystem on the new CCD device..124
15.7 Mount the filesystem..125

16 NetBSD RAIDframe...126
16.1 RAIDframe Introduction..126

16.1.1 About RAIDframe...126
16.1.2 A warning about Data Integrity, Backups, and High Availability126
16.1.3 Getting Help...126

16.2 Setup RAIDframe Support...127
16.2.1 Kernel Support...127
16.2.2 Power Redundancy and Disk Caching...127

16.3 Example: RAID-1 Root Disk...128
16.3.1 Pseudo-Process Outline...129
16.3.2 Hardware Review...130
16.3.3 Initial Install on Disk0/wd0...131
16.3.4 Preparing Disk1/wd1...133
16.3.5 Initializing the RAID Device...136
16.3.6 Setting up Filesystems...138
16.3.7 Setting up kernel dumps...140
16.3.8 Migrating System to RAID..142
16.3.9 The first boot with RAID...144
16.3.10 Adding Disk0/wd0 to RAID..145
16.3.11 Testing Boot Blocks...147

16.4 Testing kernel dumps..150
17 Pluggable Authentication Modules (PAM)...151

17.1 About..151
17.2 Introduction..151
17.3 Terms and conventions...151

17.3.1 Definitions..151
17.3.2 Usage examples...153

17.3.2.1 Client and server are one...153
17.3.2.2 Client and server are separate..154
17.3.2.3 Sample policy..154

17.4 PAM Essentials...155
17.4.1 Facilities and primitives...155
17.4.2 Modules..156

17.4.2.1 Module Naming...156
17.4.2.2 Module Versioning..156
17.4.2.3 Module Path..156

vii

17.4.3 Chains and policies..157
17.4.4 Transactions...158

17.5 PAM Configuration...158
17.5.1 PAM policy files...158

17.5.1.1 The/etc/pam.conf file ...158
17.5.1.2 The/etc/pam.d directory...159
17.5.1.3 The policy search order...159

17.5.2 Breakdown of a configuration line...159
17.5.3 Policies...160

17.6 PAM modules...161
17.6.1 Common Modules..161

17.6.1.1 pam_deny(8)..161
17.6.1.2 pam_echo(8)..161
17.6.1.3 pam_exec(8)..161
17.6.1.4 pam_ftpusers(8)...161
17.6.1.5 pam_group(8)..161
17.6.1.6 pam_guest(8)...161
17.6.1.7 pam_krb5(8)..162
17.6.1.8 pam_ksu(8)..162
17.6.1.9 pam_lastlog(8)...162
17.6.1.10 pam_login_access(8)...162
17.6.1.11 pam_nologin(8)...162
17.6.1.12 pam_permit(8)...162
17.6.1.13 pam_radius(8)..162
17.6.1.14 pam_rhosts(8)..162
17.6.1.15 pam_rootok(8)...163
17.6.1.16 pam_securetty(8)...163
17.6.1.17 pam_self(8)..163
17.6.1.18 pam_ssh(8)..163
17.6.1.19 pam_unix(8)..163

17.6.2 FreeBSD-specific PAM Modules...164
17.6.2.1 pam_opie(8)..164
17.6.2.2 pam_opieaccess(8)..164
17.6.2.3 pam_passwdqc(8)..164
17.6.2.4 pam_tacplus(8)..164

17.6.3 NetBSD-specific PAM Modules..164
17.6.3.1 pam_skey(8)..164

17.7 PAM Application Programming...164
17.8 PAM Module Programming...164
17.9 Sample PAM Application...165
17.10 Sample PAM Module...168
17.11 Sample PAM Conversation Function...170
17.12 Further Reading..172

Bibliography...172
18 Tuning NetBSD...173

18.1 Introduction..173
18.1.1 Overview..173

18.1.1.1 What is Performance Tuning?...173

viii

18.1.1.2 When does one tune?...173
18.1.1.3 What these Documents Will Not Cover..174
18.1.1.4 How Examples are Laid Out...174

18.2 Tuning Considerations..174
18.2.1 General System Configuration...174

18.2.1.1 Filesystems and Disks...174
18.2.1.2 Swap Configuration...175

18.2.2 System Services...175
18.2.3 The NetBSD Kernel...176

18.2.3.1 Removing Unrequired Drivers..176
18.2.3.2 Configuring Options..176
18.2.3.3 System Settings...176

18.3 Visual Monitoring Tools...176
18.3.1 The top Process Monitor..177

18.3.1.1 Other Neat Things About Top...178
18.3.2 The sysstat utility...178

18.4 Monitoring Tools..179
18.4.1 fstat...180
18.4.2 iostat...180
18.4.3 ps..181
18.4.4 vmstat...182

18.5 Network Tools..183
18.5.1 ping..183
18.5.2 traceroute..184
18.5.3 netstat...185
18.5.4 tcpdump..187

18.5.4.1 Specific tcpdump Usage..187
18.6 Accounting...188

18.6.1 Accounting...188
18.6.2 Reading Accounting Information..188

18.6.2.1 lastcomm...188
18.6.2.2 sa..189

18.6.3 How to Put Accounting to Use..190
18.7 Kernel Profiling..190

18.7.1 Getting Started...190
18.7.1.1 Using kgmon...190

18.7.2 Interpretation of kgmon Output...191
18.7.2.1 Flat Profile...191
18.7.2.2 Call Graph Profile..192

18.7.3 Putting it to Use...193
18.7.4 Summary..194

18.8 System Tuning..194
18.8.1 Using sysctl..194
18.8.2 memfs & softdeps..195

18.8.2.1 Using memfs...195
18.8.2.2 Using softdeps...195

18.8.3 LFS...196
18.9 Kernel Tuning...196

ix

18.9.1 Preparing to Recompile a Kernel...196
18.9.2 Configuring the Kernel..196

18.9.2.1 Some example Configuration Items..197
18.9.2.2 Some Drivers...198
18.9.2.3 Multi Pass..199

18.9.3 Building the New Kernel...199
18.9.4 Shrinking the NetBSD kernel..200

18.9.4.1 Removing ELF sections and debug information.................................200
18.9.4.2 Compressing the Kernel..201

19 NetBSD Veriexec subsystem...202
19.1 How it works..202
19.2 Signatures file...202
19.3 Generating fingerprints...202
19.4 Strict levels...204
19.5 Veriexec and layered file systems...204
19.6 Kernel configuration...205

20 Bluetooth on NetBSD...206
20.1 Introduction..206
20.2 Supported Hardware...206
20.3 System Configuration...207
20.4 Human Interface Devices...208

20.4.1 Mice...208
20.4.2 Keyboards..210

20.5 Personal Area Networking...211
20.5.1 Personal Area Networking User..211

20.6 Serial Connections..213
20.7 Audio..214

20.7.1 SCO Audio Headsets...215
20.7.2 SCO Audio Handsfree...216

20.8 Object Exchange...217
20.9 Troubleshooting..218

21 Miscellaneous operations..219
21.1 Installing the boot manager..219
21.2 Deleting the disklabel...219
21.3 Speaker...219
21.4 Forgot root password?..220
21.5 Password file is busy?...220
21.6 Adding a new hard disk..221
21.7 How to rebuild the devices in /dev...223

IV. Networking and related issues..225

22 Introduction to TCP/IP Networking..226
22.1 Audience...226
22.2 Supported Networking Protocols...226
22.3 Supported Media..227

22.3.1 Serial Line..227
22.3.2 Ethernet..227

22.4 TCP/IP Address Format...228

x

22.5 Subnetting and Routing..230
22.6 Name Service Concepts..232

22.6.1/etc/hosts ..233
22.6.2 Domain Name Service (DNS)...233
22.6.3 Network Information Service (NIS/YP)..234
22.6.4 Other..234

22.7 Next generation Internet protocol - IPv6..235
22.7.1 The Future of the Internet..235
22.7.2 What good is IPv6?..235

22.7.2.1 Bigger Address Space...236
22.7.2.2 Mobility...236
22.7.2.3 Security..236

22.7.3 Changes to IPv4...236
22.7.3.1 Addressing...236
22.7.3.2 Multiple Addresses..239
22.7.3.3 Multicasting...239
22.7.3.4 Name Resolving in IPv6...240

23 Setting up TCP/IP on NetBSD in practice..242
23.1 A walk through the kernel configuration..242
23.2 Overview of the network configuration files..246
23.3 Connecting to the Internet with a modem..247

23.3.1 Getting the connection information...247
23.3.2resolv.conf andnsswitch.conf ..247
23.3.3 Creating the directories for pppd...248
23.3.4 Connection script and chat file...248
23.3.5 Authentication..249

23.3.5.1 PAP/CHAP authentication..249
23.3.5.2 Login authentication..250

23.3.6 pppd options...250
23.3.7 Testing the modem...250
23.3.8 Activating the link..251
23.3.9 Using a script for connection and disconnection...252
23.3.10 Running commands after dialin...252

23.4 Creating a small home network..253
23.5 Setting up an Internet gateway with IPNAT...255

23.5.1 Configuring the gateway/firewall...256
23.5.2 Configuring the clients...257
23.5.3 Some useful commands...257

23.6 Setting up a network bridge device..258
23.6.1 Bridge example..258

23.7 A common LAN setup..258
23.8 Connecting two PCs through a serial line..259

23.8.1 Connecting NetBSD with BSD or Linux...259
23.8.2 Connecting NetBSD and Windows NT...260
23.8.3 Connecting NetBSD and Windows 95...260

23.9 IPv6 Connectivity & Transition via 6to4..261
23.9.1 Getting 6to4 IPv6 up & running..262
23.9.2 Obtaining IPv6 Address Space for 6to4...262

xi

23.9.3 How to get connected...262
23.9.4 Security Considerations...263
23.9.5 Data Needed for 6to4 Setup...263
23.9.6 Kernel Preparation...264
23.9.7 6to4 Setup..264
23.9.8 Quickstart using pkgsrc/net/hf6to4..266
23.9.9 Known 6to4 Relay Routers..267
23.9.10 Tunneling 6to4 through an IPFilter firewall...268
23.9.11 Conclusion & Further Reading..269

24 The Internet Super Server inetd..271
24.1 Overview..271
24.2 What is inetd?...271
24.3 Configuring inetd -/etc/inetd.conf ..271
24.4 Services -/etc/services ...273
24.5 Protocols -/etc/protocols ...273
24.6 Remote Procedure Calls (RPC) -/etc/rpc ...273
24.7 Allowing and denying hosts -/etc/hosts.{allow,deny}274
24.8 Adding a Service..274
24.9 When to use or not to use inetd..275
24.10 Other Resources..276

25 The Domain Name System...277
25.1 DNS Background and Concepts...277

25.1.1 Naming Services..277
25.1.2 The DNS namespace..277
25.1.3 Resource Records...278
25.1.4 Delegation..279
25.1.5 Delegation to multiple servers...280
25.1.6 Secondaries, Caching, and the SOA record...280
25.1.7 Name Resolution..281
25.1.8 Reverse Resolution..281

25.2 The DNS Files..282
25.2.1/etc/namedb/named.conf ..283

25.2.1.1 options...285
25.2.1.2 zone “diverge.org”...285

25.2.2/etc/namedb/localhost ..286
25.2.3/etc/namedb/zone.127.0.0 ..287
25.2.4/etc/namedb/diverge.org ..287
25.2.5/etc/namedb/1.168.192 ..288
25.2.6/etc/namedb/root.cache ..288

25.3 Using DNS..289
25.4 Setting up a caching only name server...291

25.4.1 Testing the server...291
26 Mail and news...293

26.1 postfix...295
26.1.1 Configuration of generic mapping...296
26.1.2 Testing the configuration..297
26.1.3 Using an alternative MTA..297

26.2 fetchmail...297

xii

26.3 Reading and writing mail with mutt...298
26.4 Strategy for receiving mail...299
26.5 Strategy for sending mail..299
26.6 Advanced mail tools...300
26.7 News with tin..301

27 Introduction to the Common Address Redundancy Protocol (CARP).....................................303
27.1 CARP Operation...303
27.2 Configuring CARP...304
27.3 Enabling CARP Support...306
27.4 CARP Example..306
27.5 Advanced CARP configuration..306
27.6 Forcing Failover of the Master...308

28 Network services...309
28.1 TheNetwork File System(NFS)...309

28.1.1 NFS setup example..309
28.1.2 Setting up NFS automounting for/net with amd(8)......................................310

28.1.2.1 Introduction...311
28.1.2.2 Actual setup...311

28.2 TheNetwork Time Protocol(NTP)...312

V. Building the system...314

29 Obtaining the sources..315
29.1 Preparing directories...315
29.2 Terminology...315
29.3 Downloading tarballs..315

29.3.1 Downloading sources for a NetBSD release..316
29.3.2 Downloading sources for a NetBSD stable branch..316
29.3.3 Downloading sources for a NetBSD-current development branch..................317

29.4 Fetching by CVS..317
29.4.1 Fetching a NetBSD release..318
29.4.2 Fetching a NetBSD stable branch..318
29.4.3 Fetching the NetBSD-current development branch...319
29.4.4 Saving some cvs(1) options...319

29.5 Sources on CD (ISO)..320
30 Crosscompiling NetBSD withbuild.sh ..321

30.1 Building the crosscompiler...321
30.2 Configuring the kernel manually..323
30.3 Crosscompiling the kernel manually..323
30.4 Crosscompiling the kernel withbuild.sh ..324
30.5 Crosscompiling the userland..325
30.6 Crosscompiling the X Window System..325
30.7 Changing build behaviour..326

30.7.1 Changing the Destination Directory..326
30.7.2 Static Builds...326
30.7.3 Usingbuild.sh options...327
30.7.4 make(1) variables used during build..328

31 Compiling the kernel...334
31.1 Requirements and procedure..334

xiii

31.2 Installing the kernel sources...334
31.3 Creating the kernel configuration file...335
31.4 Building the kernel manually...336

31.4.1 Configuring the kernel manually...337
31.4.2 Generating dependencies and recompiling manually......................................337

31.5 Building the kernel usingbuild.sh ...338
31.6 Installing the new kernel...338
31.7 If something went wrong..339

32 Updating an existing system from sources..340
32.1 The updating procedure..340

32.1.1 Building a new userland...340
32.1.2 Building a new kernel..340
32.1.3 Installing the kernel and userland..341
32.1.4 Updating the system configuration files...341
32.1.5 Summary..341
32.1.6 Alternative: using sysinst...342

32.2 More details about the updating of configuration and startup files..............................342
32.2.1 Using etcupdate with source files..342
32.2.2 Using etcupdate with binary distribution sets..343
32.2.3 Usingetcmanage instead ofetcupdate ..343

33 Building NetBSD installation media...344
33.1 Creating custom install or boot floppies for your architecture e.g. i386......................344
33.2 Creating a custom install or boot CD with build.sh...345

A. Information ..346

A.1 Where to get this document...346
A.2 Guide history...346

B. Contributing to the NetBSD guide..347

B.1 Translating the guide...347
B.1.1 What you need to start a translation..348
B.1.2 Writing XML/DocBook..348

B.2 Sending contributions..349
B.3 XML/DocBook template...349

C. Getting started with XML/DocBook ...352

C.1 What is XML/DocBook..352
C.2 Installing the necessary tools...352
C.3 Using the tools...353
C.4 Language-specific notes..354

C.4.1 Enabling hyphenation for the Italian language...354
C.5 Links..354

D. Acknowledgements...356

D.1 Original acknowledgements..356
D.2 Current acknowledgements...356
D.3 Licenses...357

D.3.1 Federico Lupi’s original license of this guide..357
D.3.2 Networks Associates Technology’s license on the PAM article.................................357
D.3.3 Joel Knight’s license on the CARP article..358

xiv

E. Bibliography ..359

Bibliography...359

xv

List of Tables
17-1. PAM chain execution summary..160
19-1. Veriexec fingerprints tools..202
19-2. Veriexec access type aliases...203

xvi

Purpose of this guide

This guide describes the installation and the configurationof the NetBSD operating system as well as the
setup and administration of some of its subsystems. It primarily addresses people coming from other
Unix-like operating systems, and aims to be a useful guide inthe face of the many small problems one
encounters when using a new tool.

This guide is not a Unix tutorial: basic knowledge of some concepts and tools is assumed. You should
know, for example, what a file and a directory are, and how to use an editor. There are plenty of books
explaining basic Unix and operating system concepts, and you should consult one if you need more
background information. It is better to choose a general book and avoid titles like “Learning Unix-XYZ,
version 1.2.3.4 in 10 days”, but this is a matter of personal taste.

Much work is still required to finish this introduction to NetBSD: some chapters are not finished (some
are not even started) and some subjects need more testing. Corrections and additions are most certainly
welcome.

This guide is currently maintained by the NetBSD www team (<www@NetBSD.org>). Corrections and
suggestions should be sent to that address. See alsoAppendix B.

xvii

I. About NetBSD

Chapter 1

What is NetBSD?

NetBSD is a free, fast, secure, and highly portable Unix-like Open Source operating system. It is
available for many platforms, from 64-bit x86 servers and PCdesktop systems to embedded ARM and
MIPS based devices. Its clean design and advanced features make it excellent in both production and
research environments, and it is user-supported with complete source. Many applications are easily
available through pkgsrc, the NetBSD Packages Collection.

1.1 The story of NetBSD
The first version of NetBSD (0.8) dates back to 1993 and springs from the 4.3BSD Lite operating
system, a version of Unix developed at the University of California, Berkeley (BSD = Berkeley Software
Distribution), and from the 386BSD system, the first BSD portto the Intel 386 CPU. In the following
years, modifications from the 4.4BSD Lite release (the last release from the Berkeley group) were
integrated into the system. The BSD branch of Unix has had a great importance and influence on the
history of Unix-like operating systems, to which it has contributed many tools, ideas and improvements
which are now standard: the vi editor, the C shell, job control, the Berkeley fast file system, reliable
signals, support for virtual memory and TCP/IP, just to namea few. This tradition of research and
development survives today in the BSD systems and, in particular, in NetBSD.

1.2 NetBSD features
NetBSD operates on a vast range of hardware platforms and is very portable. The full source to the
NetBSD kernel and userland is available for all the supported platforms; please see the details on the
official site of the NetBSD Project (http://www.NetBSD.org/).

A detailed list of NetBSD features can be found at: http://www.NetBSD.org/about/features.html.

The basic features of NetBSD are:

• Code quality and correctness

• Portability to a wide range of hardware

• Secure defaults

• Adherence to industry standards

• Research and innovation

These characteristics bring also indirect advantages. Forexample, if you work on just one platform you
could think that you’re not interested in portability. But portability is tied to code quality; without a well
written and well organized code base it would be impossible to support a large number of platforms. And

1

Chapter 1 What is NetBSD?

code quality is the base of any good and solid software system, though surprisingly few people seem to
understand it.

One of the key characteristics of NetBSD is that its developers are not satisfied with partial
implementations. Some systems seem to have the philosophy of “If it works, it’s right”. In that light
NetBSD’s philosophy could be described as “It doesn’t work unless it’s right”. Think about how many
overgrown programs are collapsing under their own weight and “features” and you’ll understand why
NetBSD tries to avoid this situation at all costs.

1.3 Supported platforms
NetBSD supports many platforms, including the popular PC platform (i386 and amd64), SPARC and
UltraSPARC, Alpha, Amiga, Atari, and m68k and PowerPC basedApple Macintosh machines. Technical
details for all of them can be found on the NetBSD site (http://www.NetBSD.org/ports/).

1.4 NetBSD’s target users
The NetBSD site states that: “The NetBSD Project provides a freely available and redistributable system
that professionals, hobbyists, and researchers can use in whatever manner they wish”. It is also an ideal
system if you want to learn Unix, mainly because of its adherence to standards (one of the project goals)
and because it works equally well on the latest PC hardware aswell as on hardware which is considered
obsolete by many other operating systems. To learn and use Unix you don’t need to buy expensive
hardware; you can use that old PC or Mac in your attic. It is important to note that although NetBSD runs
on old hardware, modern hardware is well supported and care has been taken to ensure that supporting
old machines does not inhibit performance on modern hardware. In addition, if you need a Unix system
which runs consistently on a variety of platforms, NetBSD isprobably your best choice.

1.5 Applications for NetBSD
Aside from the standard Unix productivity tools, editors, formatters, C/C++ compilers and debuggers
and so on that are included with the base system, there is a huge collection of packages (currently over
8,000) that can be installed both from source and in pre-compiled form. All the packages that you expect
to find on a well configured system are available for NetBSD forfree. The framework that makes this
possible, pkgsrc, also includes a number of commercial applications. In addition, NetBSD provides
binary emulation for various other *nix operating systems,allowing you to run non-native applications.
Linux emulation is probably the most relevant example. You can run the Linux versions of

• Firefox

• the Adobe Flash player plugin

• Acrobat Reader

• many other programs

2

Chapter 1 What is NetBSD?

1.6 How to get NetBSD
NetBSD is an Open Source operating system, and as such it is freely available for download from
ftp.NetBSD.org (ftp://ftp.NetBSD.org) and its mirrors (http://www.NetBSD.org/mirrors/).

There is no “official” supplier of NetBSD CD-ROMs but there are various resellers. You can find the
most up to date list on the relevant page (http://www.NetBSD.org/sites/cdroms.html) on the NetBSD site.

3

II. System installation and related
issues

Chapter 2

Installing NetBSD: Preliminary
considerations and preparations

2.1 Preliminary considerations

2.1.1 Dual booting

It is possible to install NetBSD together with other operating systems on one hard disk.

If there is already an operating system on the hard disk, think about how you can free some space for
NetBSD; if NetBSD will share the disk with other operating systems you will probably need to create a
new partition (which you will do with sysinst). Often times this will not be possible unless you resize an
existing partition.

Unfortunately, it is not possible to resize an existing partition with sysinst, but there are some commercial
products (like Partition Magic) and some free tools (GNU Parted, FIPS, pfdisk) available for this.

You can also install NetBSD on a separate hard disk.

Advice: Unless you are comfortable with setting up a partitioning scheme for two or more operating
systems, and unless you understand the risk of data loss if you should make a mistake, it is
recommended that you give NetBSD its own hard disk. This removes the risk of damage to the
existing operating system.

2.1.2 NetBSD on emulation and virtualization

It is possible to install and run NetBSD on top of other operating systems without having to worry about
partitioning. Emulators or virtualization environments provide a quick and secure way to try out NetBSD.
The host operating system remains unchanged, and the risk ofdamaging important data is minimized.

Information about NetBSD as a Xen host and guest system is available on the NetBSD/xen web page
(http://www.NetBSD.org/ports/xen/).

The NetBSD on emulated hardware (http://www.NetBSD.org/ports/emulators.html) web page provides
detailed information about various emulators and the supported NetBSD platforms. It should also be
noted that NetBSD runs as a VMware guest.

2

Chapter 2 Installing NetBSD: Preliminary considerations and preparations

2.2 Install preparations

2.2.1 The INSTALL document

The first thing to do before installing NetBSD is to read the release information and installation notes in
one of theINSTALL files: this is the official description of the installation procedure, with
platform-specific information and important details. It isavailable in HTML, PostScript, plain text, and
an enhanced text format to be used with more. These files can befound in the root directory of the
NetBSD release (on the install CD or on the FTP server). For example:

• ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-5.0/ port/INSTALL.html

2.2.2 Partitions

The terminology used by NetBSD for partitioning is different from the typical DOS/Windows
terminology; in fact, there are two partitioning schemes involved when running NetBSD on a typical PC.
NetBSD installs in one of the four primary BIOS partitions (the partitions defined in the hard disk
partition table).

Within a BIOS partition (also calledslice) NetBSD defines its BSD partitions using adisklabel: these
partitions can be seen only by NetBSD and are identified by lowercase letters (starting with “a”). For
example, wd0a refers to the “a” partition of the first IDE disk(wd0) and sd0a refers to the “a” partition
of the first SCSI disk. InFigure 2-1there are two primary BIOS partitions, one used by DOS and the
other by NetBSD. NetBSD describes the disk layout through the disklabel.

Figure 2-1. Partitions

BIOS partitions
 (MBR)

0 - DOS

1 - NetBSD

a /

b swap

e /usr

c
 N

e
tB

S
D

 s
lic

e

d

w

h
o

le
 d

is
k

Disklabel

Note: The meaning of partitions “c” and “d” is typical of the i386 port. On most other ports, “c”
represents the whole disk.

3

Chapter 2 Installing NetBSD: Preliminary considerations and preparations

Note: If NetBSD shares the hard disk with another operating system (like in the previous example)
you will want to install a boot manager , i.e., a program which lets you choose which OS to start at
boot time. sysinst can do this for you and will ask if you want to install one. Unless you have specific
reasons not to, you should let sysinst perform this step.

2.2.3 Hard disk space requirements

The exact amount of space required for a given NetBSD installation varies depending on the platform
being used and which distribution sets are selected. In general, if you have 1GB of free space on your
hard drive, you will have more than enough space for a full installation of the base system.

2.2.4 Network settings

If you plan to fetch distribution sets over the network (not necessary if you downloaded a full-size install
ISO) and do not use DHCP, write down your basic network settings. You will need:

• Your IP address (example: 192.168.1.7)

• the netmask (example: 255.255.255.0)

• the IP address of your default gateway (example: 192.168.1.1)

• the IP address of the DNS server you use (example: 145.253.2.75)

2.2.5 Backup your data and operating systems!

Before you begin the installation, make sure that you have a reliable backup of any operating systems
and data on the used hard disk. Mistakes in partitioning yourhard disk can lead to data loss. Existing
operating systems may become unbootable. "Reliable backup" means that the backup and restore
procedure is tested and works flawlessly!

2.2.6 Preparing the installation media

The NetBSD installation system consists of two parts. The first part is the installation kernel. This kernel
contains the NetBSD install program sysinst and it is bootedfrom a CD (or DVD), memory card, USB
flash drive, or floppy disk. The sysinst program will prepare the disk: it separates the disk space into
partitions, makes the disk bootable and creates the necessary file systems.

The second part of the install system is made up of the binary distribution sets: the files of the NetBSD
operating system. The installer needs to have access to the distribution sets. sysinst will usually fetch
these files from the CD or DVD you burned, but it can also get them via FTP, NFS, or local filesystem.

The NetBSD Project provides complete install media for every supported hardware architecture. This is
usually in the form of bootable CD images (.iso files). For example:

• ftp://ftp.NetBSD.org/pub/NetBSD/iso/5.0/

4

Chapter 2 Installing NetBSD: Preliminary considerations and preparations

Note: Please see the list of mirrors (http://NetBSD.org/mirrors/#iso) and choose a local server near
you for downloads

2.2.6.1 Booting the install system from CD

To use a bootable NetBSD install CD download theiso file for your hardware architecture and burn it to
a CD or DVD. You will need to handle this step alone, as burningprograms vary widely. Ensure that your
computer is set up to boot from CD-ROM before hard drives, insert the disc, and reboot the computer.

2.2.6.2 Booting the install system from floppy

If you need to create installation floppies, you need to copy floppy images to a diskette. The floppy
images are available on the NetBSD FTP servers or on a NetBSD install CD. To perform this operation
in DOS you can use the rawrite program in thei386/installation/misc directory. For Windows,
there’s a version inrawr32.zip . The image files arei386/installation/floppy/boot1.fs and
i386/installation/floppy/boot2.fs for installation of a “normal” PC. The other floppies that
are available are described in more detail in theINSTALL document.

Note: Before you write the boot images to floppies, you should always check that the floppies are
good: this simple step is often overlooked, but can save you a lot of trouble!

The procedure to write floppies is:

1. Format the floppy.

2. Go to theI386\INSTALLATION\FLOPPY directory of the CD-ROM.

3. Run the..\MISC\RAWRITE program (or extract..\MISC\RAWR32.ZIP if you’re on a Windows
system, and run the RAWRITE32 program in that file). Usually the “Source file”s areBOOT1.FS

andBOOT2.FSand the “Destination drive” is A:

To create a boot floppy in a Unix environment, thedd command can be used: For example:

cd i386/installation/floppy

dd if=boot.fs of=/dev/fd0a bs=36b

Note: A 1440K floppy contains 1474560 bytes and is made up of 80 cylinders, 2 tracks, 18 sectors
and 512 bytes per sector, i.e., 80 * 2 * 18 = 2880 blocks. Thus bs=36b copies one cylinder (18 * 2
blocks) at a time and repeats the operation 80 times instead of 2880.

5

Chapter 2 Installing NetBSD: Preliminary considerations and preparations

2.3 Checklist
This is the checklist about the things that should be clear and on-hand now:

• Available disk space

• Bootable medium with the install system

• CD/DVD or server with the distribution sets

• Your network information (only if you will be fetching distribution sets via the network and do not use
DHCP)

• A working backup

• A printout of the INSTALL document

6

Chapter 3

Example installation

3.1 Introduction
This chapter will guide you through the installation process. The concepts presented here apply to all
installation methods. The only difference is in the way the distribution sets are fetched by the installer.
Some details of the installation differ depending on the NetBSD release: The examples from this chapter
were created with NetBSD 5.0.

Note: The following install screens are just examples. Do not simply copy them, as your hardware
and configuration details may be different!

3.2 The installation process
The installation process is divided logically in two parts.In the first part you create a partition for
NetBSD and write the disklabel for that partition. In the second part you decide which distribution sets
(subsets of the operating system) you want to install and then extract the files into the newly created
partition(s).

3.3 Keyboard layout
The NetBSD install program sysinst allows you to change the keyboard layout during the installation. If
for some reason this does not work for you, you can use the map in the following table.

US IT DE FR

- ’ ß)

/ - - !

= ì ’ -

: ç Ö M

; ò ö m

£ § 3

" ° Ä %

* ((8

()) 9

) = = 0

7

Chapter 3 Example installation

US IT DE FR

’ à ä ù

‘ \ ^ @

\ ù # ‘

3.4 Starting the installation
To start the installation of NetBSD, insert your chosen bootmedia (CD/DVD, USB drive, floppy, etc.)
and reboot the computer. The kernel on the installation medium will be booted and start displaying a lot
of messages on the screen about hardware being detected.

Figure 3-1. Selecting the language

When the kernel has booted you will find yourself in the NetBSDinstallation program, sysinst, shown in
Figure 3-1. From here on you should follow the instructions displayed on the screen, using theINSTALL

document as a companion reference. You will find the INSTALL document in various formats in the root
directory of the NetBSD release. The sysinst screens all have more or less the same layout: the upper part
of the screen shows a short description of the current operation or a short help message, and the rest of
the screen is made up of interactive menus and prompts. To make a choice, use the cursor keys, the
“Ctrl+N” (next) and “Ctrl+P” (previous) keys, or press one of the letters displayed left of each choice.
Confirm your choice by pressing the Return key.

8

Chapter 3 Example installation

Start by selecting the language you prefer to use for the installation process.

The next screenFigure 3-2will allow you to select a suitable keyboard type.

Figure 3-2. Selecting a keyboard type

This will bring you to the main menu of the installation program (Figure 3-3).

9

Chapter 3 Example installation

Figure 3-3. The sysinst main menu

Choosing the “Install NetBSD to hard disk” option brings youto the next screen (Figure 3-4), where you
need to confirm that you want to continue the installation.

Figure 3-4. Confirming to install NetBSD

10

Chapter 3 Example installation

After choosing “Yes” to continue, sysinst displays a list ofone or more disks and asks which one you
want to install NetBSD on. In the example given inFigure 3-5, there are two disks, and NetBSD will be
installed on “wd0”, the first IDE disk found. If you use SCSI orexternal USB disks, the first will be
named “sd0”, the second “sd1” and so on.

Figure 3-5. Choosing a hard disk

The installer will then ask whether you want to do a full, minimal or custom installation. NetBSD is
broken into a collection of distributions sets. “Full installation” is the default and will install all sets;
“Minimal installation” will only install a small core set, the minimum of what is needed for a working
system. If you select “Custom installation” you can select which sets you would like to have installed.
This step is shown inFigure 3-6.

Figure 3-6. Full or custom installation

11

Chapter 3 Example installation

If you choose to do a custom installation, sysinst will allowyou to choose which distribution sets to
install, as shown inFigure 3-7. At a minimum, you must select a kernel and the “Base” and “System
(/etc)” sets.

Figure 3-7. Selecting distribution sets

3.5 MBR partitions
The first important step of the installation has come: the partitioning of the hard disk. First, you need to
specify whether NetBSD will use a partition (suggested choice) or the whole disk. In the former case it is
still possible to create a partition that uses the whole harddisk (Figure 3-8) so we recommend that you
select this option as it keeps the BIOS partition table in a format which is compatible with other
operating systems.

12

Chapter 3 Example installation

Figure 3-8. Choosing the partitioning scheme

The next screen shows the current state of the MBR partition table on the hard disk before the installation
of NetBSD. There are four primary partitions, and as you can see, this example disk is currently empty.
If you do have other partitions you can leave them around and install NetBSD on a partition that is
currently unused, or you can overwrite a partition to use it for NetBSD.

Figure 3-9. fdisk

Deleting a partition is simple: after selecting the partition, a menu with options for that partition will
appear (Figure 3-10). Change the partition kind to “Delete partition” to removethe partition. Of course,
if you want to use the partition for NetBSD you can set the partition kind to “NetBSD”.

You can create a partition for NetBSD by selecting the partition you want to install NetBSD to. The
partition names “a” to “d” correspond to the four primary partitions on other operating systems. After

13

Chapter 3 Example installation

selecting a partition, a menu with options for that partition will appear, as shown inFigure 3-10.

Figure 3-10. Partition options

To create a new partition, the following information must besupplied:

• the type (kind) of the new partition

• the first (start) sector of the new partition

• the size of the new partition

Choose the partition type “NetBSD” for the new partition (using the “type” option). The installation
program will try to guess the “start” position based on the end of the preceding partition. Change this
value if necessary. The same thing applies to the “size” option; the installation program will try to fill in
the space that is available until the next partition or the end of the disk (depending on which comes first).
You can change this value if it is incorrect, or if you do not want NetBSD to use the suggested amount of
space.

After you have chosen the partition type, start position, and size, it is a good idea to set the name that
should be used in the boot menu. You can do this by selecting the “bootmenu” option and providing a
label, e.g., “NetBSD”. It is a good idea to repeat this step for other bootable partitions so you can boot
both NetBSD and a Windows system (or other operating systems) using the NetBSD bootselector. If you
are satisfied with the partition options, confirm your choiceby selecting “Partition OK”. Choose
“Partition table OK” to leave the MBR partition table editor.

If you have made an error in partitioning (for example you have created overlapping partitions) sysinst
will display a message and suggest that you go back to the MRB partition editor (but you are also
allowed to continue). If the data is correct but the NetBSD partition lies outside the range of sectors
which is bootable by the BIOS, sysinst will warn you and ask ifyou want to proceed anyway. Doing so
may lead to problems on older PCs.

Note: This is not a limitation of NetBSD. Some old BIOSes cannot boot a partition which lies outside
the first 1024 cylinders. To fully understand the problem you should study the different type of

14

Chapter 3 Example installation

BIOSes and the many addressing schemes that they use (physical CHS, logical CHS, LBA, ...).
These topics are not described in this guide.

On modern computers (those with support for int13 extensions), it is possible to install NetBSD in
partitions that live outside the first 8 GB of the hard disk, provided that the NetBSD boot selector is
installed.

Next, sysinst will offer to install a boot selector on the hard disk. This screen is shown inFigure 3-11.

Figure 3-11. Installing the boot selector

At this point, theBIOS partitions(calledsliceson BSD systems) have been created. They are also called
PC BIOS partitions, MBR partitionsor fdisk partitions.

Note: Do not confuse the slices or BIOS partitions with the BSD partitions, which are different things.

3.6 Disklabel partitions
Some platforms, like PC systems (amd64 and i386), use DOS-style MBR partitions to separate file
systems. The MBR partition you created earlier in the installation process is necessary to make sure that
other operating systems do not overwrite the diskspace thatyou allocated to NetBSD.

NetBSD uses its own partition scheme, called adisklabel, which is stored at the start of the MBR
partition. In the next few steps you will create a disklabel(5) and set the sizes of the NetBSD partitions,
or use existing partition sizes, as shown inFigure 3-12.

15

Chapter 3 Example installation

Figure 3-12. Edit partitions?

When you choose to set the sizes of the NetBSD partitions you can define the partitions you would like
to create. The installation program will generate a disklabel based on these settings. This installation
screen is shown inFigure 3-13.

Figure 3-13. Setting partition sizes

The default partition scheme of just using a big/ (root) file system (plus swap) works fine with NetBSD,
and there is little need to change this.Figure 3-13shows how to change the size of the swap partition to
600 MB. Changing/tmp to reside on aRAM disk(mfs(8)) for extra speed may be a good idea. Other
partition schemes may use separate partitions for/var , /usr and/or/home , but you should use your
own experience to decide if you need this.

The next step is to create the disklabel and edit its partitions, if necessary, using the disklabel editor

16

Chapter 3 Example installation

(Figure 3-14). If you predefined the partition sizes in the previous step,the resulting disklabel will
probably fit your wishes. In that case you can complete the process immediately by selecting “Partition
sizes ok”.

Figure 3-14. The disklabel editor

There are two reserved partitions, “c”, representing the NetBSD partition, and “d”, representing the
whole disk. You can edit all other partitions by using the cursor keys and pressing the return key. You can
add a partition by selecting an unused slot and setting parameters for that partition. The partition editing
screen is shown inFigure 3-15.

Figure 3-15. Disklabel partition editing

17

Chapter 3 Example installation

3.7 Setting the disk name
After defining the partitions in the new disklabel, the last item is to enter a name for the NetBSD disk as
shown inFigure 3-16. This can be used later to distinguish between disklabels ofotherwise identical
disks.

Figure 3-16. Naming the NetBSD disk

3.8 Last chance!
The installer now has all the data it needs to prepare the disk. Nothing has been written to the disk at this
point but, and now is your last chance to abort the installation process before actually writing data to the
disk. Choose “no” to abort the installation process and return to the main menu, or continue by selecting
“yes”.

18

Chapter 3 Example installation

Figure 3-17. Last chance to abort

3.9 The disk preparation process
After confirming that sysinst should prepare the disk, it will run disklabel(8) to create the NetBSD
partition layout and newfs(8) to create the file systems on the disk.

After preparing the NetBSD partitions and their filesystems, the next question (shown inFigure 3-18) is
whichbootblocksto install. Usually you will choose the default ofBIOS console, i.e., show boot
messages on your computer’s display.

If you run a farm of machines without monitor, it may be more convenient to use a serial console running
on one of the serial ports. The menu also allows changing the serial port’s baud rate from the default of
9600 baud, 8 data bits, no parity and one stopbit.

19

Chapter 3 Example installation

Figure 3-18. Selecting bootblocks

3.10 Choosing the installation media
At this point, you have finished the first and most difficult part of the installation!

The second half of the installation process consists of populating the file systems by extracting the
distribution sets that you selected earlier (base, compiler tools, games, etc). Before unpacking the sets,
sysinst asks what information you would like to see during that process, as shown inFigure 3-19. You
can choose between a progress bar, a display of the name of each extracted file, or nothing.

Figure 3-19. Choosing the verbosity of the extraction process

20

Chapter 3 Example installation

Now sysinst needs to find the NetBSD sets and you must tell it where to find them. The menu offers
several choices, as shown inFigure 3-20. The options are explained in detail in theINSTALL documents.

Figure 3-20. Installation media

3.10.1 Installing from CD-ROM or DVD

When selecting “CD-ROM / DVD”, sysinst asks the name of the CD-ROM or DVD device and the
directory in which the set files are stored, seeFigure 3-21. The device is usuallycd0 for the first
CD-ROM or DVD drive, regardless of whether it is IDE or SCSI (or even USB or FireWire).

Figure 3-21. CD-ROM/DVD installation

21

Chapter 3 Example installation

The CD-ROM/DVD device name: If you don’t know the name of the CD-ROM/DVD device, you can
find by doing the following:

1. Press Ctrl-Z to pause sysinst and go to the shell prompt.

2. Type the command:

dmesg

This will show the kernel startup messages, including the name of the CD-ROM device, for
example cd0.

3. If the display scrolls too quickly, you can also use more :

dmesg | more

4. Go back to the installation program with the command:

fg

3.10.2 Installing from an unmounted file system

Figure 3-22shows the menu to install NetBSD from an unmounted file system. It is necessary to specify
the device ("Device"), the file system of the device ("File system") and the path to the install sets ("Set
directory"). The setting for the "Base directory" is optional and can be kept blank.

In the following example the install sets are stored on aMSDOSfile system, on partition "e" on the
device "sd0".

Figure 3-22. Mounting a file system

It is usually necessary to specify the device name and the partition. Figure 3-23shows how to specify
device "sd0" with partition "e".

22

Chapter 3 Example installation

Figure 3-23. Mounting a partition

In Figure 3-24the file system type is specified. It is “msdos” but it could also be the NetBSD file system
“ffs” or “ext2fs”, a Linux file system. The “Base directory” item is left blank and the binary sets are
stored under “/sets”. Choosing “Continue” will start the extraction of the sets.

Figure 3-24. Accessing a MSDOS file system

3.10.3 Installing via FTP

If you choose to install from a local network or the Internet via FTP, sysinst will configure the system’s
network connection, download the selected set files to a temporary directory, and then extract them.

23

Chapter 3 Example installation

NetBSD currently supports installation via ethernet, USB ethernet or wireless, and wireless LAN.
Installation via DSL (PPP over Ethernet) is not supported during installation.

The first step shown inFigure 3-25consists of selecting which network card to configure. sysinst will
determine a list of available network interfaces, present them and ask which one to use.

Note: The exact names of your network interfaces depend on the hardware you use. Example
interfaces are “wm” for Intel Gigabit interfaces, “ne” for NE2000 and compatible ethernet cards, and
“ath” for Atheros based wireless cards. This list is by no means complete, and NetBSD supports
many more network devices.

To get a list of network interfaces available on your system, interrupt the installation process by
pressing “Ctrl+Z”, then enter

ifconfig -a

ne2: flags=8822<UP,BROADCAST,NOTRAILERS,SIMPLEX,MULT ICAST> mtu 1500
address: 00:06:0d:c6:73:d5
media: Ethernet autoselect 10baseT full-duplex
status: active
inet 0.0.0.0 netmask 0xffffff00 broadcast 0.0.0.0
inet6 fe80::206:dff:fec6:73d5%ne2 prefixlen 64 scopeid 0 x1

lo0: flags=8009<UP,LOOPBACK,MULTICAST> mtu 33196
inet 127.0.0.1 netmask 0xff000000
inet6 ::1 prefixlen 128
inet6 fe80::1%lo0 prefixlen 64 scopeid 0x2

ppp0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500
ppp1: flags=8010<POINTOPOINT,MULTICAST> mtu 1500
sl0: flags=c010<POINTOPOINT,LINK2,MULTICAST> mtu 296
sl1: flags=c010<POINTOPOINT,LINK2,MULTICAST> mtu 296
strip0: flags=0 mtu 1100
strip1: flags=0 mtu 1100

To get more information about all the devices found during system startup, including network
devices, type

dmesg | more

You can return to the NetBSD installation by typing

fg

24

Chapter 3 Example installation

Figure 3-25. Which network interface to configure

Next, you have a chance to set your network medium.

Note: It is unlikely that you will need to enter anything other than the default here. If you experience
problems like very slow transfers or timeouts, you may, for example, force different duplex settings for
ethernet cards. To get a list of supported media and media options for a given network device (ne2,
for example), escape from sysinst by pressing “Ctrl+Z”, then enter:

ifconfig -m ne2

ne2: flags=8822<UP,BROADCAST,NOTRAILERS,SIMPLEX,MULT ICAST> mtu 1500
address: 00:03:0d:c6:73:d5
media: Ethernet 10baseT full-duplex
status: active
supported Ethernet media:

media 10baseT
media 10baseT mediaopt full-duplex
media 10base2
media autoselect

The various values printed after “media” may be of interest here, including keywords like “autoselect”
but also including any “mediaopt” settings.

Return to the installation by typing:

fg

The next question will be whether you want to perform DHCP autoconfiguration as shown in
Figure 3-26. Answer “Yes” if you have a DHCPDynamic Host Configuration Protocol(DHCP) running
somewhere on your network, and sysinst will fetch a number ofdefaults from it. Answer “No” to enter
all the values manually.

We will assume you answered “No” and go into all the questionsasked in detail.

25

Chapter 3 Example installation

Figure 3-26. Using DHCP for network configuration

Figure 3-27shows the questions asked for the network configuration. Thevalues to be entered are:

Your DNS Domain:

This is the name of the domain you are in.

Your hostname:

The name by which other machines can usually address your computer. Not used during installation.

Your IPv4 number:

Enter your numerical Internet Protocol address in “dotted quad” notation here, for example,
192.168.1.3

IPv4 Netmask:

The netmask for your network, either given as a hex value (“0xffffff00”) or in dotted-quad notation
(“255.255.255.0”).

IPv4 gateway:

Your router’s (or default gateway’s) IP address. Do not use ahostname here!

IPv4 name server:

Your (first) DNS server’s IP address. Again, don’t use a hostname.

26

Chapter 3 Example installation

Figure 3-27. Entering and configuring network data

After answering all of your network configuration info, it will be displayed, and you will have a chance
to go back and make changes (Figure 3-28).

Figure 3-28. Confirming network parameters

sysinst will now run a few commands (not displayed in detail here) to configure the network: flushing the
routing table, setting the default route, and testing if thenetwork connection is operational.

Now that you have a functional network connection, you must tell the installer how to get the distribution
sets, as shown inFigure 3-29.

When you are satisfied with your settings (the defaults work most of the time), choose “Get Distribution”
to continue.

27

Chapter 3 Example installation

Figure 3-29. Defining the FTP settings

3.10.4 Installing via NFS

If you want to install NetBSD from a server in your local network, NFS is an alternative to FTP.

Note: Using this installation method requires the ability to set up an NFS server, a topic which is not
discussed here.

As shown inFigure 3-30, you must specify the IP address of the NFS server with "Host", the "Base
directory" that isexportedby the NFS server, and the "Set directory", which contains the install sets.

28

Chapter 3 Example installation

Figure 3-30. NFS install screen

Figure 3-31shows an example: Host “192.168.1.50 ” is the NFS server thatprovides the directory
“/home/username/Downloads” The NetBSD install sets are stored in the directory
“/home/username/Downloads/sets” on the NFS server. Choose “Continue” to start the installation of the
distribution sets.

Figure 3-31. NFS example

3.11 Extracting sets
After the method for obtaining distribution sets has been chosen, and (if applicable) after those sets have

29

Chapter 3 Example installation

been transferred, they will be extracted into the new NetBSDfile system.

After extracting all selected sets, sysinst will create device nodes in the/dev directory and then display a
message saying that everything went well.

Another message (seeFigure 3-32) will let you know that the set extraction is now completed, and that
you will have an opportunity to configure some essential things before finishing the NetBSD installation.

Figure 3-32. Extraction of sets completed

3.12 System configuration
The first thing you can configure is your timezone. It isUniversal Time Coordinated(UTC) by default,
and you can use the two-level menu of continents/countries and cities shown inFigure 3-33to select
your timezone with the Return key. Next, press “x” followed by Return to exit timezone selection.

30

Chapter 3 Example installation

Figure 3-33. Selecting the system’s time zone

At this point, you are given the option to choose a password encryption scheme. While “DES” is the
standard algorithm used on most Unix systems, “MD5”, “Blowfish”, and “SHA1” allow longer
passwords than DES, which only uses the first eight characters of the password that is entered. DES is
still useful for interoperability with other operating systems.

31

Chapter 3 Example installation

Figure 3-34. Selecting a password encryption scheme

After choosing the password cipher you are asked if you want to set the root password. It is
recommended to set a root password at this point for securityreasons.

Figure 3-35. Set a root password?

32

Chapter 3 Example installation

When you agree to set a root password, sysinst will run the passwd(1) utility for you. Please note that the
password is not echoed.

Figure 3-36. Setting root password

The next menu allows you to choose which command line interpreter - also known as a “shell” - will be
used for the root account. The default is the classicBourne shell, sh(1). Other choices are theKorn shell
(ksh(1)) and theC shell(csh(1)). If, upon reading this, you don’t have some idea of which shell you
prefer, simply use the default, as this is a highly subjective decision. Should you later change your mind,
root’s shell can always be changed.

Figure 3-37. Choosing a shell

33

Chapter 3 Example installation

3.13 Finishing the installation
At this point the installation is finished.

Figure 3-38. Installation completed

After passing the dialog that confirms the installation, sysinst will return to the main menu. Remove any
installation media (CD, floppy, etc.) and choose “Reboot thecomputer” to boot your new NetBSD
installation.

34

Chapter 3 Example installation

Figure 3-39. Reboot to finish installation

35

Chapter 4

Upgrading NetBSD

4.1 Overview
This chapter describes the binary upgrade of a NetBSD system. To do the upgrade, you must have some
form of bootable media (CD-ROM, USB drive, floppy, etc.) available and at least the base and kern
distribution sets. Since files already installed on the system are overwritten in place, you only need
additional free space for files which weren’t previously installed or to account for growth of the sets
between releases. Usually this is not more than a few megabytes.

Note: Since upgrading involves replacing the kernel, boot blocks, and most of the system binaries, it
has the potential to cause data loss. Before beginning, you are strongly advised to back up any
important data on the NetBSD partition or on any other partitions on your disk.

The upgrade procedure is similar to an installation, but without the hard disk partitioning. sysinst will
attempt to merge the settings stored in your/etc directory with the new version of NetBSD. Also, file
systems are checked before unpacking the sets. Fetching thebinary sets is done in the same manner as in
the installation procedure.

4.2 The INSTALL document
Before doing an upgrade it is essential to read the release information and upgrading notes in one of the
INSTALL files: this is the official description of the upgrade procedure, with platform specific
information and important details. It can be found in the root directory of the NetBSD release (on the
install CD or on the FTP server)

It is advisable to print the INSTALL document out. It is available in four formats: .txt, .ps, .more, and
.html

4.3 Performing the upgrade
The following section provides an overview of the binary upgrade process. Most of the following sysinst
dialogs are similar to those of the installation process. More verbose descriptions and explanations of the
dialogs are available inChapter 3.

After selecting the installation language and the keyboardtype, the main menu appears. Choosing option
“b: Upgrade NetBSD on a hard disk” will start the the upgrade process.

36

Chapter 4 Upgrading NetBSD

Figure 4-1. Starting the upgrade

The dialog inFigure 4-2will request permission to continue with the upgrade. At this point nothing has
been changed yet and the upgrade can still be cancelled. Thisis a good time to ask yourself whether you
have made a backup, and if you know for certain that you will beable to restore from it.

37

Chapter 4 Upgrading NetBSD

Figure 4-2. Continuing the upgrade

After choosing to continue with “Yes”, the next dialog will ask you to specify the hard disk with the
NetBSD system that shall be upgraded. If more than one disk isavailable a list of the disks will be
displayed.

Figure 4-3. Choosing the hard drive

The system used for the example has only one hard disk available: “wd0”.

The following dialog provides a menu to choose the installation type. The choices are “Full installation”,
“Minimal installation”, or “Custom installation”.

38

Chapter 4 Upgrading NetBSD

Figure 4-4. Choosing the distribution filesets

At this point, sysinst will perform a check of the file system to ensure its integrity.

Figure 4-5. File system check

The next step is to choose which type of bootblocks to install.

39

Chapter 4 Upgrading NetBSD

Figure 4-6. Choosing bootblocks

The next dialog will ask how much information should be displayed during the extraction of the
distribution sets.

Figure 4-7. Upgrade process - verbosity level

The following dialog asks for the install method of choice and provides a list of possible options. The
install medium contains the new NetBSD distribution sets. You will be prompted for different
information depending on which option you choose. For example, a CD-ROM or DVD install requires
you to specify which device to use and which directory the sets are in, while an FTP install requires you
to configure your network and specify the hostname of an FTP server. More details can be found in
Section 3.10.

40

Chapter 4 Upgrading NetBSD

Figure 4-8. Install medium

sysinst will now unpack the distribution sets, replacing your old binaries. After unpacking these sets, it
runs the postinstall script to clean up various things. If noproblems occur, you are done. If postinstall
produces errors, you will have to manually resolve the issues it brings up. See postinstall’s man page for
more information. You should also read the remarks inINSTALL about upgrading, as specific
compatibility issues are documented there.

41

Chapter 4 Upgrading NetBSD

Figure 4-9. Upgrade complete

When you are back at the main menu, remove the boot medium (if applicable) and reboot. Have fun with
your new version of NetBSD!

42

III. System configuration,
administration and tuning

Chapter 5

The first steps on NetBSD

After installing and rebooting, the computer will boot fromthe hard disk. If everything went well you’ll
be looking at the login prompt within a few seconds (or minutes, depending on your hardware). The
system is not yet fully configured but basic configuration is easy. You will see how to quickly configure
some basic things, and in the meantime, you will learn some basics about how the system works.

5.1 Troubleshooting

5.1.1 Boot problems

If the system does not boot it could be that the boot manager was not installed correctly or that there is a
problem with theMBR(Master Boot Record). Reboot the machine from the boot medium (CD-ROM,
DVD, floppy, etc.) and when you see the boot menu, select the option to drop to the boot prompt.

type "?" or "help" for help.
> ?

commands are:
boot [xdNx:][filename] [-12acdqsvxz]

(ex. "hd0a:netbsd.old -s")
ls [path]
dev xd[N[x]]:
consdev {pc|com[0123]|com[0123]kbd|auto}
modules {enabled|disabled}
load {path_to_module}
multiboot [xdNx:][filename] [<args>]
help|?
quit
> boot hd0a:netbsd

The system should now boot from the hard disk. If NetBSD bootscorrectly from the hard disk, there is
probably a Master Boot Record problem: you can install the boot manager or modify its configuration
with thefdisk -B command. SeeSection 21.1for a detailed description.

5.1.2 Misconfiguration of /etc/rc.conf

If you or the installation software haven’t done any configuration of /etc/rc.conf (sysinst normally
will), the system will drop you intosingle user modeand show the message:

/etc/rc.conf is not configured. Multiuser boot aborted

44

Chapter 5 The first steps on NetBSD

and with the root file system (/) mounted read-only. When the system asks you to choose a shell, simply
press RETURN to get to a /bin/sh prompt. If you are asked for a terminal type, respond withvt220 (or
whatever is appropriate for your terminal type) and press RETURN. You may need to type one of the
following commands to get your delete key to work properly, depending on your keyboard:

stty erase ’^h’

stty erase ’^?’

At this point, you need to configure at least one file in the/etc directory. You will need to mount your
root file system read- and writable with:

/sbin/mount -u -w /

Change to the/etc directory and take a look at the/etc/rc.conf file. Modify it to your tastes,
making sure that you set “rc_configured=YES ” so that your changes will be enabled and a
multi-user boot can proceed. Default values for the variousprograms can be found in
/etc/defaults/rc.conf . More complete documentation can be found in rc.conf(5).

If your /usr directory is on a separate partition and you do not know how touse the ed(1) editor, you
will have to mount your/usr partition to gain access to the ex(1) or vi editor. Do the following:

mount /usr

export TERM=vt220

If you have/var on a separate partition, you need to repeat that step for it. After that, you can edit
/etc/rc.conf with vi. When you have finished, type exit at the prompt to leave the single-user shell
and continue with the multi-user boot.

5.2 The man command
If you have never used a Unix(-like) operating system before, your best friend is now theman command,
which displays a manual page: the NetBSD manual pages are amongst the best and most detailed you
can find, although they are very technical.

A good starting point after booting a new NetBSD system is theafterboot(8) manual page. It contains
more detailed information about necessary and useful configuration settings.

man name shows the man page of the “name” command andman -k name shows a list of man pages
dealing with “name” (you can also use theaproposcommand).

To learn the basics of theman command, type:

man man

The manual is divided into nine sections, containing not only basic information on commands but also
the descriptions of some NetBSD features and structures. For example, take a look at the hier(7) man
page, which describes in detail the layout of the filesystem used by NetBSD.

man hier

45

Chapter 5 The first steps on NetBSD

Other similar pages are release(7) and pkgsrc(7). Each section of the manual has an intro(8) man page
describing its content. For example, try:

man 8 intro

Manual pages are divided in several sections, depending on what they document:

1. general commands (tools and utilities), see intro(1)

2. system calls and error numbers, see intro(2)

3. C libraries, see intro(3)

4. special files and hardware support, see intro(4)

5. file formats, see intro(5)

6. games, see intro(6)

7. miscellaneous information pages, see intro(7)

8. system maintenance and operation commands, see intro(8)

9. kernel internals, see intro(9)

A subject may appear in more than one section of the manual; toview a specific page, supply the section
number as an argument to the man command. For example,timeappears in section 1 (the time user
command), in section 3 (the time function of the C library) and in section 9 (the time system variable).
To see the man page for the time C function, write:

man 3 time

To see all the available pages:

man -w time

man -a time

5.3 Editing the configuration files
Besides the shell, a text editor is the most essential tool for the NetBSD system administration.

There are two obvious options in the base system

• ed(1), a line orientated text editor. ed is a very simplistictext editor. It has a command mode, (active
when first started) and an input mode. Its primary advantage is that it is available even in single-user
mode with only the/ filesystem mounted, and will work even without a correct terminal type set. It is
worth gaining a basic understanding of ed - enough to fix the/etc/fstab and/etc/rc.conf files
in an emergency.

• vi(1), a screen orientated text editor. vi retains the command and input modes of ex (which in fact is
just different representation of the vi), but adds a full screen visual interface. vi is the only screen
editor available in the base install, and requires a valid terminal type to run. Refer toChapter 6to learn
more about NetBSD’s default editor.

46

Chapter 5 The first steps on NetBSD

Advise: Before you continue you should know or learn how to open, edit and save files within vi.
Study at least the vi(1) manual page.

5.4 Login
For the first login you will use theroot superuser, which is the only user defined at the end of the
installation. At the password prompt type the password for root that you have defined during the
installation. If you haven’t defined a password, just press Enter.

NetBSD/i386 (Amnesiac) (ttyE0)
login: root

password:

We recommend creating a non-root account and using su(1) for
root access.
#

5.5 Changing the root password
If you haven’t defined a password forroot during the installation, you should use the/usr/bin/passwd
command to do so now.

/usr/bin/passwd

Changing local password for root.
New password:
Retype new password:

Passwords are not displayed on the screen while you type. Later we will see how to add other accounts
on the system.

Choose a password that has numbers, digits, and special characters (not space) as well as from the upper
and lower case alphabet. Do not choose any word in any language. It is common for an intruder to use
dictionary attacks.

5.6 Adding users
It is time to add new users to the system, since you do not want to use the root account for your daily
work. For security reasons, it is bad practice to login as root during regular use and maintenance of the
system. Instead, administrators are encouraged to add a regular user, add the user to thewheel group,
then use the su(1) command when root privileges are required. NetBSD offers the useradd(8) utility to
create user accounts. For example, to create a new user:

useradd -m joe

The defaults for the useradd command can be changed; see the useradd(8) man page.

47

Chapter 5 The first steps on NetBSD

User accounts that can su to root are required to be in the "wheel" group. This can be done when the
account is created by specifying a secondary group:

useradd -m -G wheel joe

As an alternative, the usermod(8) command can be used to add auser to an existing group:

usermod -G wheel joe

In case you just created a user but forgot to set a password, you can still do that later using the passwd(1)
command.

passwd joe

Note: You can edit /etc/group directly to add users to groups, but do not edit the /etc/passwd file
directly, as all changes made to that file will get lost.

5.7 Shadow passwords
Shadow passwords are enabled by default;: all the passwordsin /etc/passwd contain an “*”; the
encrypted passwords are stored in another file/etc/master.passwd , that can be read only by root.
When you start vipw(8) to edit the password file, the program opens a copy of/etc/master.passwd ;
when you exit, vipw checks the validity of the copy, creates anew/etc/passwd and installs the new
/etc/master.passwd file. Finally, vipw launches pwd_mkdb(8), which creates thefiles
/etc/pwd.db and/etc/spwd.db , two databases which are equivalent to/etc/passwd and
/etc/master.passwd but faster to process.

As you can see, passwords are handled automatically by NetBSD; if you use vipw to edit the password
file you don’t need any special administration procedure.

It is very important toalwaysusevipw and the other tools for account administration (chfn(1), chsh(1),
chpass(1), passwd(1)) and tonevermodify directly/etc/master.passwd or /etc/passwd .

5.8 Changing the keyboard layout
The keyboard still has the US layout; if you have a different keyboard it’s better to change its layout now,
before starting to configure the system. For example, to use the italian keyboard, give the following
command:

wsconsctl -k -w encoding=it

encoding -> it

To save the keyboard layout permanently add the following line to the/etc/wscons.conf file:

encoding it

SeeSection 8.1.2.1for a list of keymaps available as well as how to make these settings permanent.

48

Chapter 5 The first steps on NetBSD

5.9 System time
NetBSD, like all Unix systems, uses a system clock based on Greenwich time (GMT) and this is what
you should set your system clock to. If you want to keep the system clock set to the local time (because,
for example, you have a dual boot system with Windows installed), you must notify NetBSD, adding
rtclocaltime=YES to /etc/rc.conf :

echo rtclocaltime=YES >> /etc/rc.conf

sh /etc/rc.d/rtclocaltime restart

The value of the number of minutes west of GMT is calculated automatically and it’s set under
kern.rtc_offset sysctl variable.

To display the current setting of thekern.rtc_offset variable:

sysctl kern.rtc_offset

kern.rtc_offset = -60

Now the kernel knows how to convert the time of the PC clock in the GMT system time but you must
still configure the system for your local time zone (which youwill find in the /usr/share/zoneinfo

directory).

If needed, change the date and change the symbolic link of/etc/localtime to the appropriate time
zone in the/usr/share/zoneinfo directory.

Examples:

date 200705101820

Sets the current date to May 10th, 2007 6:20pm.

ln -fs /usr/share/zoneinfo/Europe/Helsinki /etc/localtime

Sets the time zone to Eastern Europe Summer Time.

5.10 Secure Shell (ssh(1))
By default, all services are disabled in a fresh NetBSD installation, and ssh(1) is no exception. You may
wish to enable it so you can remotely control your system. Setsshd=yes in /etc/rc.conf and then
starting the server with the command

/etc/rc.d/sshd start

The first time the server is started, it will generate a new keypair, which will be stored inside the
directory/etc/ssh .

5.11 Basic configuration in /etc/rc.conf

NetBSD uses the/etc/rc.conf for system configuration at startup: this file determines what will be
executed when the system boots. Understanding this file is important. The rc.conf(5) manual page
contains a detailed description of all the options.

49

Chapter 5 The first steps on NetBSD

The/etc/defaults/rc.conf file contains the default values for a lot of settings, and to override a
default value, the new value must be put into/etc/rc.conf : the definitions there override the one in
/etc/defaults/rc.conf (which should stay unchanged).

man rc.conf

The first modifications are:

• Set “rc_configured=yes ” (this modification might already have been done by the installation
software.)

• Set “dhclient=yes ” to configure your system’s network using DHCP.

• Define ahostnamefor your machine (use a fully qualified hostname, i.e. one including domain). If you
have a standalone machine you can use any name (for example,vigor3.your.domain). If your machine
is connected to a network, you should supply the correct network name.

• If your are connected to a local network or the internet over arouter, set thedefaultrouteNetwork
default route to the IP address of your router (also calleddefault gateway), for example
“defaultroute=192.168.1.1 ”.

5.12 Basic network settings
Not all necessary network settings can be set in the/etc/rc.conf file. The system needs to know the
names and the IP addresses of the computers (hosts) in the local network. These settings need to be
added to the/etc/hosts file in the form:

IP-address hostname host

For example:

192.168.1.3 vigor3.your.domain vigor3

To resolve the names and IP addresses of remote hosts the system needs access to a (remote or local)
DNS nameserver. That means to simply add the IP addresses of one or more nameservers to the
/etc/resolv.conf file, using the following form:

nameserver 145.253.2.75

5.13 Mounting a CD-ROM
New users are often surprised by the fact that although the installation program recognized and mounted
their CD-ROM perfectly, the installed system seems to have “forgotten” how to use the CD-ROM. There
is no special magic for using a CD-ROM: you can mount it as any other file system, all you need to know
is the device name and some options to the mount(8) command. You can find the device name with the
aforementioned dmesg(8) command. For example, if dmesg displays:

dmesg | grep ^cd

cd0 at atapibus0 drive 1: <ASUS CD-S400/A, , V2.1H> type 5 cdr om removable

50

Chapter 5 The first steps on NetBSD

the device name iscd0 , and you can mount the CD-ROM with the following commands:

mkdir /cdrom

mount -t cd9660 -o ro /dev/cd0a /cdrom

To make things easier, you can add a line to the/etc/fstab file:

/dev/cd0a /cdrom cd9660 ro,noauto 0 0

Without the need to reboot, you can now mount the CD-ROM with:

mount /cdrom

When the CD-ROM is mounted you can’t eject it manually; you will have to unmount it before you can
do that:

umount /cdrom

There is also a software command which unmounts the CD-ROM and ejects it:

eject /dev/cd0a

5.14 Mounting a floppy
To mount a floppy you must know the name of the floppy device and the file system type of the floppy.
Read the fdc(4) manpage for more information about device naming, as this will differ depending on the
exact size and kind of your floppy disk. For example, to read and write a floppy in MS-DOS format you
use the following command:

mount -t msdos /dev/fd0a /mnt

Instead of/mnt , you can use another directory of your choice; you could, forexample, create a/floppy

directory like you did for the cdrom. If you do a lot of work with MS-DOS floppies, you will want to
install the mtools package, which enables you to access a MS-DOS floppy (or hard disk partition)
without the need to mount it. It is very handy for quickly copying a file from or to a floppy:

mcopy foo bar a:

mcopy a:baz.txt baz

mcopy a:*.jpg .

5.15 Installing additional software

5.15.1. Using packages from pkgsrc

If you wish to install any of the software freely available for UNIX-like systems you are strongly advised
to first check the NetBSD package system pkgsrc (http://www.pkgsrc.org). This automatically handles
any changes necessary to make the software run on NetBSD, retrieval and installation of any other

51

Chapter 5 The first steps on NetBSD

packages on which the software may depend, and simplifies installation (and deinstallation), both from
source and precompiled binaries.

• See the list of available packages
(ftp://ftp.NetBSD.org/pub/NetBSD/packages/pkgsrc/README-all.html)

• Precompiled binaries are available on the NetBSD FTP serverfor some ports. To install them the
PKG_PATH variable needs to be adjusted in the following way (under the sh(1) shell):

export PKG_PATH="ftp://ftp.NetBSD.org/pub/pkgsrc/packages/NetBSD/<PORT>/<RELEASE-NUMBER>/All"

export PKG_PATH

Where<RELEASE-NUMBER> needs to be replaced by the release number of an existing NetBSD
release (for example, 5.0).<PORT> needs to be replaced by the Port name for the used architecture (for
example, amd64)

Applications can now be installed by the superuserroot with the pkg_add command:

pkg_add -v perl

pkg_add -v apache

pkg_add -v firefox

pkg_add -v kde

The above commands will install the Perl programming language, Apache web server, Firefox web
browser and the KDE desktop environment as well as all the packages they depend on.

Installed applications can be updated in the following way:

pkg_add -uv firefox

The following command will force an update and update even dependant packages:

pkg_add -fuuv firefox

All details about package management can be found inThe pkgsrc guide
(http://www.NetBSD.org/docs/pkgsrc/index.html)

5.15.2. Storing third-party software

On many UNIX-like systems the directory structure under/usr/local is reserved for applications and
files, which are independent of the system’s software management. This convention is the reason why
most software developers expect their software to be installed under/usr/local . NetBSD has no
/usr/local directory, but it can be created manually if needed. NetBSD will not care about anything
installed under/usr/local , this task is left to you as the system administrator.

5.16 Security alerts
By the time that you have installed your system, it is quite likely that bugs in the release have been
found. All significant and easily fixed problems will be reported at
http://www.NetBSD.org/support/security/. It is recommended that you check this page regularly.

52

Chapter 5 The first steps on NetBSD

5.17 Stopping and rebooting the system
Use one of the following two shutdown commands to halt or reboot the system:

shutdown -h now

shutdown -r now

Two other commands to perform the same tasks are:

halt

reboot

halt, reboot and shutdown are not synonyms: the latter is more sophisticated. On a multiuser system you
should really use shutdown this will allow you to schedule a shutdown time, notify users, and it will also
take care to shutdown database processes etc. properly without simply kill(1)ing them. For a more
detailed description, see the shutdown(8), halt(8) and reboot(8) manpages.

53

Chapter 6

Editing

6.1 Introducing vi
It is not like the vi editor needs introducing to seasoned UNIX users. The vi editor, originally developed
by Bill Joy of Sun Microsystems, is an endlessly extensible,easy to uselight ASCII editor and the bane
of the newbie existence. This section will introduce the vi editor to the newbie and perhaps toss in a few
ideas for the seasoned user as well.

The first half of this section will overview editing, saving,yanking/putting and navigating a file within a
vi session. The second half will be a step by step sample vi session to help get started.

This is intended as a primer for using the vi editor, it isnot by any meansa thorough guide. It is meant to
get the first time user up and using vi with enough skills to make changes to and create files.

6.1.1 The vi interface

Using the vi editor really is not much different than any other terminal based software with one
exception, it does not use a tab type (or curses if you will) style interface, although many versions of vi
do usecurses it does not give the same look and feel of the typical curses based interface. Instead it
works in two modes,commandandedit. While this may seem strange, it is not much different than
windows based editing if you think about it. Take this as an example, if you are using say gedit and you
take the mouse, highlight some text, select cut and then paste, the whole time you are using the mouse
you are not editing (even though you can). In vi, the same action is done by simply deleting the whole
line with dd in command mode, moving to the line you wish to place it below and hittingp in command
mode. One could almost say the analogy is “mouse mode vs. command mode” (although they are not
exactly identical, conceptually the idea is similar).

To start up a vi session, one simply begins the way they might with any terminal based software:

$ vi filename

One important note to remember here is that when a file is edited, it is loaded into a memory buffer. The
rest of the text will make reference to the buffer and file in their proper context. A fileonlychanges when
the user has committed changes with one of the write commands.

6.1.2 Switching to Edit Mode

The vi editor sports a range of options one can provide at start up, for the time being we will just look at
the default startup. When invoked as shown above, the editors default startup mode is command mode, so
in essence you cannot commence to typing into the buffer. Instead you must switch out out of command
mode to enter text. The following text describes edit start modes:

54

Chapter 6 Editing

a Append after cursor.
A Append to end of line.
C Change the rest of current line.
cw Change the current word.
i Insert before cursor.
I Insert before first non blank line.
o Open a line below for insert
O Open a line above for insert.

6.1.3 Switching Modes & Saving Buffers to Files

Of course knowing the edit commands does not do much good if you can’t switch back to command
mode and save a file, to switch back simply hit theESC key. To enter certain commands, the colon must
be used. Write commands are one such set of commands. To do this, simply enter:.

Hitting the colon then will put the user at the colon (orcommandif you will) prompt at the bottom left
corner of the screen. Now let us look at the save commands:

:w Write the buffer to file.
:wq Write the buffer to file and quit.

6.1.4 Yanking and Putting

What good is an editor if you cannot manipulate blocks of text? Of course vi supports this feature as well
and as with most of the vi commands it somewhat intuitive. To yank a line butnot delete it, simply enter
yy or Y in command mode and the current line will be copied into a buffer. To put the line somewhere,
navigate to the line above where the line is to be put and hit thep key for the “put” command. To move a
line, simply delete the whole line with thedd command, navigate and put.

6.1.4.1 Oops I Did Not Mean to do that!

Undo is pretty simple,u undoes the last action andU undoes the last line deleted or changes made on the
last line.

6.1.5 Navigation in the Buffer

Most vi primers or tutorials start off with navigation, however, not unlike most editors in order to
navigate a file there must be something to navigate to and from(hence why this column sort of went in
reverse). Depending on your flavor of vi (or if it evenis vi and not say elvis, nvi or vim) you can navigate
in both edit and command mode.

For the beginner I feel that switching to command mode and then navigating is a bit safer until one has
practiced for awhile. The navigation keys for terminals that are not recognized or do not support the use
of arrow keys are the following:

55

Chapter 6 Editing

k Moves the cursor up one line.
j Moves the cursor down one line.
l Moves the cursor right one character.
h Moves the cursor left one character.

If the terminal is recognized and supports them, the arrow keys can be used to navigate the buffer in
command mode.

In addition to simple “one spot navigation” vi supports jumping to a line by simply typing in the line
number at the colon prompt. For example, if you wanted to jumpto line 223 the keystrokes from editor
mode would look like so:

ESC

:223

6.1.6 Searching a File, the Alternate Navigational Aid

The vi editor supports searching using regular expression syntax, however, it is slightly different to
invoke from command mode. One simply hits the/ key in command mode and enters what they are
searching for, as an example let us say I am searching for the expressionfoo:

/foo

That is it, to illustrate a slightly different expression, let us say I am looking forfoo bar:

/foo bar

6.1.6.1 Additional Navigation Commands

Searching and scrolling are not the only ways to navigate a vibuffer. Following is a list of succinct
navigation commands available for vi:

0 Move to beginning of line.
$ Move to end of line.
b Back up one word.
w Move forward one word.
G Move to the bottom of the buffer.
H Move to the top line on the screen.
L Move to the last line on the screen.
M Move the cursor to the middle of the screen.
N Scan for next search match but opposite direction.
n Scan for next search match in the same direction.

56

Chapter 6 Editing

6.1.7 A Sample Session

Now that we have covered the basics, let us run a sample session using a couple of the items discussed so
far. First, we open an empty file into the buffer from the command line like so:

vi foo.txt

Next we switch to edit mode and enter two lines separated by anempty line, remember our buffer is
empty so we hit thei key to insert before cursor and enter some text:

This is some text

there we skipped a line
~
~
~
~

Now hit theESC key to switch back into command mode.

Now that we are in command mode, let us save the file. First, hitthe: key, the cursor should be sitting in
the lower left corner right after a prompt. At the: prompt enterw and hit theENTER or RETURN key.
The file has just been saved. There should have been a message to that effect, some vi editors will also
tell you the name, how many lines and the size of the file as well.

It is time to navigate, the cursor should be sitting whereverit was when the file was saved. Try using the
arrow keys to move around a bit. If they do not work (or you are just plain curious) try out thehjkl keys
to see how they work.

Finally, let us do two more things, first, navigate up to the first line and then to the first character. Try out
some of the other command mode navigation keys on that line, hit the following keys a couple of times:

$

0

$

0

The cursor should hop to the end of line, back to the beginningand then to the end again.

Next, search for an expression by hitting the/ key and an expression like so:

/we

The cursor should jump to thefirst occurrenceof we.

Now save the file and exit using write and quit:

:wq

57

Chapter 6 Editing

6.2 Configuring vi
The standard editor supplied with NetBSD is, needless to say, vi, the most loved and hated editor in the
world. If you don’t use vi, skip this section, otherwise readit before installing other versions of vi.
NetBSD’s vi (nvi) was written by Keith Bostic of UCB to have a freely redistributable version of this
editor and has many powerful extensions worth learning while being still very compatible with the
original vi. Nvi has become the standard version of vi for BSD.

Amongst the most interesting extensions are:

• Extended regular expressions (egrep style), enabled with optionextended .

• Tag stacks.

• Infinite undo (to undo, pressu; to continue undoing, press.).

• Incremental search, enabled with the optionsearchincr .

• Left-right scrolling of lines, enabled with the optionleftright ; the number of columns to scroll is
defined by thesidescroll option.

• Command line history editing, enabled with the optioncedit .

• Filename completion, enabled by thefilec option.

• Backgrounded screens and displays.

• Split screen editing.

6.2.1 Extensions to .exrc

The following example shows a.exrc file with some extended options enabled.

set showmode ruler
set filec=^[
set cedit=^[

The first line enables the display of the cursor position (rowand column) and of the current mode
(Command, Insert, Append) on the status line. The second line (where ^[is the ESC character) enables
filename completion with the ESC character. The third line enables command line history editing (also
with the ESC character.) For example, writing “:” and then pressing ESC opens a window with a list of
the previous commands which can be edited and executed (pressing Enter on a command executes it.)

6.2.2 Documentation

The sourcetarball (src.tgz) contains a lot of useful documentation on (n)vi and ex, in the
/usr/src/usr.bin/vi/docs directory. For example:

• Edit: A tutorial

• Ex Reference Manual

• Vi man page

• An Introduction to Display Editing with Vi by William Joy andMark Horton

58

Chapter 6 Editing

• Ex/Vi Reference Manual by Keith Bostic

• Vi Command & Function Reference

• Vi tutorial (beginner and advanced)

If you have never used vi, the “Vi tutorial” is a good startingpoint. It is meant to be read using vi and it
gradually introduces the reader to all the vi commands, which can be tested while reading.An
Introduction to Display Editing with Viby William Joy and Mark Horton is also a very good starting
point.

If you want to learn more about vi and the nvi extensions you should read theEx/Vi Reference Manualby
Keith Bostic which documents all the editor’s commands and options.

6.3 Using tags with vi
This topic is not directly related to NetBSD but it can be useful, for example, for examining the kernel
sources.

When you examine a set of sources in a tree of directories and subdirectories you can simplify your work
using thetag feature of vi. The method is the following:

1. cd to the base directory of the sources.

$ cd /path

2. Write the following commands:

$ find . -name "*.[ch]" > filelist

$ cat filelist | xargs ctags

3. Add the following line to.exrc

set tags= /path/tags

(substitute the correct path instead ofpath.)

59

Chapter 7

rc.d System

As of NetBSD 1.5, the startup of the system changed to using rc-scripts for controlling services, similar
to the init-system System V and Linux use, but without runlevels. This chapter is an overview of the
rc-system and its configuration on NetBSD.

7.1 The rc.d Configuration
The startup files for the system reside under/etc , they are:

• /etc/rc

• /etc/rc.conf

• /etc/rc.d/ *

• /etc/rc.lkm

• /etc/rc.local

• /etc/rc.shutdown

• /etc/rc.subr

• /etc/defaults/ *

• /etc/rc.conf.d/ *

First, a look at controlling and supporting scripts, also documented in rc(8):

• When the kernel has initialized all devices on startup, it usually starts init(8), which in turn runs
/etc/rc

• /etc/rc sorts the scripts in/etc/rc.d using rcorder(8), and runs them in that order. See the
rcorder(8) manpage for more details on how the order of/etc/rc.d scripts is determined.

• /etc/rc.subr contains common functions used by many/etc/rc.d/ * scripts.

• When shutting down the system with shutdown(8),/etc/rc.shutdown is run which runs the scripts
in /etc/rc.d in reverse order (as defined by rcorder(8)).

Additional scripts outside of therc.d directory:

• /etc/rc.lkm loads or unloads Loadable Kernel Modules (LKMs), see modload(8) and
/etc/rc.d/lkm[123] .

• /etc/rc.local is almost the last script called at boot up. This script can beedited by the
administrator to start local daemons that don’t follow the rc-concept.

60

Chapter 7 rc.d System

For example, packages installed pkgsrc usually add their startup files to/usr/pkg/etc/rc.d , and
it’s left as a decision to the system administrator on enabling them, either by manually copying/linking
them to/etc/rc.d , or by adding them to/etc/rc.local . The following is the example from the
system for an apache web server added to/etc/rc.local :

if [-f /usr/pkg/etc/rc.d/apache]; then
/usr/pkg/etc/rc.d/apache start

fi

There’s a central config file for bootscripts, rc.conf(5) located in/etc/rc.conf . /etc/rc.conf loads
its defaults from/etc/defaults/rc.conf , the latter of which should not be touched. In order to alter
a default setting, an override may be installed in/etc/rc.conf .

For example, if you wanted to enable the Secure Shell Daemon:

cd /etc; grep ssh defaults/rc.conf

sshd=NO sshd_flags=""
echo "sshd=YES" >> rc.conf

Or just edit/etc/rc.conf with your favorite editor. The same can be done with any default that needs
to be changed. A common sequence often done after installinga fresh NetBSD system is:

cat /etc/defaults/rc.conf >>/etc/rc.conf

vi /etc/rc.conf

Be careful to use “>>” and not “>” else you will destroy the default contents in/etc/rc.conf , which
are critical to remain there! After you have copied the defaults that way, modify anything you need to in
/etc/rc.conf . Be sure to consult the rc.conf(5) manpage to explain all thesettings in detail.

Last and not least, the/etc/rc.conf.d/ directory can be used for scripts-snippets from third party
software, allowing setting only one or few settings per file.

7.2 The rc.d Scripts
The actual scripts that control services are in/etc/rc.d . Once a service has been activated or told not
to activate in/etc/rc.conf it can be also be modified by calling the rc script from the command line,
for example if an administrator needed to start the secure shell daemon:

/etc/rc.d/sshd start

Starting sshd.

The rc scripts must receive one of the following arguments:

• start

• stop

• restart

• kill

An example might be when a new record has been added to the named database on a named server:

/etc/rc.d/named restart

61

Chapter 7 rc.d System

Stopping named.
Starting named.

A slightly more complex example is when a series of settings have been changed, for instance a firewall’s
ipfilter rules, ipnat configuration, and the secure shell server has switched encryption type:

sh /etc/rc.d/ipfilter restart

sh /etc/rc.d/ipnat restart

sh /etc/rc.d/sshd restart

7.3 The Role of rcorder and rc Scripts
The startup system of every Unix system basically determines the order in which services are started one
way or another. On some Unix systems this is done by numberingthe files and/or putting them in
separate run level directories. (Solaris relies on wildcards like /etc/rc[23].d/S * being sorted
numerically when expanded.) Or they simply put all the commands that should be started at system boot
time into a single monolithic script, which can be messy. (This is what ancient BSD and NetBSD did
before the rc-system). On NetBSD this is done by the rc-scripts and their contents. Please note that
NetBSD does not have multiple runlevels as found e.g. in System V systems like Solaris, or Linux.

At the beginning of each of the rc-scripts in/etc/rc.d/ * , there is a series of comment-lines that have
one of the following items in them:

• REQUIRE

• PROVIDE

• BEFORE

• KEYWORD

These dictate the dependencies of that particular rc scriptand hence rcorder can easily work either “up”
or “down” as the situation requires. Following is an exampleof the/etc/rc.d/nfsd script:

...
PROVIDE: nfsd
REQUIRE: mountd

. /etc/rc.subr

...

Here we can see that this script provides the “nfsd” service,however, it requires “mountd” to be running
first. The rcorder(8) utility will be used at system startup time to read through all the rc-scripts, and
determine the correct order in which to run the rc-scripts (hence its name).

7.4 Additional Reading
There are other resources available pertaining to the rc.d system:

62

Chapter 7 rc.d System

• One of the principal designers of rc.d, Luke Mewburn, gave a presentation on the system at USENIX
2001. It is available in PDF (http://www.mewburn.net/luke/papers/rc.d.pdf) format.

• Will Andrews wrote a Daemonnews (http://www.daemonnews.org/) article called The NetBSD rc.d
System (http://ezine.daemonnews.org/200108/rcdsystem.html).

63

Chapter 8

Console drivers

In NetBSD versions before 1.4 the user could choose between two different drivers for screen and
keyboard, pccons (specific for i386) and pcvt. In NetBSD 1.4 the new wscons multiplatform driver
appeared, which has substituted the previous drivers, of which pccons is still supported as it uses less
system resources and is used for install floppies due to that.

8.1 wscons
Wscons is NetBSD’s platform-independent workstation console driver. It handles complete abstraction
of keyboards and mice. This means that you can plug in severalkeyboards or mice and they will be
multiplexed onto a single terminal, but also that it can multiplex several virtual terminals onto one
physical terminal.

The capabilities of wscons can vary depending on the port. Starting with NetBSD 4.0, almost all ports
have full support for most capabilities wscons has to offer.If you are using a non-mainstream
architecture, please see the port-specific FAQ if wscons seems to lack features.

Wscons support is enabled by default on most architectures.This can be done manually by adding
wscons=YES to your/etc/rc.conf . Then configure the desired number of virtual consoles as
described inSection 8.1.1.1and start wscons by enteringsh /etc/rc.d/wscons start followed by
sh /etc/rc.d/ttys restart. You can now switch virtual consoles by pressing Ctrl+Alt+Fn or
similar, depending on the platform.

wscons comprises three subsystems: wsdisplay, wskbd and wsmouse. These subsystems handle
abstraction for all display, keyboard and mouse devices respectively. The following sections discuss the
configuration of wscons per subsystem.

8.1.1 wsdisplay

This section will explain how to configure display and screen-related options.

8.1.1.1 Virtual consoles

The number of pre-allocated virtual console is controlled by the following option

options WSDISPLAY_DEFAULTSCREENS=4

Other consoles can be added by enabling the relevant lines inthe/etc/wscons.conf file: the comment
mark (#) must be removed from the lines beginning withscreen x . In the following example a fifth
console is added to the four pre-allocated ones:

screens to create
idx screen emul

64

Chapter 8 Console drivers

#screen 0 - vt100
screen 1 - vt100
screen 2 - vt100
screen 3 - vt100
screen 4 - -
#screen 4 80x25bf vt100
#screen 5 80x50 vt100

Therc.wscons script transforms each of the non commented lines in a call tothewsconscfgcommand:
the columns become the parameters of the call. Theidx column becomes theindex parameter, the
screencolumn becomes the-t type parameter (which defines the type of screen: rows and columns,
number of colors, ...) and theemulcolumn becomes the-e emul parameter, which defines the
emulation. For example:

screen 3 - vt100

becomes a call to:

wsconscfg -e vt100 3

Please note that it is possible to have a (harmless) conflict between the consoles pre-allocated by the
kernel and the consoles allocated at boot time through/etc/wscons.conf . If during boot the system
tries to allocate an already allocated screen, the following message will be displayed:

wsconscfg: WSDISPLAYIO_ADDSCREEN: Device busy

The solution is to comment out the offending lines in/etc/wscons.conf .

Note that while it is possible to delete a screen and add it with different settings, it is, technically
speaking, not possible to actually modify the settings of a screen.

screen 0 cannot be deleted if used as system console. This implies that the setting of screen 0 cannot
be changed in a running system, if used as system console.

The virtual console must also be active in/etc/ttys , so that NetBSD runs the getty(8) program to ask
for login. For example:

console "/usr/libexec/getty Pc" pc3 off secure
ttyE0 "/usr/libexec/getty Pc" vt220 on secure
ttyE1 "/usr/libexec/getty Pc" vt220 on secure
ttyE2 "/usr/libexec/getty Pc" vt220 on secure
ttyE3 "/usr/libexec/getty Pc" vt220 off secure
...

When starting up the X server, it will look for a virtual console with no getty(8) program running, e.g.
one console should left as "off" in/etc/ttys . The line

ttyE3 "/usr/libexec/getty Pc" vt220 off secure

of /etc/ttys is used by the X server for this purpose. To use a screen different from number 4, a
parameter of the form vtn must be passed to the X server, wheren is the number of the function key used
to activate the screen for X.

65

Chapter 8 Console drivers

For example,screen 7 could be enabled in/etc/wscons.conf and X could be started withvt8 . If
you use xdm you must edit/etc/X11/xdm/Xserver . For example:

:0 local /usr/X11R6/bin/X +kb dpms -bpp 16 dpms vt8

For xdm3d the path is different:/usr/X11R6/share/xdm3d/Xservers .

8.1.1.1.1 Getting rid of the message WSDISPLAYIO_ADDSCREEN: Device busy

This error message usually occurs when wsconscfg tries to add a screen which already exists. One time
this occurs is if you have ascreen 0 line in your/etc/wscons.conf file, because the kernel always
allocates a screen 0 as the console device. The error messageis harmless in this case, and you can get rid
of it by deleting (or commenting out) thescreen 0 line.

8.1.1.2 50 lines text mode with wscons

A text mode with 50 lines can be used starting with version 1.4.1 of NetBSD. This mode is activated in
the/etc/wscons.conf . The following line must be uncommented:

font ibm - 8 ibm /usr/share/pcvt/fonts/vt220l.808

Then the following lines must be modified:

#screen 0 80x50 vt100
screen 1 80x50 vt100
screen 2 80x50 vt100
screen 3 80x50 vt100
screen 4 80x50 vt100
screen 5 80x50 vt100
screen 6 80x50 vt100
screen 7 80x50 vt100

This configuration enables eight screens, which can be accessed with the key combination Ctrl-Alt-Fn
(wheren varies from 1 to 8); the corresponding devices are ttyE0..ttyE7. To enable them and get a login
prompt,/etc/ttys must be modified:

ttyE0 "/usr/libexec/getty Pc" vt220 on secure
ttyE1 "/usr/libexec/getty Pc" vt220 on secure
ttyE2 "/usr/libexec/getty Pc" vt220 on secure
ttyE3 "/usr/libexec/getty Pc" vt220 on secure
ttyE4 "/usr/libexec/getty Pc" vt220 on secure
ttyE5 "/usr/libexec/getty Pc" vt220 on secure
ttyE6 "/usr/libexec/getty Pc" vt220 on secure
ttyE7 "/usr/libexec/getty Pc" vt220 on secure

screen 0 as system console can be set to another screen type at boot time on VGA displays. This is a
kernel configuration option. If a non-80x25 setting is selected, it must be made sure that a usable font is
compiled into the kernel, which would be an 8x8 one for 80x50.

There is a problem with many ATI graphics cards which don’t implement the standard VGA font
switching logics: These need another kernel option to make anonstandard console font work.

66

Chapter 8 Console drivers

An example set of kernel configuration options might be:

options VGA_CONSOLE_SCREENTYPE="\"80x50\""
options VGA_CONSOLE_ATI_BROKEN_FONTSEL
options FONT_VT220L8x8

8.1.1.3 Enabling VESA framebuffer console

On many architectures, there is only one type of screen mode:a graphical framebuffer mode. On
machines with VGA graphics cards, there is a second mode: textmode. This is an optimized mode
specially made for displaying text. Hence, this is the default console mode for GENERIC kernels on
architectures where the graphics graphics card is typically a VGA card (i386, amd64).

However, you can enable a framebuffer on machines with VGA cards that support the VESA BIOS
extension (VBE). To enable support for this mode, uncommentthe following lines in the kernel
configuration file:

VESA framebuffer console
options KVM86 # required for vesabios
vesabios * at vesabiosbus?
vesafb * at vesabios?
options VESAFB_WIDTH=640
options VESAFB_HEIGHT=480
options VESAFB_DEPTH=8
options VESAFB_PM # power management support
wsdisplay * at vesafb? console ?

If you happen to have a VIA Unichrome capable graphics card, you can enable the following instead:

VIA Unichrome framebuffer console
unichromefb * at pci? dev ? function ?
wsdisplay * at unichromefb?

8.1.1.4 Enabling scrollback on the console

You can enable scrolling back on wscons consoles by compiling theWSDISPLAY_SCROLLSUPPORT

option into your kernel. Make sure you don’t have optionVGA_RASTERCONSOLEenabled at the same
time though! SeeChapter 31for instructions on building a kernel.

When you have a kernel with optionsWSDISPLAY_SCROLLSUPPORTrunning, you can scroll up on the
console by pressing LEFT SHIFT plus PAGE UP/DOWN. Please note that this may not work on your
system console (ttyE0)!

67

Chapter 8 Console drivers

8.1.1.5 Wscons and colors

8.1.1.5.1 Changing the color of kernel messages

It is possible to change the foreground and background colorof kernel messages by setting the following
options in kernel config files:

options WS_KERNEL_FG=WSCOL_xxx
options WS_KERNEL_BG=WSCOL_xxx

TheWSCOL_xxxcolor constants are defined insrc/sys/dev/wscons/wsdisplayvar.h .

Starting from NetBSD 3.0, you can easily customize many aspects of your display appearance: the colors
used to print normal messages, the colors used to print kernel messages and the color used to draw a
border around the screen.

All of these details can be changed either from kernel options or through the wsconsctl(8) utility; the
later may be preferable if you don’t want to compile your own kernel, as the default options inGENERIC

are suitable to get this tip working.

The following options can be set through wsconsctl(8):

• border : The color of the screen border. Its respective kernel option is WSDISPLAY_BORDER_COLOR.

• msg.default.attrs : The attributes used to print normal console messages. Its respective kernel
options areWS_DEFAULT_COLATTRandWS_DEFAULT_MONOATTR(the former is used in color
displays, while the later is used in monochrome displays).

• msg.default.bg : The background color used to print normal console messages. Its respective kernel
option isWS_DEFAULT_BG.

• msg.default.fg : The foreground color used to print normal console messages. Its respective kernel
option isWS_DEFAULT_FG.

• msg.kernel.attrs : The attributes used to print kernel messages and warnings.Its respective kernel
options areWS_KERNEL_COLATTRandWS_KERNEL_MONOATTR(the former is used in color displays,
while the later is used in monochrome displays).

• msg.kernel.bg : The background color used to print kernel messages and warnings. Its respective
kernel option isWS_KERNEL_BG.

• msg.kernel.fg : The foreground color used to print kernel messages and warnings. Its respective
kernel option isWS_KERNEL_FG.

The values accepted as colors are: black, red, green, brown,blue, magenta, cyan and white. The attributes
are a comma separated list of one or more flags, which can be: reverse, hilit, blink and/or underline.

For example, to emulate the look of one of those old Amstrad machines:

wsconsctl -d -w border=blue msg.default.bg=blue msg.defa ult.fg=white msg.default.attrs=hilit

Or, to make your kernel messages appear red:

wsconsctl -d -w msg.kernel.fg=red

68

Chapter 8 Console drivers

Note that, in older versions of NetBSD, only a subset of this functionality is available; more specifically,
you can only change the kernel colors by changing kernel options, as explained above. Also note that not
all drivers support these features, so you may not get correct results on all architectures.

8.1.1.5.2 Getting applications to use colors on the console

NetBSD uses the termcap database to tell applications what the current terminal’s capabilities are. For
example, some terminals don’t support colors, some don’t support underlining (PC VGA terminals don’t,
for example) etc. The TERM environment variable tells the termcap library the type of terminal. It then
refers to its database for the options.

The default setting for TERM can be inspected by typingecho $TERM on the terminal of interest.
Usually this is something likevt220 . This terminal type doesn’t support colors. On a typical PC console
with 25 lines, you can change this value towsvt25 instead, to get colors. This is done in the C shell (csh)
by entering:

setenv TERM wsvt25

In a Bourne-compatible shell (sh, ksh), you can enter:

export TERM=wsvt25

If this does not work for you, you can try theansi terminal type, which supports ANSI color codes.
However, other functionality may be missing with this terminal type. You can have a look at the file
/usr/share/misc/termcap to see if you can find a useful match for your console type.

8.1.1.6 Loading alternate fonts

There are several fonts in/usr/share/wscons/fonts that can be loaded as console fonts. This can be
done with the wsfontload(8) command, for example:wsfontload -N ibm -h 8 -e ibm

/usr/share/wscons/fonts/vt220l.808. This command loads the IBM-encoded (-e ibm) font in
the filevt2201.808 which has a height of eight pixels (-h 8). Name it ibm for later reference (-N

ibm).

To actually display the font on the console, use the commandwsconsctl -dw font=ibm.

If you want to edit a font, you can use the old pcvt utils that are available in thesysutils/pcvt-utils

package.

8.1.2 wskbd

8.1.2.1 Keyboard mappings

Wscons also allows setting the keymap to map the keys on various national keyboards to the right
characters. E.g. to set the keymap for an Italian keymap, run:

wsconsctl -k -w encoding=it

69

Chapter 8 Console drivers

encoding -> it

This setting will last until the next reboot. To make it permanent, add aencoding line to
/etc/wscons.conf : it will be executed automatically the next time you reboot.

cp /etc/wscons.conf /etc/wscons.conf.orig

echo encoding it >>/etc/wscons.conf

Please be careful and type two> characters. If you type only one>, you will overwrite the file instead of
adding a line. But that’s why we always make backup files before touching critical files!

A full list of keyboard mappings can be found in/usr/src/sys/dev/wscons/wsksymdef.h :

• be - Belgian

• de - German

• dk - Danish

• es - Spanish

• fi - Finnish

• fr - French

• gr - Greek

• hu - Hungarian

• it - Italian

• jp - Japanese

• no - Norwegian

• pl - Polish

• pt - Portuguese

• ru - Russian

• sf - Swiss French

• sg - Swiss German

• sv - Swedish

• ua - Ukrainian

• uk - UK-English

• us - US-English

There are also several "variants" that can be used to modify amap:

• declk

• dvorak

• iopener

• lk401

• metaesc

70

Chapter 8 Console drivers

• nodead

• swapctrlcaps

dvorak uses the Dvorak keyboard layout.swapctrlcaps switches the functions of the Caps Lock and
Left Control keys.iopener is for the nonstandard keyboard layout on the Netpliance i-opener and
makes F1 into Escape and F2 through F12 into F1 through F11. These can be combined with another
map by appending a dot and then the variant name, for example,us.iopener . Multiple variants can be
combined, such asus.dvorak.swapctrlcaps . Note that not all combinations are allowed.

You can change the compiled in kernel default by addingoptions PCKBD_LAYOUT=KB_encoding

whereencodingis an uppercase entry from the list above (eg:PCKBD_LAYOUT=KB_FR). Variants can be
bitwise or’d in (eg:PCKBD_LAYOUT=KB_US|KB_SWAPCTRLCAPS).

Configuring the keyboard layout under X is described elsewhere
(http://www.NetBSD.org/docs/x/#x-keyboard-maps).

8.1.2.1.1 Hacking wscons to add a keymap

If your favourite keymap is not supported, you can start digging in
src/sys/dev/wscons/wsksymdef.h andsrc/sys/dev/pckbport/wskbdmap_mfii.c to make
your own. Be sure to send-pr (http://www.NetBSD.org/support/send-pr.html#submitting) a
change-request PR with your work, so others can make use of it!

You can test your keymap by usingwsconsctlinstead of directly hacking the keymaps into the keyboard
mapping file. For example, to say keycode 51 without any modifiers should map to a comma, with shift it
should map to a question mark, with alt it should map to a semicolon and with both alt and shift it should
map to colon, issue the following command:

wsconsctl -w "map += keycode 51=comma question semicolon co lon"

8.1.2.2 Changing the keyboard repeat speed

Keyboard repeat speed can be tuned using thewsconsctl(8)utility. There are two variables of interest:
repeat.del1 , which specifies the delay before character repetition starts, andrepeat.deln , which
sets the delay between each character repetition (once started).

Let’s see an example, assuming you want to accelerate keyboard speed. You could do, from the
command line:

wsconsctl -w repeat.del1=300
wsconsctl -w repeat.deln=40

Or, if you want this to happen automatically every time you boot up the system, you could add the
following lines to/etc/wscons.conf :

setvar repeat.del1=300
setvar repeat.deln=40

71

Chapter 8 Console drivers

8.1.3 wsmouse

8.1.3.1 Serial mouse support

The wsmouse device (part of wscons) does not directly support serial mice. The moused(8) daemon is
provided to read serial mouse data, convert it into wsmouse events and inject them in wscons’ event
queue, so the mouse can be used through the abstraction layerprovided by wsmouse.

A typical use can be:moused -p /dev/tty00. This will try to determine the type of mouse connected
to the first serial port and start reading its data. The moused(8) man page contains more examples.

8.1.3.2 Cut&paste on the console with wsmoused

It is possible to use the mouse on the wscons console to mark (cut) text with one mouse button, and
insert (paste) it again with another button.

To do this, enable "wsmoused" in/etc/rc.conf , and start it:

echo wsmoused=yes >>/etc/rc.conf

sh /etc/rc.d/wsmoused start

After that you can use the mouse to mark text with the left mouse button, and paste it with the right one.
To tune the behaviour of wsmoused(8) see its manpage, which also describes the format of the
wsmoused.conf(5) config file, an example of which can be foundin
/usr/share/examples/wsmoused .

8.2 pccons
This console driver doesn’t offer virtual consoles and utility programs for configuration but takes up very
little space. Due to this, it can be found on the i386 install floppy. It is only available for a handful of
architectures, mostly i386 derivatives.

To enable it, put the following line in your kernel config file:

pc0 at isa? port 0x60 irq 1 # pccons generic PC console driver

You can also set one of several options to compile in a non-english keymap:

Keyboard layout configuration for pccons
#options FRENCH_KBD
#options FINNISH_KBD
#options GERMAN_KBD
#options NORWEGIAN_KBD

72

Chapter 8 Console drivers

Remove the comment character in front of one of this to enablethe corresponding keymap, then follow
the instructions inChapter 31to rebuild your kernel.

In general, you shouldn’t need pccons though, and wscons should fit all your needs.

73

Chapter 9

X

9.1 What is X?
The X Window System is the graphical subsystem available forNetBSD and many Unix (and non Unix)
systems. In fact it is much more than that: thanks to the usageof the X protocol, the X Window System is
“network transparent” and can run distributed applications (client-server). This means, roughly, that you
can run an application on one host (client) and transparently display the graphical output on another host
(server); transparently means that you don’t have to modifythe application to achieve this result. The X
Window System is produced and maintained by the X Consortiumand the current release is X11R6. The
flavour of X used by NetBSD is XFree86, a freely redistributable open source implementation of the X
Window System.

Please note that the X Window System is a rather bare bones framework which acts again as a base for
modern desktop environments like GNOME, KDE or XFCE, but they are not part of the X Windows
System, and while NetBSD ships with the X Window System, it does not include these desktop
environments. They can be added easily via the pkgsrc system, though, if needed.

When you start using X you’ll find many new terms which you’ll probably find confusing at first. The
basic elements to use X are:

• Video hardwaresupported by XFree86, i.e. your video card.

• An X serverrunning on top of the hardware. The X server provides a standard way to open windows,
do graphics (including fonts for text display), and get mouse/keyboard/other input. X is
network-transparent, so that you can run X clients on one machine, and the X server (i.e., the display,
with video hardware) on another machine.

• A window managerrunning on the X server. The window manager is essentially a special client that is
allowed to control placement of windows. It also “decorates” windows with standard “widgets”
(usually these provide window-motion, resizing, iconifying, and perhaps a few other actions). A
window manager also may provide backdrops, etc. Window managers can also let you kill
windows/programs by clicking on their windows, and so forth.

• A desktop environment(optional.) KDE and GNOME, for example, are desktops: they are suites of
more-or-less integrated software designed to give you a well-defined range of software and a more or
less common interface to each of the programs. These includea help browser of some kind, a
“desktop-metaphor” access to your filesystem, custom terminals to replace xterm, software
development environments, audio, picture/animation viewers, etc.

• Any other applications (3rd party X clients) that you have. These talk to the X server and to the
window manager. Unless the window manager is part of the desktop (if any), the desktop probably
doesn’t get involved in much of anything that these applications do. (However, e.g., GNOME may be
able to detect that you’ve installed the GIMP, for example, and so offer a menu to launch the GIMP.)

74

Chapter 9 X

To summarize: in order to use a graphical environment you need

• the XFree86 system

• a window manager (XFree86 already comes with a very basic window manager called twm.)

• If you prefer a more sophisticated environment you’ll probably want to install a desktop too, although
this is not necessary. Desktops have some nice features thatare helpful to users who come from
environments such as Macintosh or MS-WINDOWS (the KDE desktop, for example, has a very
similar flavour to MS-WINDOWS.)

Note: By now it should be clear that desktops like GNOME and KDE do not provide X servers. They
run on top of an existing X server supplied by XFree86. KDE and GNOME can make use of their own
window manager or of a separately installed window manager.

Normally, you can run at most one window manager at any given time on a given X server. (But you can
run multiple X servers on a single computer.) If you are not running a window manager of your
choosing, and start KDE/GNOME, then that desktop environment will run a window manager for you.

9.2 Configuration
If you haven’t chosen a minimal configuration during installation, X is already installed and ready to run
on your computer. Depending on the exact hardware platform you run NetBSD and X on, you may or
may not need to configure your X server. While most workstation ports (sparc, pmax, ...) will just work
without further configuration if you use the right X-server,which is what/usr/X11R6/bin/X is usually
linked to.

On PCs (i386, amd64), Shark and some other platforms, you will have to tune the X server first by create
the menacing/etc/X11/XF86Config file. To get an idea of what this file looks like, examine the
/usr/X11R6/lib/X11/XF86Config.eg file. The structure of the configuration file is described
formally in XF86Config(5), which can be examined with the following command:

man XF86Config

Before configuring the system it is advisable to carefully read the documentation found in
/usr/X11R6/lib/X11/doc : there are various README’s for the video cards, for the mouse and even
a NetBSD specific one (README.NetBSD.) I suggest to start by readingQuickStart.doc . You might
have the feeling that other systems let you start more quickly and with less effort, but the time spent
reading this documentation is not wasted: the knowledge of Xand of your configuration that you gain
will turn out very useful on many future occasions and you’llbe able to get the most from your hardware
(and software too.)

You can create the/etc/X11/XF86Config file manually with an editor or you can generate it
automatically with an interactive configuration program. The best known programs are xf86config,
XF86Setup (XFree86 3.x) and xf86cfg (XFree86 4.x). Both xf86config and xf86cfg are installed by
default with X; XF86Setup is a graphical configuration tool which can be installed from pkgsrc.

You may find that a mixed approach is better: first create the XF86Config with one of the two programs
and then check it and tune it manually with an editor. E.g. forthe GUI basedxf86cfg:

75

Chapter 9 X

xf86cfg

configure to your will, and at the end save to /etc/X11/XF86Config

vi /etc/X11/XF86Config

or for the screen-oriented, non-graphicalxf86config:

xf86config

configure to your will, and at the end save to /etc/X11/XF86Config

vi /etc/X11/XF86Config

The interface of the two programs is different but they both require the same set of information:

• the mouse type and the mouse device to be used

• the keyboard type and its layout

• the type of video card

• the type of monitor

Before configuring the system you should collect the required information.

9.3 The mouse
The first thing to check is the type of mouse you are using (for example, serial or PS/2, ...) and the mouse
device (for example,wsmouserequires a different protocol). If you are using a serial mouse, choose the
required protocol and specify the serial port to which it is connected.

For example, PS/2 and USB mice usually are attached to the wsmouse device, and as such you can use:

Section "InputDevice"
Identifier "Mouse0"
Driver "mouse"
Option "Protocol" "wsmouse"
Option "Device" "/dev/wsmouse"

EndSection

If you use a mouse with a scroll wheel, scrolling up and down ishandled as mouse buttons 4 and 5 being
pressed (respectively). Many applications like xterm or Firefox handle these button presses. To enable
the scroll wheel, add the following lines to the "Pointer" section:

Section "InputDevice"
Identifier "Mouse0"
Driver "mouse"
Option "Protocol" "wsmouse"
Option "Device" "/dev/wsmouse"
Option "ZAxisMapping" "4 5"

EndSection

For a serial mouse on the first serial port, try something like:

Section "InputDevice"
Identifier "Mouse0"
Driver "mouse"

76

Chapter 9 X

Option "Protocol" "auto"
Option "Device" "/dev/tty00"

EndSection

In this example./dev/tty00 is the first serial port here, use/dev/tty01 for the second and so on.
Protocol "auto" will try to automatically detect the protocol of your serial mouse. If this doesn’t work, try
values like "Microsoft", "IntelliMouse" or "Logitech", see /usr/X11R6/lib/X11/XF86Config.eg

and/usr/X11R6/lib/X11/doc/README.mouse for more information.

9.4 The keyboard
Even if you have already configured your keyboard for wscons,you need to configure it for X too, at
least if you want to get a non US layout.

An easy solution is to use the XKB protocol, specifying the keyboard type and layout.

This is one area in which that configuration programs are weakand you may want to choose the standard
layout and modify the generated configuration file manually:

Section "InputDevice"
Identifier "Keyboard0"
Driver "keyboard"
Option "XkbRules" "xfree86"
Option "XkbModel" "pc102"
Option "XkbLayout" "de"
Option "XkbOptions" "ctrl:nocaps"

EndSection

If you want to use the “Windows” keys on your keyboard, use “pc105” instead of “pc102” forXkbModel .

9.5 The monitor
It is very important to correctly specify the values of the horizontal and vertical frequency of the monitor:
a correct definition shields the monitor from damages deriving from an incompatible setup of the video
card. This information can be found in the monitor’s manual.In the X documentation directory there is a
file containing the settings of many monitors; it can be used as a starting point to customize your own
settings.

9.6 The video card
The video card can be chosen from the database of the configuration programs; the program will take
care of all the needed setups. Video card support is slightlydifferent between XFree86 3.x and 4.x.

XFree86 3.x has multiple servers for different categories of video card chipsets. XFree86 4.x has only
one server. Different video chipsets are supported via platform independent driver modules, which can be
found in /usr/X11R6/lib/modules/drivers .

77

Chapter 9 X

9.6.1 XFree 3.x

When you have selected the correct video card you must choosethe X server for the card. Usually, the
configuration programs can automatically determine the correct server, but some video cards can be
driven by more than one server (for example, S3 Virge is supported by the SVGA and S3V servers); in
this case, study the documentation of the servers to decide which one you need: different servers usually
have different capabilities and a different degree of support for the video cards.

9.6.2 XFree86 4.x

After selecting the correct video card the configuration program will automatically select the appropriate
driver or suggest it. If you have not selected a card you can configure your video card by selecting the
required module.

9.7 Starting X
When you exit the configuration program, it creates the file/etc/X11/XF86Config , which can be
further examined and modified by hand.

Before starting X you should:

• check that the symbolic link/usr/X11R6/bin/X points to the correct X server:

ls -l /usr/X11R6/bin/X

• Verify that the configuration is correct. Launch:

X -probeonly

and examine carefully the output.

Now you can start X with the following command:

startx

If X doesn’t fire up there is probably some error in the configuration file.

If X starts but doesn’t work as expected (for example, you can’t move the mouse pointer) you can exit
quickly with the Ctrl-Alt-Backspace key combination (not available on all ports). If everything worked
correctly you are left in the X environment with the default window manager (twm): although it is a
simple window manager many users feel that it is enough for their needs. If you want a highly
configurable window manager with many bells and whistles, you have many choices in the package
collection, seeSection 9.9below.

To start customizing X, try giving the following command in an xterm to change the background color:

xsetroot -solid DarkSeaGreen

78

Chapter 9 X

9.8 Customizing X
The look of the X environment can be customized in several ways. The easiest method is to copy the
default.xinitrc file in your home directory and modify it, or create a simple, new one from scratch.
For example:

$ cp /etc/X11/xinit/xinitrc $HOME/.xinitrc

$ vi $HOME/.xinitrc

The following example shows how to start the window manager (twm), open an instance of the xclock
program in the lower right part of the screen and two xterm windows. The “Bisque4” color is used for
the background.

The first part of the file is the same
...
start some nice programs
xclock -geometry 50x50-1-1 &
xterm -geometry 80x34-1+1 -bg OldLace &
xsetroot -solid Bisque4 &
xterm -geometry 80x44+0+0 -bg AntiqueWhite -name login

twm # no ’&’ here

With this type of setup, to exit X you must end the window manager, which is usually done by selecting
"exit" from its menu.

Even with this simple configuration X has a considerably nicer look. To give an even better look to the
environment you can install some utility program from the package collection. For example:

xcolorsel

displays all the colors defined inrgb.txt . Use it to choose background colors for the root window
or for xterms.

xpmroot

lets you use a pixmap for the background.

xscreensaver

X screen saver.

xdaemon

no desktop can be complete without this package, which displays a moveable bitmap of the BSD
daemon in two selectable sizes.

9.9 Other window managers
If you don’t like twm, which is a very simple window manager lacking many features and not very
configurable, you can choose another window manager from thepackage collection. Some of the most
popular are: fvwm2, olwm/olvwm (Open Look Window Manager),WindowMaker, Enlightenment,
AfterStep.

79

Chapter 9 X

In the rest of this section the installation of WindowMaker is described as an example. WindowMaker is
a nice looking and highly configurable window manager. It canbe installed directly viapkg_add:

pkg_add -v windowmaker

Alternatively, it can be built from pkgsrc using themake install command:

cd /usr/pkgsrc/wm/windowmaker

make install

As usual, bothpkg_addandmake install will fetch the needed packages automatically, so there is no
need to deal with dependencies manually.

More themes for WindowMaker are available in the wmthemes package.

WindowMaker is now installed; to start it you must modify your .xinitrc and/or.xsession file:
substitute the line which callstwm with a line which callswmaker . For example:

start some useful programs
xclock -geometry 50x50-1-1 &
xdaemon2 -geometry +0-70 &
start window manager:
wmaker # no ’&’ here to exit the session after the window manag er’s done

Thestartx command will start the X11 session with WindowMaker. As configured in the example
.xinitrc file above, choosing “Quit” or similar from the window manager’s menu will quit the window
manager and the X11 session.

9.10 Graphical login with xdm
If you always use X for your work and the first thing you do afteryou log in is runstartx, you can set up
a graphical login for your workstation which does this automatically. It is very easy:

1. Create the.xsession file in your home directory. This file is similar to~/.xinitrc and can, in
fact, be a link to the latter.

$ cd $HOME

$ ln -s .xinitrc .xsession

2. Modify /etc/rc.conf :

xdm=YES xdm_flags="" # x11 display manager

If you prefer you can add the following line at the end of/etc/rc.local instead of modifying
rc.conf:

/usr/X11R6/bin/xdm

This method can be used to start, for example, kdm or gdm instead of xdm.

The configuration files for xdm are in the/etc/X11/xdm directory. In theXservers file X is started by
default on “vt05”, which is the console you reach via “Ctrl+Alt+F5”; if you want to use another virtual
console instead, this is the right place to modify the setting. In order to avoid keyboard contention

80

Chapter 9 X

between getty and xdm it is advisable to start xdm on a virtualterminal where getty is disabled. For
example if inXservers you have:

:0 local /usr/X11R6/bin/X :0 vt04

in /etc/ttys you should have

ttyE3 "/usr/libexec/getty Pc" vt220 off secure

(Please note that vt04 corresponds to ttyE3 because vt startat 1 and ttyE start at 0).

If you want a nice look for your xdm login screen, you can modify the xdm configuration file. For
example, to change the background color you can add the following line to theXsetup_0 file:

xsetroot -solid SeaGreen

Instead of setting a color, you can put an image on the background using the xpmroot program: For
example:

xpmroot /path_to_xpm/netbsd.xpm

If you experiment a little with the configuration file you can achieve many nice looking effects and build
a pleasing login screen. Note that other display managers like gdm and kdm offer different ways of
configuration, usually GUI based.

81

Chapter 10

Linux emulation

The NetBSD port for i386, alpha, mac68k, macppc, and many others can execute a great number of
native Linux programs, using the Linux emulation layer. Generally, when you think about emulation you
imagine something slow and inefficient because, often, emulations must reproduce hardware instructions
and even architectures (usually from old machines) in software. In the case of the Linux emulation this is
radically different: it is only a thin software layer, mostly for system calls which are already very similar
between the two systems. The application code itself is processed at the full speed of your CPU, so you
don’t get a degraded performance with the Linux emulation and the feeling is exactly the same as for
native NetBSD applications.

This chapter explains how to configure the Linux emulation with an example: the installation of the well
known Acrobat Reader version 7 program.

10.1 Emulation setup
The installation of the Linux emulation is described in the compat_linux(8) man page; using the package
system only two steps are needed.

1. Configuring the kernel.

2. Installing the Linux libraries.

3. Installing Linux applications like Acrobat Reader

10.1.1 Configuring the kernel

If you use a GENERIC kernel you don’t need to do anything because Linux compatibility is already
enabled.

If you use a customized kernel, check that the following options are enabled:

option COMPAT_LINUX
option EXEC_ELF32

or the following options if you are going to use 64-bit ELF binaries:

option COMPAT_LINUX
option EXEC_ELF64

when you have compiled a kernel with the previous options youcan start installing the necessary
software.

82

Chapter 10 Linux emulation

10.1.2 Installing the Linux libraries

Usually, applications are linked against shared libraries, and for Linux applications, Linux shared
libraries are needed. You can get the shared libraries from any Linux distribution, provided it’s not too
old, but the suggested method is to use the package system andinstall the libraries automatically (which
uses SUSE libraries). When you install the libraries, the following happens:

• A secondary root directoryis created which will be used for Linux programs. This directory is
/emul/linux . The Linux programs in emulation mode will use this directory as their root directory
and use files there. If a required file is not found, it will be searched with/ as root directory.

For example, if a Linux application opens/etc/ld.so.conf , it will first be searched in
/emul/linux/etc/ld.so.conf , and if not found there in/etc/ld.so.conf .

• The shared libraries for Linux are installed. Most applications are linked dynamically and expect to
find the necessary libraries on the system. For example, for Acrobat Reader, if you go to the
/usr/pkgsrc/print/acroread7 and give themake dependscommand, pkgsrc will fetch and
install all dependencies for Acrobat Reader.

Both operations will be handled automatically by the package system, without the need of manual
intervention from the user (we suppose that, by now, you havealready begun to love the package
system...). Note that this section describes manual installation of the Linux libraries.

To install the libraries, a program must be installed that handles the RPM format: it isrpm, which will be
used to extract the SUSE libraries. Executemake andmake install in the/usr/pkgsrc/misc/rpm/

directory to build and installrpm .

Next thesuse100_base package must be installed. The SUSE RPM files can be downloaded by the
package system or, if you have a SUSE CD, you can copy them in the
/usr/pkgsrc/distfiles/suse100 directory and then runmake andmake install after going to the
/usr/pkgsrc/emulators/suse100_base directory.

With the same method installsuse100_compat andsuse100_x11 . The final configuration is:

pkg_info -a | grep suse

suse_base-10.0nb3 Linux compatibility package
suse_compat-10.0nb1 Linux compatibility package with old shared libraries
suse_x11-10.0nb2 Linux compatibility package for X11 bina ries

10.1.3 Installing Acrobat Reader

Now everything is ready for the installation of the Acrobat Reader program (or other Linux programs).
Change to/usr/pkgsrc/print/acroread7 and give the usual commands.

make

make install

Note: To download and install Acrobat Reader you need to add the line
“ACCEPTABLE_LICENSES+=adobe-acrobat-license” to /etc/mk.conf to accept the Acrobat
Reader license, simply follow the instructions given after make .

83

Chapter 10 Linux emulation

10.2 Directory structure
If we examine the outcome of the installation of the Linux libraries and programs we find that
/emul/linux is a symbolic link pointing to/usr/pkg/emul/linux , where the following directories
have been created:

bin/
dev/
etc/
lib/
opt/
proc/
root/
sbin/
usr/
var/

Note: Please always refer to /emul/linux and not to /usr/pkg/emul/linux . The latter is an
implementation detail and may change in the future.

How much space is required for the Linux emulation software?On one system we got the following
figure:

cd /usr/pkg/emul

du -k /emul/linux/

...
127804 /emul/linux/

Acrobat Reader, the program, has been installed in the usualdirectory for package binaries:
/usr/pkg/bin . It can be run just as any other program:

$ acroread netbsd.pdf

10.3 Emulating /proc
Some Linux programs rely on a Linux-like/proc filesystem. The NetBSD procfs filesystem can
emulate a/proc filesystem that contains Linux-specific pseudo-files. To accomplish this you can mount
the procfs with the “linux”-option:

mount_procfs -o linux procfs /emul/linux/proc

84

Chapter 10 Linux emulation

In this example a Linux-like proc filesystem will be mounted to the/emul/linux/proc directory. You
can also let NetBSD mount it automatically during the booting process of NetBSD, by adding the
following line to /etc/fstab :

procfs /emul/linux/proc procfs ro,linux

10.4 Using Linux browser plugins
Linux plugins for Mozilla-based browsers can be used on native NetBSD Firefox builds through
nspluginwrapper, a wrapper that translates between the native browser and a foreign plugin. At the
moment, nspluginwrapper only works reliably on Mozilla-based browsers that link against GTK2+
(GTK1+ is not supported). nspluginwrapper can be installedthrough pkgsrc:

cd /usr/pkgsrc/www/nspluginwrapper
make install

Plugins can then be installed in two steps: first, the plugin has to be installed on the system (e.g. through
pkgsrc). After that the plugin should be registered with thenspluginwrapper by the users who want to
use that plugin.

In this short example we will have a look at installing the Macromedia Flash plugin. We can fullfill the
first step by installing the Flash plugin through pkgsrc:

cd /usr/pkgsrc/multimedia/ns-flash
make install

After that an unprivileged user can register the Flash plugin:

$ nspluginwrapper -i /usr/pkg/lib/netscape/plugins/libf lashplayer.so

The plugin should then be registered correctly. You can check this by using the-l option of
nspluginwrapper (nspluginwrapper -l). If the plugin is listed, you can restart Firefox, and verify that
the plugin was installed by enteringabout:pluginsin the location bar.

10.5 Further reading
The following articles may be of interest for further understanding Linux (and other) emulation:

Bibliography

Implementing Linux emulation on NetBSD (http://www.linux.com/articles/35998), Peter Seebach, May
2004.

85

Chapter 10 Linux emulation

Linux compatibility on BSD for the PPC platform, part 1
(http://www.onlamp.com/pub/a/onlamp/2001/05/10/linux_bsd.html), Emmanuel Dreyfus, May
2001.

Linux compatibility on BSD for the PPC platform, part 2
(http://www.onlamp.com/pub/a/onlamp/2001/05/17/linux_bsd.html), Emmanuel Dreyfus, May
2001.

Linux compatibility on BSD for the PPC platform, part 3
(http://www.onlamp.com/pub/a/onlamp/2001/06/07/linux_bsd.html), Emmanuel Dreyfus, Jun
2001.

Linux compatibility on BSD for the PPC platform, part 4
(http://www.onlamp.com/pub/a/onlamp/2001/06/21/linux_bsd.html), Emmanuel Dreyfus, Jun
2001.

Linux compatibility on BSD for the PPC platform, part 5
(http://www.onlamp.com/pub/a/onlamp/2001/08/09/linux_bsd.html), Emmanuel Dreyfus, Aug
2002.

Irix binary compatibility, part 1 (http://www.onlamp.com/pub/a/bsd/2002/08/08/irix.html), Emmanuel
Dreyfus, Aug 2002.

Irix binary compatibility, part 2 (http://www.onlamp.com/pub/a/bsd/2002/08/29/irix.html), Emmanuel
Dreyfus, Aug 2002.

Irix binary compatibility, part 3 (http://www.onlamp.com/pub/a/bsd/2002/09/12/irix.html), Emmanuel
Dreyfus, Sep 2002.

Irix binary compatibility, part 4 (http://www.onlamp.com/pub/a/bsd/2002/10/10/irix.html), Emmanuel
Dreyfus, Oct 2002.

Irix binary compatibility, part 5 (http://www.onlamp.com/pub/a/bsd/2002/12/19/irix.html), Emmanuel
Dreyfus, Dec 2002.

Irix binary compatibility, part 6 (http://www.onlamp.com/pub/a/bsd/2003/04/03/irix.html), Emmanuel
Dreyfus, Apr 2003.

86

Chapter 11

Audio

This chapter is a short introduction to the usage of audio devices on NetBSD (who wants a dumb
computer, anyway?)

11.1 Basic hardware elements
In order to make audio work on your system you must know what audio card is installed. Sadly it is often
not enough to know the brand and model of the card, because many cards use chipsets manufactured
from third parties. Therefore knowing the chipset installed on the audio card can sometimes be useful.
The NetBSD kernel can recognize many chipsets and a quick look at dmesgis enough most of the time.

Therefore, type the following command:

dmesg | more

and look for the audio card and chipset. If you’re lucky you won’t need to do anything because NetBSD
automatically detects and configures many audio cards.

Sometimes audio doesn’t work because the card is not supported or because you need to do some work
in order for the card to be detected by NetBSD. Many audio cards are nowadays very cheap, and it is
worth considering buying a different card, but before doingthis you can try some simple steps to make
the card work with NetBSD.

11.2 BIOS settings
This section is useful only to the owners of i386 PCs; on otherarchitectures (e.g. Amiga) there are no
such features. The most important thing to determine in order to use the audio card with NetBSD is the
type of bus supported by the card.

The most common interfaces are ISA and PCI.

ISA Plug and Play cards are usually more tricky to configure mostly because of the interaction with the
BIOS of the computer.

On the newer machines (those produced after 1997) there is a BIOS option which causes many
headaches for the configuration of ISA Plug and Play audio cards (but not only audio cards): this option
is usually named “PNP OS Installed” and is commonly found in the “PNP/PCI Configuration” (the
names can be different in your BIOS.) As a general rule it is usually better to disable (i.e. set it to “NO”)
this option for NetBSD.

Note: On many systems everything works fine even if this option is enabled. This is highly system
dependent.

87

Chapter 11 Audio

11.3 Configuring the audio device
During the installation of NetBSD the devices are created inthe/dev directory. We are primarily
interested in:

/dev/audio

/dev/sound

/dev/mixer

If they are not present they can be created like this:

cd /dev

./MAKEDEV all

This command creates all the devices, including the audio devices.

The audio card is now probably ready to be used without further work.

You can make a quick test and send an audio file to the device (audio files usually have the.au

extension), but if you don’t have an audio file you can just send a text or binary file (of course you won’t
hear anything useful...). Use/dev/audio or /dev/sound :

cat filename > /dev/audio

or

cat filename > /dev/sound

If you hear something it means that the card is supported by NetBSD and was recognized and configured
by the kernel at boot; otherwise you must configure the kernelsettings for the audio device installed on
the system (assuming the card/chipset is supported.)

11.4 Configuring the kernel audio devices
NetBSD supports a wide range of audio cards and the GENERIC kernel already enables and configures
most of them. Sometimes it is necessary to manually set up theIRQ and DMA for non-PnP ISA cards.

Note: When you create a custom kernel it is better to work on a copy of the GENERIC file, as
described in Chapter 31.

If you still have problems you can try enabling all the devices, because some audio cards can be made to
work only by emulating another card.

Many chipset make use of the SoundBlaster and OPL compatibility, but a great number of them work
with the WSS emulation.

88

Chapter 11 Audio

OPL is a MIDI synthesizer produced by Yamaha; there are many OPL variants (e.g. OPL2, OPL3SA,
OPL3SA2, etc.). Many audio cards rely on this component or ona compatible one. For example, the
chips produced by Crystal (and amongst them the very common CS423x) all have this chipset, and that’s
why they work with NetBSD.

WSS is not a microchip; it is the acronym of Windows Sound System. WSS is the name of the NetBSD
kernel driver which supports the audio system of Microsoft Windows. Many audio cards work with
Windows because they adhere to this standard (WSS) and the same holds for NetBSD.

Of the many audio cards that I tested with NetBSD, a good number work only if opl * andwss* are
enabled in the kernel.

You should have no problem to get the Creative SoundBlaster cards to work with NetBSD: almost all of
them are supported, including the Sound Blaster Live 1024!

When everything works you can disable in the kernel configuration file the devices that you don’t need.

11.5 Advanced commands
NetBSD comes with a number of commands that deal with audio devices. They are:

• audioctl(1)

• mixerctl(1)

• audioplay(1)

• audiorecord(1)

11.5.1 audioctl(1)

audioctl(1) made its appearance in NetBSD 1.3 and is used to manually set some variables regarding
audio I/O, like the frequencies for playing and recording. The available parameters can be displayed with
the following command:

audioctl -a | more

For example, to listen to CD quality music you can use the following command.

audioctl -w play=44100,2,16,slinear_le

This command sets the frequency to 44100Hz, 2 audio channels, 16 bit, slinear_le encoding.

You can see the supported encodings with:

audioctl encodings

This command displays the list of all the encodings supported by the audio card on your system.

11.5.2 mixerctl(1)

This command is used to configure the audio mixing and has an interface similar to that of audioctl(1).

89

Chapter 11 Audio

11.5.3 audioplay(1)

With this command you can play audio files in simple formats like ULAW and WAV. For more
sophisticated needs you might want to install one of the manyprograms available in the package system
which let you play audio files in different formats (e.g. MP3,etc.)

11.5.4 audiorecord(1)

Not unsurprisingly this command is used to record audio files.

90

Chapter 12

Printing

This chapter describes a simple configuration for printing,using an HP Deskjet 690C printer connected
to the first parallel port and the lpd printing system that comes with NetBSD. First, the system will be
configured to print text documents, and next the configuration will be extended to print PostScript
documents using the Ghostscript program (print/ghostscript). Please note that there are other,
alternative printing systems available from the packages collection
(http://www.NetBSD.org/docs/software/packages.html), like LPRng (print/LPRng) and the Common
Unix Printing System (CUPS) (print/cups) which are not covered here.

12.1 Enabling the printer daemon
After installation it is not yet possible to print, because the lpd printer spooler daemon is not enabled. To
enablelpd, one line in the/etc/rc.conf file must be changed from:

lpd=NO

to

lpd=YES

The change will come into effect at the next boot, but the daemon can be started manually now:

sh /etc/rc.d/lpd start

To check iflpd is active, type the following command:

ps ax | grep lpd

179 ?? Is 0:00.01 lpd

If you don’t see an entry for lpd in the output of the previous command, the daemon is not active.

The lpd system is configured via/etc/printcap . Before configuring/etc/printcap it is a good
idea to make a printer test, to check if the physical connection between your computer and the printer is
working. The test sends out some data directly to the printerdevice. Assuming you use a printer
connected to the parallel port, this is/dev/lpt0 ; if you use an USB printer try/dev/ulpt0 . Please
check the manpages of these devices (lpt(4), ulpt(4)) for more information!

In our example we have a printer attached to the parallel port, so we run this:

lptest 70 5 > /dev/lpt0

To see what the output should look like, try the same command without redirecting the output to the
printer:

lptest 70 5

91

Chapter 12 Printing

!"#$%&’() * +,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\] ^_‘abcdef
"#$%&’() * +,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\] ^_‘abcdefg
#$%&’() * +,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\] ^_‘abcdefgh
$%&’() * +,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\] ^_‘abcdefghi
%&’() * +,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\] ^_‘abcdefghij

A frequent problem is that the output on the printer is not correctly aligned in columns but has a
“staircase” configuration. This usually means that the printer is configured to begin a new line at the left
margin after receiving both a <CR> (carriage return, ASCII 13) character and a <LF> (line feed, ASCII
10) character. NetBSD only sends a <LF> character. You can fixthis problem in two ways:

• by changing the configuration of the printer

• by using a simple printer filter (described later)

Note: In the previous example the lpd spooler is not involved because the program output is sent
directly to the printer device (/dev/lpt0) and is not spooled.

12.2 Configuring /etc/printcap

This section explains how to configure the example printer toprint text documents.

The printer must have an entry in the/etc/printcap file; the entry contains the printer id (the name of
the printer) and the printer description. Thelp id is the default used by many programs. Here is an
example entry:

Example 12-1./etc/printcap

lp|local printer|HP DeskJet 690C:\
:lp=/dev/lpa0:sd=/var/spool/lpd/lp:lf=/var/log/lpd- errs:\
:sh:pl#66:pw#80:if=/usr/local/libexec/lpfilter:

The file format and options are described in detail in the printcap(5) manpage. Please note that aninput
filter has been specified (with theif option) which will take care of eliminating the staircase problem:

if=/usr/local/libexec/lpfilter

Printer driver and HP printers: Example 12-1 uses the lpa0 device (polled driver) for the printer,
instead of the lpd0 (interrupt driven driver). Using interrupts there is a communication problem with
some printers, and the HP Deskjet 690C is one of them: printing is very slow and one PostScript
page can take hours. The problem is solved using the lpa driver. It is also possible to compile a
custom kernel where lpt is polled.

The printcap entry for the printer also specifies a spool directory, which must be created; this directory
will be used by the lpd daemon to accumulate the data to be printed:

cd /var/spool/lpd

92

Chapter 12 Printing

mkdir lp

chown daemon:daemon lp

chmod 770 lp

The only missing part is thelpfilter input filter, which must be written. The only task performed by
this filter is to configure the printer for the elimination of the staircase problem before sending the text to
be printed. The printer used in this example requires the following initialization string: “<ESC>&k2G”.

Example 12-2./usr/local/libexec/lpfilter

#!/bin/sh
Treat LF as CR+LF
printf "\033&k2G" && cat && exit 0
exit 2

After saving this script into the name you used in/etc/printcap , you need to make sure it’s
executable:

chmod 755 /usr/local/libexec/lpfilter*

Note: There is another filter that can be used:

if=/usr/libexec/lpr/lpf:

This filter is much more complex than the one presented before. It is written to process the output of
nroff and handles underline and overprinting, expands tab characters and converts LF to CR + LF.
The source to this filter program can be found in /usr/src/usr.sbin/lpr/filters/lpf.c .

After everything is in place now, thelptest command can be run again now, this time using thelpr
command, which will first send the data to the lpd spooler, then runs the filter and sends the data off to
the printer:

lptest 70 5 | lpr -h

The lpr program prints text using the spooler to send data to the printer; the-h option turns off the
printing of a banner page (not really necessary, because of theshoption in /etc/printcap). Users
more familiar with the System V printing system can also use the lp(1) command that comes as an
alternative to lpr(1).

12.3 Configuring Ghostscript
Now that basic printing works, the functionality for printing PostScript files can be added. The simple
printer used in this example does not support native printing of PostScript files; a program must be used
which is capable of converting a PostScript document in a sequence of commands that the printer
understands. The Ghostscript program, which can be found inpackages collection, can be used to this
purpose. This section explains how to configure lpd to use Ghostscript to print PostScript files on the HP
Deskjet 690C.

93

Chapter 12 Printing

A second id for the printer will be created in/etc/printcap : this new id will use a different input
filter, which will call Ghostscript to perform the actual print of the PostScript document. Therefore, text
documents will be printed on thelp printer and PostScript documents on thepsprinter: both entries use
the same physical printer but have different printing filters.

The same result can be achieved using different configurations. For example, a single entry with only one
filter could be used. For this, the filter should be able to automatically determine the format of the
document being printed, and use the appropriate printing program. This approach is simpler but leads to
a more complex filter; if you like it you should consider installing the magicfilter program from the
packages collection: it does this and many other things automatically.

For our approach, the new/etc/printcap file looks like this:

Example 12-3./etc/printcap

lp|local printer|HP DeskJet 690C:\
:lp=/dev/lpa0:sd=/var/spool/lpd/lp:lf=/var/log/lpd- errs:\
:sh:pl#66:pw#80:if=/usr/local/libexec/lpfilter:

ps|Ghostscript driver:\
:lp=/dev/lpa0:sd=/var/spool/lpd/ps:lf=/var/log/lpd- errs:\
:mx#0:sh:if=/usr/local/libexec/lpfilter-ps:

Optionmx#0 is very important for printing PostScript files because it eliminates size restrictions on the
input file; PostScript documents tend to be very big. Theif option points to the new filter. There is also a
new spool directory.

The next steps are the creation of the new spool directory andof the filter program. The procedure for the
spool directory is the same as above:

cd /var/spool/lpd

mkdir ps

chown daemon:daemon ps

chmod 770 ps

The filter program for PostScript output is more complex thanthe text base one: the file to be printed is
fed to the interpreter which converts it into a sequence of commands in the printer’s control language,
and then sends that off to the printer. We have achieved to transform a cheap color printer in a device
suitable for PostScript output, by virtue of the NetBSD operating system and some powerful freeware
packages. The options used to configure Ghostscript are described in the Ghostscript documentation:
cdj550 is the device used to drive the HP printer.

Example 12-4./usr/local/libexec/lpfilter-ps

#!/bin/sh
Treat LF as CR+LF
printf "\033&k2G" || exit 2
Print the postscript file
/usr/pkg/bin/gs -dSAFER -dBATCH -dQUIET -dNOPAUSE -q -sDE VICE=cdj550 \
-sOutputFile=- -sPAPERSIZE=a4 - && exit 0
exit 2

94

Chapter 12 Printing

To summarize: two different printer names have been createdon the system, which point to the same
physical printer but use different options, different filters and different spool directories. Text files and
PostScript files can be printed. To print PostScript files theGhostscript package must be installed on the
system.

12.4 Printer management commands
This section lists some useful BSD commands for printer and print jobs administration. Besides the
already mentionedlpr andlpd commands, we have:

lpq

examine the printer job queue.

lprm

delete jobs from the printer’s queue.

lpc

check the printing system, enable/disable printers and printer features.

12.5 Remote printing
It is possible to configure the printing system in order to print on a printer connected to a remote host.
Let’s say that, for example, you work on thewotanhost and you want to print on the printer connected to
the logehost. The/etc/printcap file of loge is the one ofExample 12-3. From wotan it will be
possible to print Postscript files using Ghostscript on loge.

The first step is to accept the print jobs submitted from the wotan host to the loge host. To accomplish
this, a line with the wotan host name must be added to the/etc/hosts.lpd file on loge:

hostname

loge
cat /etc/hosts.lpd

wotan

The format of this file is very simple: each line contains the name of a host which is permitted to print on
the local system. By default the lpd daemon only listens on UNIX domain sockets for local connections,
it won’t accept any network connects. To ensure the daemon also accepts incoming network traffic, the
following will need to be added to/etc/rc.conf :

lpd_flags=""

Next, the/etc/printcap file on wotan must be configured in order to send print jobs to loge. For
example:

lp|line printer on loge:\
:lp=:sd=/var/spool/lpd/lp:lf=/var/log/lp-errs:\
:rm=loge:rp=lp

95

Chapter 12 Printing

ps|Ghostscript driver on loge:\
:lp=:sd=/var/spool/lpd/ps:lf=/var/log/lp-errs:\
:mx#0:\
:rm=loge:rp=ps

There are four main differences between this configuration and the one ofExample 12-3.

1. The definition of “lp” is empty.

2. The “rm” (remote machine) entry defines the name of the hostto which the printer is connected.

3. The “rp” (remote printer) entry defines the name of the printer connected to the remote host.

4. It is not necessary to specify input filters because the definitions on the loge host will be used.

5. The spool directories must still be created locally on wotan:

cd /var/spool/lpd

mkdir lp

chown daemon:daemon lp

chmod 770 lp

mkdir ps

chown daemon:daemon ps

chmod 770 ps

Now the print jobs for the “lp” and “ps” queues on wotan will besent automatically to the printer
connected to loge.

96

Chapter 13

Using removable media

13.1 Initializing and using floppy disks
PC-style floppy disks work mostly like other disk devices like hard disks, except that you need to
low-level format them first. To use an common 1440 KB floppy in the first floppy drive, first (as root)
format it:

fdformat -f /dev/rfd0a

Then create a single partition on the disk using disklabel(8):

disklabel -rw /dev/rfd0a floppy3

Creating a small filesystem optimized for space:

newfs -m 0 -o space -i 16384 -c 80 /dev/rfd0a

Now the floppy disk can be mounted like any other disk. Or if youalready have a floppy disk with an
MS-DOS filesystem on it that you just want to access from NetBSD, you can just do something like this:

mount -t msdos /dev/fd0a /mnt

However, rather than using floppies like normal (bigger) disks, it is often more convenient to bypass the
filesystem altogether and just splat an archive of files directly to the raw device. E.g.:

tar cvfz /dev/rfd0a file1 file2 ...

A variation of this can also be done with MS-DOS floppies usingthesysutils/mtools package which
has the benefit of not going through the kernel buffer cache and thus not being exposed to the danger of
the floppy being removed while a filesystem is mounted on it.

13.2 How to use a ZIP disk

1. See if your system has a ZIP drive:

dmesg | grep -i zip

sd0 at atapibus0 drive 1: <IOMEGA ZIP 100 ATAPI, , 14.A> type 0 direct removable

Seems it has one, and it’s recognized as sd0, just like any SCSI disk. The fact that the ZIP here is an
ATAPI one doesn’t matter - a SCSI ZIP will show up here, too. The ZIP is marked as "removable",
which means you can eject it with:

97

Chapter 13 Using removable media

eject sd0

2. Insert ZIP disk

3. Check out what partitions are on the ZIP:

disklabel sd0

/dev/rsd0d:
type: ATAPI

...
8 partitions:
size offset fstype [fsize bsize cpg]

d: 196608 0 unused 0 0 # (Cyl. 0 - 95)
h: 196576 32 MSDOS # (Cyl. 0 * - 95)

disklabel: boot block size 0
disklabel: super block size 0

Partition d

is the whole disk, as usual on i386.

Partition h

is what you want, and you can see it’s a msdos filesystem even.

Hence, use /dev/sd0h to access the zip’s partition.

4. Mount it:

mount -t msdos /dev/sd0h /mnt

5. Access your files:

ls -la /mnt

total 40809
drwxr-xr-x 1 root wheel 16384 Dec 31 1979 .
drwxr-xr-x 28 root wheel 1024 Aug 2 22:06 ..
-rwxr-xr-x 1 root wheel 1474560 Feb 23 1999 boot1.fs
-rwxr-xr-x 1 root wheel 1474560 Feb 23 1999 boot2.fs
-rwxr-xr-x 1 root wheel 548864 Feb 23 1999 boot3.fs
-rwxr-xr-x 1 root wheel 38271173 Feb 23 1999 netbsd19990223 .tar.gz

6. Unmount the ZIP:

umount /mnt

#

7. Eject the ZIP:

eject sd0

#

13.3 Reading data CDs with NetBSD
Data CDs can contain anything from programs, sound files (MP3, wav), movies (MP3, QuickTime) to
source code, text files, etc. Before accessing these files, a CD must be mounted on a directory, much like
hard disks are. Just as hard disks can use different filesystems (ffs, lfs, ext2fs, ...), CDs have their own

98

Chapter 13 Using removable media

filesystem, "cd9660". The NetBSD cd9660 filesystem can handle filesystems without and with
Rockridge and Joliet extensions.

CD devices are named /dev/cd0a for both SCSI and IDE (ATAPI).

With this information, we can start:

1. See if your system has some CD drive:

dmesg | grep ^cd

cd0 at atapibus0 drive 0: <CD-R/RW RW8040A, , 1.12> type 5 cdr om removable
cd0: 32-bit data port
cd0: drive supports PIO mode 4, DMA mode 0
cd0(pciide0:1:0): using PIO mode 0, DMA mode 0 (using DMA dat a transfers)

We have one drive here, "cd0". It is an IDE/ATAPI drive, as it is found on atapibus0. Of course the
drive (rather, its medium) is removable, i.e., you can ejectit. See below.

2. Insert a CD

3. Mount the CD manually:

mount -t cd9660 /dev/cd0a /mnt

#

This command shouldn’t print anything. It instructs the system to mount the CD found on /dev/cd0a
on /mnt, using the "cd9660" filesystem. The mountpoint "/mnt" must be an existing directory.

4. Check the contents of the CD:

ls /mnt

INSTALL.html INSTALL.ps TRANS.TBL boot.catalog
INSTALL.more INSTALL.txt binary installation
#

Everything looks fine! This is a NetBSD CD, of course. :)

5. Unmount the CD:

umount /mnt

#

If the CD is still accessed (e.g. some other shell’s still "cd"’d into it), this will not work. If you shut
down the system, the CD will be unmounted automatically for you, there’s nothing to worry about
there.

6. Making an entry in /etc/fstab:

If you don’t want to type the full "mount" command each time, you can put most of the values into a
line in /etc/fstab:

Device mountpoint filesystem mount options
/dev/cd0a /cdrom cd9660 ro,noauto

Make sure that the mountpoint,/cdrom in our example, exists:

mkdir /cdrom

#

Now you can mount the cd with the following command:

mount /cdrom

99

Chapter 13 Using removable media

#

Access and unmount as before.

The CD is not mounted at boot time due to the "noauto" mount option - this is useful as you’ll
probably not have a CD in the drive all the time. See mount(8) and mount_cd9660(8) for some other
useful options.

7. Eject the CD:

eject cd0

#

If the CD is still mounted, it will be unmounted if possible, before being ejected.

13.4 Reading multi-session CDs with NetBSD
Use mscdlabel(8) to add all sessions to the CDs disklabel, and then use the appropriate device node to
mount the session you want. You might have to create the corresponding device nodes in/dev manually.
For example:

mscdlabel cd1

track (ctl=4) at sector 142312
adding as ’a’

track (ctl=4) at sector 0
adding as ’b’

ls -l /dev/cd1b

ls: /dev/cd1b: No such file or directory
cd /dev

ls -l cd1*
brw-r----- 1 root operator 6, 8 Mar 18 21:55 cd1a
brw-r----- 1 root operator 6, 11 Mar 18 21:55 cd1d
mknod cd1b b 6 9

to create/dev/cd1b . Make sure you fix the permissions of any new device nodes you create:

ls -l cd1*
brw-r----- 1 root operator 6, 8 Mar 18 21:55 cd1a
brw-r--r-- 1 root wheel 6, 9 Mar 18 22:23 cd1b
brw-r----- 1 root operator 6, 11 Mar 18 21:55 cd1d
chgrp operator cd1b

chmod 640 cd1b

ls -l cd1*
brw-r----- 1 root operator 6, 8 Mar 18 21:55 cd1a
brw-r----- 1 root operator 6, 9 Mar 18 22:24 cd1b
brw-r----- 1 root operator 6, 11 Mar 18 21:55 cd1d

Now you should be able to mount it.

mount /dev/cd1b /mnt

100

Chapter 13 Using removable media

13.5 Allowing normal users to access CDs
By default, NetBSD only allows "root" to mount a filesystem. If you want any user to be able to do this,
perform the following steps:

• Give groups and other the access rights to the device.

chmod go+rw /dev/cd0a

• Ask NetBSD to let users mounting filesystems.

sysctl -w vfs.generic.usermount=1

Note that this works for any filesystem and device, not only for CDs with a ISO 9660 filesystem.

To perform the mount operation after these commands, the user must own the mount point. So, for
example:

$ cd $HOME
$ mkdir cdrom
$ mount -t cd9660 -o nodev,nosuid /dev/cd0a ‘pwd‘/cdrom

Note: The mount options nodev and nosuid are mandatory from NetBSD 4.0 on. They are not
necessary on NetBSD 3.x systems.

Please also see mount(8) and as an alternative theauto mount daemonamd(8), for which example config
files can be found in/usr/share/examples/amd .

13.6 Mounting an ISO image
Sometimes, it is interesting to mount an ISO9660 image file before you burn the CD; this way, you can
examine its contents or even copy files to the outside. If you are a Linux user, you should know that this
is done with the specialloopfilesystem. NetBSD does it another way, using thevnodepseudo-disk.

We will illustrate how to do this with an example. Suppose youhave an ISO image in your home
directory, called "mycd.iso":

1. Start by setting up a new vnode, "pointing" to the ISO file:

vnconfig -c vnd0 ~/mycd.iso

2. Now, mount the vnode:

mount -t cd9660 /dev/vnd0a /mnt

3. Yeah, image contents appear under/mnt ! Go to that directory and explore the image.

4. When you are happy, you have to umount the image:

umount /mnt

5. And at last, deconfigure the vnode:

vnconfig -u vnd0

Note that these steps can also be used for any kind of file that contains a filesystem, not just ISO images.

101

Chapter 13 Using removable media

See the vnd(4) and vnconfig(8) man pages for more information.

13.7 Using video CDs with NetBSD
To play MPEG Video streams as many DVD players can play them under NetBSD, mount the CD as you
would do with any normal (data) CD (seeSection 13.3), then use themultimedia/xine-ui ,
multimedia/mplayer or multimedia/gmplayer package to play the mpeg files stored on the CD.

13.8 Using audio CDs with NetBSD
There are two ways to handle audio CDs:

1. Tell the CD drive to play to the headphone or to a soundcard,to which CDROMs are usually
connected internally. Use programs like cdplay(1),audio/xmcd , "kscd" from the
multimedia/kdemultimedia3 package, mixer programs like mixerctl(1),audio/xmix ,
audio/xmmix , the Curses basedaudio/cam , or kmix, which is part of
multimedia/kdemultimedia3 .

This usually works well on both SCSI and IDE (ATAPI) CDROMs, CDRW and DVD drives.

2. To read ("rip") audio tracks in binary form without going through digital->analog conversion and
back. There are several programs available to do this:

• For most ATAPI, SCSI and several proprietary CDROM drives, theaudio/cdparanoia package
can be used. With cdparanoia the data can be saved to a file or directed to standard output in WAV,
AIFF, AIFF-C or raw format. Currently the -g option is required by the NetBSD version of
cdparanoia. A hypothetical example of how to save track 2 as aWAV file is as follows:

$ cdparanoia -g /dev/rcd0d 2 track-02.wav

If you want to grab all files from a CD, cdparanoia’s batch modeis useful:

$ cdparanoia -g /dev/rcd0d -B

• For ATAPI or SCSI CD-ROMs theaudio/cdd package can be used. To extract track 2 with cdd,
type:

cdd -t 2 ‘pwd‘

This will put a file calledtrack-02.cda in the current directory.

• For SCSI CD-ROMS theaudio/tosha package can be used. To extract track 2 with tosha, you
should be able to type:

tosha -d CD-ROM-device -t 2 -o track-02.cda

The data can then be post-processed e.g. by encoding it into MP3 streams (seeSection 13.9) or by
writing them to CD-Rs (seeSection 13.11).

102

Chapter 13 Using removable media

13.9 Creating an MP3 (MPEG layer 3) file from an audio CD
The basic steps in creating an MPEG layer 3 (MP3) file from an audio CD (using software from the
NetBSD packages collection (http://www.NetBSD.org/docs/pkgsrc/)) are:

1. Extract (rip) the audio data of the CD as shown inSection 13.8.

2. Convert the CD audio format file to WAV format. You only needto perform this job if your ripping
program (e.g. tosha, cdd) didn’t already do the job for you!

• Using theaudio/sox package, type:

$ sox -s -w -c 2 -r 44100 -t cdr track-02.cda track-02.wav

This will converttrack-02.cda in raw CD format totrack-02.wav in WAV format, using
signed 16-bitwords with 2channels at a samplingrate of 44100kHz.

3. Encode the WAV file into MP3 format.

• Using theaudio/bladeenc package, type:

$ bladeenc -128 -QUIT track-02.wav

This will encodetrack-02.wav into track-02.mp3 in MP3 format, using a bit rate if
128kBit/sec. The documentation for bladeenc describes bit-rates in more detail.

• Using theaudio/lame package, type:

$ lame -p -o -v -V 5 -h track-02.wav track-02.mp3

You may wish to use a lower quality, depending on your taste and hardware.

The resultant MP3 file can be played with any of theaudio/gqmpeg , audio/maplay , audio/mpg123

or audio/splay packages.

13.10 Using a CD-R writer with data CDs
The process of writing a CD consists of two steps: First, a "image" of the data must be generated, which
can then be written to CD-R in a second step.

1. Reading an pre-existing ISO image

dd if=/dev/rcd0a of=filename.iso bs=2k

#

Alternatively, you can create a new ISO image yourself:

2. Generating the ISO image

Put all the data you want to put on CD into one directory. Next you need to generate a disk-like ISO
image of your data. The image stores the data in the same form as they’re later put on CD, using the
ISO 9660 format. The basic ISO9660 format only understands 8+3 filenames (max. eight letters for
filename, plus three more for an extension). As this is not practical for Unix filenames, a so-called
"Rockridge Extension" needs to be employed to get longer filenames. (A different set of such

103

Chapter 13 Using removable media

extension exists in the Microsoft world, to get their long filenames right; that’s what’s known as
Joliet filesystem).

The ISO image is created using the mkisofs command, which is part of thesysutils/cdrtools

package.

Example: if you have your data in /usr/tmp/data, you can generate a ISO image file in
/usr/tmp/data.iso with the following command:

$ cd /usr/tmp
$ mkisofs -o data.iso -r data
Using NETBS000.GZ;1 for data/binary/kernel/netbsd.INST ALL.gz (netbsd.INSTALL_TINY.gz)
Using NETBS001.GZ;1 for data/binary/kernel/netbsd.GENE RIC.gz (netbsd.GENERIC_TINY.gz)

5.92% done, estimate finish Wed Sep 13 21:28:11 2000
11.83% done, estimate finish Wed Sep 13 21:28:03 2000
17.74% done, estimate finish Wed Sep 13 21:28:00 2000
23.64% done, estimate finish Wed Sep 13 21:28:03 2000
...
88.64% done, estimate finish Wed Sep 13 21:27:55 2000
94.53% done, estimate finish Wed Sep 13 21:27:55 2000

Total translation table size: 0
Total rockridge attributes bytes: 5395
Total directory bytes: 16384
Path table size(bytes): 110
Max brk space used 153c4
84625 extents written (165 Mb)
$

Please see the mkisofs(8) man page for other options like noting publisher and preparer. The
Bootable CD ROM How-To (http://www.NetBSD.org/docs/bootcd.html) explains how to generate a
bootable CD.

3. Writing the ISO image to CD-R

When you have the ISO image file, you just need to write it on a CD. This is done with the
"cdrecord" command from thesysutils/cdrtools package. Insert a blank CD-R, and off we go:

cdrecord -v dev=/dev/rcd0d data.iso

...
#

After starting the command, ’cdrecord’ shows you a lot of information about your drive, the disk
and the image you’re about to write. It then does a 10 seconds countdown, which is your last chance
to stop things - type ^C if you want to abort. If you don’t abort, the process will write the whole
image to the CD and return with a shell prompt.

Note that cdrecord(8) works on both SCSI and IDE (ATAPI) drives.

4. Test

Mount the just-written CD and test it as you would do with any "normal" CD, seeSection 13.3.

104

Chapter 13 Using removable media

13.11 Using a CD-R writer to create audio CDs
If you want to make a backup copy of one of your audio CDs, you can do so by extracting ("ripping") the
audio tracks from the CD, and then writing them back to a blankCD. Of course this also works fine if
you only extract single tracks from various CDs, creating your very own mix CD!

The steps involved are:

1. Extract ("rip") the audio tracks as described as inSection 13.8to get a couple of .wav files.

2. Write the .wav files using cdrecord command from thesysutils/cdrtools package:

cdrecord -v dev=/dev/rcd0d -audio -pad *.wav

13.12 Creating an audio CD from MP3s
If you have converted all your audio CDs to MP3 and now want to make a mixed CD for your (e.g.) your
car, you can do so by first converting the .mp3 files back to .wavformat, then write them as a normal
audio CD.

The steps involved here are:

1. Create .wav files from your .mp3 files:

$ mpg123 -w foo.wav foo.mp3

Do this for all of the MP3 files that you want to have on your audio CD. The .wav filenames you use
don’t matter.

2. Write the .wav files to CD as described underSection 13.11.

13.13 Copying an audio CD
To copy an audio CD while not introducing any pauses as mandated by the CDDA standard, you can use
cdrdao for that:

cdrdao read-cd --device /dev/rcd0d data.toc

cdrdao write --device /dev/rcd1d data.toc

13.14 Copying a data CD with two drives
If you have both a CD-R and a CD-ROM drive in your machine, you can copy a data CD with the
following command:

cdrecord dev=/dev/rcd1d /dev/rcd0d

Here the CD-ROM (cd0) contains the CD you want to copy, and theCD-R (cd1) contains the blank disk.
Note that this only works with computer disks that contain some sort of data, it doesnot work with audio
CDs! In practice you’ll also want to add something like "speed=8" to make things a bit faster.

105

Chapter 13 Using removable media

13.15 Using CD-RW rewritables
You can treat a CD-RW drive like a CD-R drive (seeSection 13.10) in NetBSD, creating images with
mkisofs(8) and writing them on a CD-RW medium with cdrecord(8).

If you want to blank a CD-RW, you can do this with cdrecord’s "blank " option:

cdrecord dev=/dev/rcd0d blank=fast

There are several other ways to blank the CD-RW, call cdrecord(8) with "blank=help" for a list. See
the cdrecord(8) man page for more information.

13.16 DVD support
Currently, NetBSD supports DVD media through the ISO 9660 also used for CD-ROMs. The new UDF
filesystem also present on DVDs has been supported since NetBSD 4.0. Information about mounting ISO
9660 and UDF filesystems can be found in the mount_cd9660(8) and mount_udf(8) manual pages
respectively. DVDs, DivX and many avi files be played withmultimedia/ogle or
multimedia/gmplayer .

For some hints on creating DVDs, see this postings about growisofs
(http://mail-index.NetBSD.org/current-users/2004/01/06/0021.html) and this article about recording CDs
and DVDs with NetBSD (http://www.mreriksson.net/blog/archive/15/).

13.17 Creating ISO images from a CD
To create an ISO image and save the checksum do this:

readcd dev=/dev/cd0d f=/tmp/cd.iso

Here is an alternative using dd(1):

dd if=/dev/cd0d of=/tmp/cd.iso bs=2048

If the CD has errors you can recover the rest with this:

dd if=/dev/cd0d of=/tmp/cd.iso bs=2048 conv=noerror

To create an ISO image from a mounted data CD first, mount the CDdisk by:

mount -t cd9660 -r /dev/cd0d /mnt/cdrom

Second, get the image:

mkhybrid -v -l -J -R -o /tmp/my_cd.iso /mnt/cdrom/

13.18 Getting volume information from CDs and ISO images
You can read the volume data from an unmounted CD with this command:

106

Chapter 13 Using removable media

file -s /dev/cd0d

You can read the volume data from an ISO image with this command:

isoinfo -d -i /tmp/my_cd.iso

You can get the unique disk number from an unmounted CD with this:

cd-discid /dev/cd0d

You can read the table of contents of an unmounted CD with thiscommand:

cdrecord -v dev=/dev/cd0d -toc

107

Chapter 14

The cryptographic device driver
(CGD)

Thecgd driver provides functionality which allows you to use disksor partitions for encrypted storage.
After providing the appropriate key, the encrypted partition is accessible usingcgd pseudo-devices.

14.1 Overview
People often store sensitive information on their hard disks and are concerned about this information
falling into the wrong hands. This is particularly relevantto users of laptops and other portable devices,
or portable media, which might be stolen or accidentally misplaced.

14.1.1 Why use disk encryption?

File-oriented encryption tools like GnuPG are great for encrypting individual files, which can then be
sent across untrusted networks as well as stored encrypted on disk. But sometimes they can be
inconvenient, because the file must be decrypted each time itis to be used; this is especially cumbersome
when you have a large collection of files to protect. Any time asecurity tool is cumbersome to use,
there’s a chance you’ll forget to use it properly, leaving the files unprotected for the sake of convenience.

Worse, readable copies of the encrypted contents might still exist on the hard disk. Even if you overwrite
these files (usingrm -P) before unlinking them, your application software might make temporary copies
you don’t know about, or have been paged to swapspace - and even your hard disk might have silently
remapped failing sectors with data still in them.

The solution is to simply never write the information unencrypted to the hard disk. Rather than taking a
file-oriented approach to encryption, consider a block-oriented approach - a virtual hard disk, that looks
just like a normal hard disk with normal filesystems, but which encrypts and decrypts each block on the
way to and from the real disk.

14.1.2 Logical Disk Drivers

Thecgd device looks and behaves to the rest of the operating system like any other disk driver. Rather
than driving real hardware directly, it provides a logical function layered on top of another block device.
It has a special configuration program,cgdconfig, to create and configure acgd device and point it at the
underlying disk device that will hold the encrypted data.

NetBSD includes several other similar logical block devices, each of which provides some other function
wherecgd provides encryption. You can stack several of these logicalblock devices together: you can
make an encryptedraid to protect your encrypted data against hard disk failure as well.

108

Chapter 14 The cryptographic device driver (CGD)

Once you have created acgd disk, you can usedisklabel to divide it up into partitions,swapctl to enable
swapping to those partitions ornewfsto make filesystems, thenmount and use those filesystems, just
like any other new disk.

14.1.3 Availability

Thecgd driver was written by Roland C. Dowdeswell, and introduced in NetBSD-current between the
1.6 and 2.0 release branches. As a result, it is not in the 1.6 release series; it is in the 2.0 release.

14.2 Components of the Crypto-Graphic Disk system
A number of components and tools work together to make thecgd system effective.

14.2.1 Kernel driver pseudo-device

To usecgd you need a kernel with support for thecgd pseudo-device. Make sure the following line is in
the kernel configuration file:

pseudo-device cgd 4 # cryptographic disk driver

The number specifies how manycgd devices may be configured at the same time. After configuring the
cgd pseudo-device you can recompile the kernel and boot it to enablecgd support.

14.2.2 Ciphers

Thecgd driver provides the following encryption algorithms:

Encryption Methods

aes-cbc

AES (Rijndael). AES uses a 128 bit blocksize and accepts 128,192 or 256 bit keys.

blowfish-cbc

Blowfish uses a 64 bit blocksize and accepts 128 bit keys

3des-cbc

Triple DES uses a 64 bit blocksize and accepts 192 bit keys (only 168 bits are actually used for
encryption)

All three ciphers are used in CBC mode. This means each block is XORed with the previous encrypted
block before encryption. This reduces the risk that a pattern can be found, which can be used to break the
encryption.

109

Chapter 14 The cryptographic device driver (CGD)

14.2.3 Verification Methods

Another aspect ofcgd that needs some attention are the verification methodscgdconfigprovides. These
verification methods are used to verify the passphrase is correct. The following verification methods are
available:

Verification Methods

none

no verification is performed. This can be dangerous, becausethe key is not verified at all. When a
wrong key is enteredcgdconfigconfigures thecgd device as normal, but data which was available
on the volume will be destroyed (decrypting blocks with a wrong key will result in random data,
which will result in a regeneration of the disklabel with thecurrent key).

disklabel

cgdconfigscans for a valid disklabel. If a valid disklabel is found with the key that is provided
authentication will succeed.

ffs

cgdconfigscans for a valid FFS file system. If a valid FFS file system is found with the key that is
provided authentication will succeed.

14.3 Example: encrypting your disk
This section works through a step-by-step example of converting an existing system to usecgd ,
performing the following actions:

1. Preparing the disk and partitions

2. Scrub off all data

3. Create the cgd

4. Adjust config-files

5. Restoring your backed-up files to the encrypted disk

14.3.1 Preparing the disk

First, decide which filesystems you want to move to an encrypted device. You’re going to need to leave at
least the small root (/) filesystem unencrypted, in order to load the kernel and runinit , cgdconfigand the
rc.d scripts that configure yourcgd . In this example, we’ll encrypt everything except the root (/)
filesystem.

We are going to delete and re-make partitions and filesystems, and will require a backup to restore the
data. So make sure you have a current, reliable backup storedon a different disk or machine. Do your
backup in single-user mode, with the filesystems unmounted,to ensure you get a cleandump. Make sure
you back up the disklabel of your hard disk as well, so you havea record of the partition layout before
you started.

110

Chapter 14 The cryptographic device driver (CGD)

With the system at single user,/ mounted read-write and everything else unmounted, usedisklabel to
delete all the data partitions you want to move intocgd .

Then make a single new partition in all the space you just freed up, say,wd0e. Set the partition type for
this partition toccd (there’s no code specifically forcgd , butccd is very similar. Though it doesn’t
really matter what it is, it will help remind you that it’s nota normal filesystem later). When finished,
label the disk to save the new partition table.

14.3.2 Scrubbing the disk

We have removed the partition table information, but the existing filesystems and data are still on disk.
Even after we make acgd device, create filesystems, and restore our data, some of these disk blocks
might not yet be overwritten and still contain our data in plaintext. This is especially likely if the
filesystems are mostly empty. We want to scrub the disk beforewe go further.

We could usedd to copy/dev/zero over the newwd0e partition, but this will leave our disk full of
zeros, except where we’ve written encrypted data later. We might not want to give an attacker any clues
about which blocks contain real data, and which are free space, so we want to write "noise" into all the
disk blocks. So we’ll create a temporarycgd , configured with a random, unknown key.

First, we configure acgd to use a random key:

cgdconfig -s cgd0 /dev/wd0e aes-cbc 128 < /dev/urandom

Now we can write zeros into the raw partition of ourcgd (/dev/rcgd0d on NetBSD/i386,
/dev/rcgd0c on most other platforms):

dd if=/dev/zero of=/dev/rcgd0d bs=32k

The encrypted zeros will look like random data on disk. This might take a while if you have a large disk.
Once finished, unconfigure the random-keycgd :

cgdconfig -u cgd0

14.3.3 Creating the cgd

Thecgdconfigprogram, which manipulatescgd devices, uses parameters files to store such information
as the encryption type, key length, and a random password salt for eachcgd . These files are very
important, and need to be kept safe - without them, you will not be able to decrypt the data!

We’ll generate a parameters file and write it into the defaultlocation (make sure the directory/etc/cgd

exists and is mode 700):

cgdconfig -g -V disklabel -o /etc/cgd/wd0e aes-cbc 256

This creates a parameters file/etc/cgd/wd0e describing acgd using theaes-cbc cipher method, a
key verification method ofdisklabel , and a key length of256 bits. It will look something like this:

algorithm aes-cbc;
iv-method encblkno;
keylength 256;

111

Chapter 14 The cryptographic device driver (CGD)

verify_method disklabel;
keygen pkcs5_pbkdf2/sha1 {

iterations 6275;
salt AAAAgHTg/jKCd2ZJiOSGrgnadGw=;

};

Note: Remember, you’ll want to save this file somewhere safe later.

Tip: When creating the parameters file, cgdconfig reads from /dev/random to create the password
salt. This read may block if there is not enough collected entropy in the random pool. This is unlikely,
especially if you just finished overwriting the disk as in the previous step, but if it happens you can
press keys on the console and/or move your mouse until the rnd device gathers enough entropy.

Now it’s time to create ourcgd , for which we’ll need a passphrase. This passphrase needs tobe entered
every time thecgd is opened, which is usually at each reboot. The encryption key is derived from this
passphrase and the salt. Make sure you choose something you won’t forget, and others won’t guess.

The first time we configure thecgd , there is no valid disklabel on the logical device, so the validation
mechanism we want to use later won’t work. We override it thisone time:

cgdconfig -V re-enter cgd0 /dev/wd0e

This will prompt twice for a matching passphrase, just in case you make a typo, which would otherwise
leave you with acgd encrypted with a passphrase that’s different to what you expected.

Now that we have a newcgd , we need to partition it and create filesystems. Recreate your previous
partitions with all the same sizes, with the same letter names.

Tip: Remember to use the disklabel -I argument, because you’re creating an initial label for a new
disk.

Note: Although you want the sizes of your new partitions to be the same as the old, unencrypted
ones, the offsets will be different because they’re starting at the beginning of this virtual disk.

Then, usenewfsto create filesystems on all the relevant partitions. This time your partitions will reflect
thecgd disk names, for example:

newfs /dev/rcgd0h

14.3.4 Modifying configuration files

We’ve moved several filesystems to another (logical) disk, and we need to update/etc/fstab

accordingly. Each partition will have the same letter (in this example), but will be oncgd0 rather than
wd0. So you’ll have/etc/fstab entries something like this:

112

Chapter 14 The cryptographic device driver (CGD)

/dev/wd0a / ffs rw,softdep 1 1
/dev/cgd0b none swap sw 0 0
/dev/cgd0b /tmp mfs rw,-s=132m 0 0
/dev/cgd0e /var ffs rw,softdep 1 2
/dev/cgd0f /usr ffs rw,softdep 1 2
/dev/cgd0h /home ffs rw,softdep 1 2

Note: /tmp should be a separate filesystem, either mfs or ffs , inside the cgd , so that your temporary
files are not stored in plain text in the / filesystem.

Each time you reboot, you’re going to need yourcgd configured early, beforefsck runs and filesystems
are mounted.

Put the following line in/etc/cgd/cgd.conf :

cgd0 /dev/wd0e

This will use/etc/cgd/wd0e as config file forcgd0 .

To finally enable cgd on each boot, put the following line into/etc/rc.conf :

cgd=YES

You should now be prompted for/dev/cgd0 ’s passphrase whenever/etc/rc starts.

14.3.5 Restoring data

Next,mount your new filesystems, andrestoreyour data into them. It often helps to have/tmp mounted
properly first, asrestorecan use a fair amount of temporary space when extracting a large dumpfile.

To test your changes to the boot configuration,umount the filesystems and unconfigure thecgd , so
when you exit the single-user shell,rc will run like on a clean boot, prompting you for the passphrase
and mounting your filesystems correctly. Now you can bring the system up to multi-user, and make sure
everything works as before.

14.4 Example: encrypted CDs/DVDs

14.4.1 Introduction

This section explains how to create and use encrypted CDs/DVDs with NetBSD (all I say about "CDs"
here does also apply to "DVDs"). I assume that you have basic knowledge of cgd(4), so I will not explain
what cgd is or what’s inside it in detail. The same applies to vnd(4). One can make use of encrypted CDs
after reading this howto, but for more detailed informationabout different cgd configuration options,
please readChapter 14or the manpages.

113

Chapter 14 The cryptographic device driver (CGD)

14.4.2 Creating an encrypted CD/DVD

cgd(4) provides highly secure encryption of whole partitions or disks. Unfortunately, creating "normal"
CDs is not disklabeling something and running newfs on it. Neither can you just put a CDR into the
drive, configure cgd and assume it to write encrypted data when syncing. Standard CDs contain at least
an ISO-9660 filesystem created with mkisofs(8) from thesysutils/cdrtools package. ISO images
maynot contain disklabels or cgd partitions.

But of course CD reader/writer hardware doesn’t care about filesystems at all. You can write raw data to
the CD if you like - or an encrypted FFS filesystem, which is what we’ll do here. But be warned, there is
NO way to read this CD with any OS except NetBSD - not even otherBSDs due to the lack of cgd.

The basic steps when creating an encrypted CD are:

• Create an (empty) imagefile

• Register it as a virtual disk using vnd(4)

• Configure cgd inside the vnd disk

• Copy content to the cgd

• Unconfigure all (flush!)

• Write the image on a CD

The first step when creating an encrypted CD is to create a single image file with dd. The image may not
grow, so make it large enough to allow all CD content to fit into. Note that the whole image gets written
to the CD later, so creating a 700 MB image for 100 MB content will still require a 700 MB write
operation to the CD. Some info on DVDs here: DVDs are only 4.7 GB in marketing language. 4.7GB =
4.7 x 1024 x 1024 x 1024 = 5046586573 bytes. In fact, a DVD can only approximately hold 4.7 x 1000 x
1000 x 1000 = 4700000000 bytes, which is about 4482 MB or about4.37 GB. Keep this in mind when
creating DVD images. Don’t worry for CDs, they hold "real" 700 MB (734003200 Bytes).

Invoke all following commands as root!

For a CD:

dd if=/dev/zero of=image.img bs=1m count=700

or, for a DVD:

dd if=/dev/zero of=image.img bs=1m count=4482

Now configure a vnd(4)-pseudo disk with the image:

vnconfig vnd0 image.img

In order to use cgd, a so-called parameter file, describing encryption parameters and a containing
"password salt" must be generated. We’ll call it/etc/cgd/image here. You can use one parameter file
for several encrypted partitions (I use one different file for each host and a shared fileimage for all
removable media, but that’s up to you).

I’ll use AES-CBC with a keylength of 256 bits. Refer to cgd(4)and cgdconfig(8) for details and
alternatives.

114

Chapter 14 The cryptographic device driver (CGD)

The following command will create the parameter file as/etc/cgd/image . YOU DO NOT WANT TO
INVOKE THE FOLLOWING COMMAND AGAINafter you burnt any CD, since a recreated parameter
file is a lost parameter file and you’ll never access your encrypted CD again (the "salt" this file contains
will differ among each call). Consider this file beingHOLY, BACKUP ITandBACKUP IT AGAIN!Use
switch -V to specify verification method "disklabel" for theCD (cgd cannot detect whether you entered a
valid password for the CD later when mounting it otherwise).

cgdconfig -g -V disklabel aes-cbc 256 > /etc/cgd/image

Now it’s time to configure a cgd for our vnd drive. (Replace slice "d" with "c" for all platforms that use
"c" as the whole disk (where "sysctl kern.rawpartition " prints "2", not "3"); if you’re on i386 or amd64,
"d" is OK for you):

cgdconfig -V re-enter cgd1 /dev/vnd0d /etc/cgd/image

The "-V re-enter " option is necessary as long as the cgd doesn’t have a disklabel yet so we can access
and configure it. This switch asks for a password twice and uses it for encryption.

Now it’s time to create a disklabel inside the cgd. The defaults of the label are ok, so invoking disklabel
with

disklabel -e -I cgd1

and leaving vi with ":wq" immediately will do.

Let’s create a filesystem on the cgd, and finally mount it somewhere:

newfs /dev/rcgd1a

mount /dev/cgd1a /mnt

The cgd is alive! Now fill/mnt with content. When finished, reverse the configuration process. The steps
are:

1. Unmounting the cgd1a:

umount /mnt

2. Unconfiguring the cgd:

cgdconfig -u cgd1

3. Unconfiguring the vnd:

vnconfig -u vnd0

The following commands are examples to burn the images on CD or DVD. Please adjust thedev= for
cdrecord or the/dev/rcd0d for growisofs. Note the "rcd0d " is necessary with NetBSD. Growisofs is
available in thesysutils/dvd+rw-tools package. Again, use "c" instead of "d" if this is the raw
partition on your platform.

Finally, write the image file to a CD:

cdrecord dev=/dev/rcd0d -v image.img

...or to a DVD:

growisofs -dvd-compat -Z /dev/rcd0d=image.img

115

Chapter 14 The cryptographic device driver (CGD)

Congratulations! You’ve just created a really secure CD!

14.4.3 Using an encrypted CD/DVD

After creating an encrypted CD as described above, we’re notdone yet - what about mounting it again?
One might guess, configuring the cgd on/dev/cd0d is enough - no, it is not.

NetBSD cannot access FFS file systems on media that is not 512 bytes/sector format. It doesn’t matter
that the cgd on the CD is, since the CD’s disklabel the cgd resides in has 2048 bytes/sector.

But the CD driver cd(4) is smart enough to grant "write" access to the (emulated) disklabel on the CD.
So before configuring the cgd, let’s have a look at the disklabel and modify it a bit:

disklabel -e cd0

/dev/rcd0d:
type: ATAPI
disk: mydisc
label: fictitious
flags: removable
bytes/sector: 2048 # -- Change to 512 (= orig / 4)

sectors/track: 100 # -- Change to 400 (= orig * 4)

tracks/cylinder: 1
sectors/cylinder: 100 # -- Change to 400 (= orig * 4)

cylinders: 164
total sectors: 16386 # -- Change to value of slice "d" (=65544)

rpm: 300
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

4 partitions:
size offset fstype [fsize bsize cpg/sgs]

a: 65544 0 4.2BSD 0 0 0 # (Cyl. 0 - 655+)
d: 65544 0 ISO9660 0 0 # (Cyl. 0 - 655+)

If you don’t want to do these changes every time by hand, you can use Florian Stoehr’s toolneb-cd512
which is (at time of writing this) in pkgsrc-wip and will moveto sysutils/neb-cd512 soon. You can
also download the neb-cd512 source from http://sourceforge.net/projects/neb-stoehr/
(http://sourceforge.net/projects/neb-stoehr/) (be sure to use neb-cd512, not neb-wipe!).

It is invoked with the disk name as parameter, by root:

neb-cd512 cd0

Now as the disklabel is in 512 b/s format, accessing the CD is as easy as:

cgdconfig cgd1 /dev/cd0d /etc/cgd/image

mount -o ro /dev/cgd1a /mnt

116

Chapter 14 The cryptographic device driver (CGD)

Note that the cgdMUSTbe mounted read-only or you’ll get illegal command errors from the cd(4) driver
which can in some cases make even mounting a CD-based cgd impossible!

Now we’re done! Enjoy your secure CD!

ls /mnt

Remember you have to reverse all steps to remove the CD:

umount /mnt

cgdconfig -u cgd1

eject cd0

14.5 Suggestions and Warnings
You now have your filesystems encrypted within acgd . When your machine is shut down, the data is
protected, and can’t be decrypted without the passphrase. However, there are still some dangers you
should be aware of, and more you can do withcgd . This section documents several further suggestions
and warnings that will help you usecgd effectively.

• Use multiplecgd ’s for different kinds of data, one mounted all the time and others mounted only
when needed.

• Use acgd configured on top of avnd made from a file on a remote network fileserver (NFS, SMBFS,
CODA, etc) to safely store private data on a shared system. This is similar to the procedure for using
encrypted CDs and DVDs described inSection 14.4.

14.5.1 Using a random-key cgd for swap

You may want to use a dedicated random-keycgd for swap space, regenerating the key each reboot. The
advantage of this is that once your machine is rebooted, any sensitive program memory contents that may
have been paged out are permanently unrecoverable, becausethe decryption key is never known to you.

We created a temporarycgd with a random key when scrubbing the disk in the example above, using a
shorthandcgdconfig -sinvocation to avoid creating a parameters file.

Thecgdconfigparams file includes a “randomkey” keygen method. This is more appropriate for
"permanent" random-key configurations, and facilitates the easy automatic configuration of these
volumes at boot time.

For example, if you wanted to convert your existing/dev/wd0b partition to a dedicated random-key
cgd1, use the following command to generate/etc/cgd/wd0b :

cgdconfig -g -o /etc/cgd/wd0b -V none -k randomkey blowfish-cbc

When using the randomkey keygen method, only verification method "none" can be used, because the
contents of the newcgd are effectively random each time (the previous data decrypted with a random
key). Likewise, the new disk will not have a valid label or partitions, andswapctlwill complain about
configuring swap devices not marked as such in a disklabel.

117

Chapter 14 The cryptographic device driver (CGD)

In order to automate the process of labeling the disk, prepare an appropriate disklabel and save it to a file,
for example/etc/cgd/wd0b.disklabel . Please refer to disklabel(8) for information about how to
usedisklabel to set up a swap partition.

On each reboot, to restore this saved label to the newcgd , create the/etc/rc.conf.d/cgd file as
below:

swap_device="cgd1"
swap_disklabel="/etc/cgd/wd0b.disklabel"
start_postcmd="cgd_swap"

cgd_swap()
{

if [-f $swap_disklabel]; then
disklabel -R -r $swap_device $swap_disklabel

fi
}

The same technique could be extended to encompass usingnewfsto re-create anffs filesystem for
/tmp if you didn’t want to usemfs .

14.5.2 Warnings

Prevent cryptographic disasters by making sure you can always recover your passphrase and parameters
file. Protect the parameters file from disclosure, perhaps bystoring it on removable media as above,
because the salt it contains helps protect against dictionary attacks on the passphrase.

Keeping the data encrypted on your disk is all very well, but what about other copies? You already have
at least one other such copy (the backup we used during this setup), and it’s not encrypted. Pipingdump
through file-based encryption tools likegpgcan be one way of addressing this issue, but make sure you
have all the keys and tools you need to decrypt it torestoreafter a disaster.

Like any form of software encryption, thecgd key stays in kernel memory while the device is
configured, and may be accessible to privileged programs andusers, such as/dev/kmem grovellers.
Taking other system security steps, such as running with elevated securelevel, is highly recommended.

Once thecgd volumes are mounted as normal filesystems, their contents are accessible like any other
file. Take care of file permissions and ensure your running system is protected against application and
network security attack.

Avoid using suspend/resume, especially for laptops with a BIOS suspend-to-disk function. If an attacker
can resume your laptop with the key still in memory, or read itfrom the suspend-to-disk memory image
on the hard disk later, the whole point of usingcgd is lost.

14.6 Further Reading
The following resources contain more information on CGD:

118

Chapter 14 The cryptographic device driver (CGD)

Bibliography

NetBSD CGD Setup (http://www.s-mackie.demon.co.uk/unix-notes/NetBSD-CGD-Setup.html), Stuart
Mackie.

I want my cgd (http://www.nycbug.org/uploads/_netbsdcgd.html) aka: I want an encrypted
pseudo-device on my laptop.

The original paper on The CryptoGraphic Disk Driver (http://www.imrryr.org/~elric/cgd/cgd.pdf),
Roland Dowdeswell and John Ioannidis.

119

Chapter 15

Concatenated Disk Device (CCD)
configuration

The CCD driver allows the user to “concatenate” several physical disks into one pseudo volume. While
RAIDframe (seeChapter 16) also allows doing this to create RAID level 0 sets, it does not allow you to
do striping across disks of different geometry, which is where CCD comes in handy. CCD also allows for
an “interleave” to improve disk performance with a gained space loss. This example will not cover that
feature.

The steps required to setup a CCD are as follows:

1. Install physical media

2. Configure kernel support

3. Disklabel each volume member of the CCD

4. Configure the CCD conf file

5. Initialize the CCD device

6. Create a filesystem on the new CCD device

7. Mount the CCD filesystem

This example features a CCD setup on NetBSD/sparc 1.5. The CCD will reside on 4 SCSI disks in a
generic external Sun disk pack chassis connected to the external 50 pin SCSI port.

15.1 Install physical media
This step is at your own discretion, depending on your platform and the hardware at your disposal.

From my DMESG:

Disk #1:
probe(esp0:0:0): max sync rate 10.00MB/s
sd0 at scsibus0 target 0 lun 0: <SEAGATE, ST32430N SUN2.1G, 0 444> SCSI2 0/direct fixed
sd0: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 41974 05 sectors

Disk #2
probe(esp0:1:0): max sync rate 10.00MB/s
sd1 at scsibus0 target 1 lun 0: <SEAGATE, ST32430N SUN2.1G, 0 444> SCSI2 0/direct fixed
sd1: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 41974 05 sectors

Disk #3
probe(esp0:2:0): max sync rate 10.00MB/s

120

Chapter 15 Concatenated Disk Device (CCD) configuration

sd2 at scsibus0 target 2 lun 0: <SEAGATE, ST11200N SUN1.05, 9 500> SCSI2 0/direct fixed
sd2: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 20591 40 sectors

Disk #4
probe(esp0:3:0): max sync rate 10.00MB/s
sd3 at scsibus0 target 3 lun 0: <SEAGATE, ST11200N SUN1.05, 8 808 > SCSI2 0
sd3: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 20591 40 sectors

15.2 Configure Kernel Support
The following kernel configuration directive is needed to provide CCD device support. It is enabled in
the GENERIC kernel:

pseudo-device ccd 4 # concatenated disk devices

In my kernel config, I also hard code SCSI ID associations to/dev device entries to prevent bad things
from happening:

sd0 at scsibus0 target 0 lun ?
SCSI disk drives
sd1 at scsibus0 target 1 lun ?
SCSI disk drives
sd2 at scsibus0 target 2 lun ?
SCSI disk drives
sd3 at scsibus0 target 3 lun ?
SCSI disk drives
sd4 at scsibus0 target 4 lun ?
SCSI disk drives
sd5 at scsibus0 target 5 lun ?
SCSI disk drives
sd6 at scsibus0 target 6 lun ?
SCSI disk drives

15.3 Disklabel each volume member of the CCD
Each member disk of the CCD will need a special file system established. In this example, I will need to
disklabel:

/dev/rsd0c

/dev/rsd1c

/dev/rsd2c

/dev/rsd3c

Note: Always remember to disklabel the character device, not the block device, in /dev/r{s,w}d *

Note: On all platforms, the c slice is symbolic of the entire NetBSD partition and is reserved.

121

Chapter 15 Concatenated Disk Device (CCD) configuration

You will probably want to remove any pre-existing disklabels on the disks in the CCD. This can be
accomplished in one of two ways with the dd(1) command:

dd if=/dev/zero of=/dev/rsd0c bs=8k count=1

dd if=/dev/zero of=/dev/rsd1c bs=8k count=1

dd if=/dev/zero of=/dev/rsd2c bs=8k count=1

dd if=/dev/zero of=/dev/rsd3c bs=8k count=1

If your port uses a MBR (Master Boot Record) to partition the disks so that the NetBSD partitions are
only part of the overall disk, and other OSs like Windows or Linux use other parts, you can void the
MBR and all partitions on disk by using the command:

dd if=/dev/zero of=/dev/rsd0d bs=8k count=1

dd if=/dev/zero of=/dev/rsd1d bs=8k count=1

dd if=/dev/zero of=/dev/rsd2d bs=8k count=1

dd if=/dev/zero of=/dev/rsd3d bs=8k count=1

This will make all data on the entire disk inaccessible. Notethat the entire disk is sliced on i386 (and
some other ports), andc elsewhere (e.g. on sparc). See the “kern.rawpartition” sysctl - "3" means "d",
"2" means "c".

The default disklabel for the disk will look similar to this:

disklabel -r sd0

[...snip...]
bytes/sector: 512
sectors/track: 116
tracks/cylinder: 9
sectors/cylinder: 1044
cylinders: 3992
total sectors: 4197405
[..snip...]
3 partitions:
size offset fstype [fsize bsize cpg]

c: 4197405 0 unused 1024 8192 # (Cyl. 0 - 4020 *)

You will need to create one “slice” on the NetBSD partition ofthe disk that consumes the entire partition.
The slice must begin at least one cylinder offset from the beginning of the disk/partition to provide space
for the special CCD disklabel. The offset should be 1x sectors/cylinder (see following note). Therefore,
the “size” value should be “total sectors” minus 1x “sectors/cylinder”. Edit your disklabel accordingly:

disklabel -e sd0

Note: The offset of a slice of type “ccd” must be a multiple of the “sectors/cylinder” value.

Note: Be sure to export EDITOR=[path to your favorite editor] before editing the disklabels.

122

Chapter 15 Concatenated Disk Device (CCD) configuration

Note: The slice must be fstype ccd .

Because there will only be one slice on this partition, you can recycle thec slice (normally reserved for
symbolic uses). Change your disklabel to the following:

3 partitions:
size offset fstype [fsize bsize cpg]

c: 4196361 1044 ccd # (Cyl. 1 - 4020 *)

Optionally you can setup a slice other thanc to use, simply adjust accordingly below:

3 partitions:
size offset fstype [fsize bsize cpg]

a: 4196361 1044 ccd # (Cyl. 1 - 4020 *)
c: 4197405 0 unused 1024 8192 # (Cyl. 0 - 4020 *)

Be sure to write the label when you have completed. Disklabelwill object to your disklabel and prompt
you to re-edit if it does not pass its sanity checks.

15.4 Configure the CCD
Once all disks are properly labeled, you will need to generate a configuration file,/etc/ccd.conf . The
file does not exist by default, and you will need to create a newone. The format is:

#ccd ileave flags component devices

Note: For the “ileave”, if a value of zero is used then the disks are concatenated, but if you use a
value equal to the “sectors/track” number the disks are interleaved.

Example in this case:

more /etc/ccd.conf

ccd0 0 none /dev/sd0c /dev/sd1c /dev/sd2c /dev/sd3c

Note: The CCD driver expects block device files as components. Be sure not to use character device
files in the configuration.

15.5 Initialize the CCD device
Once you are confident that your CCD configuration is sane, youcan initialize the device using the
ccdconfig(8) command: Configure:

ccdconfig -C -f /etc/ccd.conf

123

Chapter 15 Concatenated Disk Device (CCD) configuration

Unconfigure:

ccdconfig -u -f /etc/ccd.conf

Initializing the CCD device will activate/dev entries:/dev/{,r}ccd#:

ls -la /dev/{,r}ccd0*
brw-r----- 1 root operator 9, 0 Apr 28 21:35 /dev/ccd0a
brw-r----- 1 root operator 9, 1 Apr 28 21:35 /dev/ccd0b
brw-r----- 1 root operator 9, 2 May 12 00:10 /dev/ccd0c
brw-r----- 1 root operator 9, 3 Apr 28 21:35 /dev/ccd0d
brw-r----- 1 root operator 9, 4 Apr 28 21:35 /dev/ccd0e
brw-r----- 1 root operator 9, 5 Apr 28 21:35 /dev/ccd0f
brw-r----- 1 root operator 9, 6 Apr 28 21:35 /dev/ccd0g
brw-r----- 1 root operator 9, 7 Apr 28 21:35 /dev/ccd0h
crw-r----- 1 root operator 23, 0 Jun 12 20:40 /dev/rccd0a
crw-r----- 1 root operator 23, 1 Apr 28 21:35 /dev/rccd0b
crw-r----- 1 root operator 23, 2 Jun 12 20:58 /dev/rccd0c
crw-r----- 1 root operator 23, 3 Apr 28 21:35 /dev/rccd0d
crw-r----- 1 root operator 23, 4 Apr 28 21:35 /dev/rccd0e
crw-r----- 1 root operator 23, 5 Apr 28 21:35 /dev/rccd0f
crw-r----- 1 root operator 23, 6 Apr 28 21:35 /dev/rccd0g
crw-r----- 1 root operator 23, 7 Apr 28 21:35 /dev/rccd0h

15.6 Create a 4.2BSD/UFS filesystem on the new CCD device
You may now disklabel the new virtual disk device associatedwith your CCD:

disklabel -e ccd0

Once again, there will be only one slice, so you may either recycle thec slice or create a separate slice
for use.

disklabel -r ccd0

/dev/rccd0c:
type: ccd
disk: ccd
label: default label
flags:
bytes/sector: 512
sectors/track: 2048
tracks/cylinder: 1
sectors/cylinder: 2048
cylinders: 6107
total sectors: 12508812
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

124

Chapter 15 Concatenated Disk Device (CCD) configuration

size offset fstype [fsize bsize cpg]
c: 12508812 0 4.2BSD 1024 8192 16 # (Cyl. 0 - 6107 *)

The filesystem will then need to be formatted:

newfs /dev/rccd0c

Warning: 372 sector(s) in last cylinder unallocated
/dev/rccd0c: 12508812 sectors in 6108 cylinders of 1 tracks , 2048 sectors

6107.8MB in 382 cyl groups (16 c/g, 16.00MB/g, 3968 i/g)

super-block backups (for fsck -b #) at:
[...]

15.7 Mount the filesystem
Once you have a created a file system on the CCD device, you can then mount the file system against a
mount point on your system. Be sure to mount the slice labeledtypeffs or 4.2BSD :

mount /dev/ccd0c /mnt

Then:

export BLOCKSIZE=1024; df

Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/sd6a 376155 320290 37057 89% /
/dev/ccd0c 6058800 1 5755859 0% /mnt

Congratulations, you now have a working CCD. To configure theCCD device at boot time, setccd=yes

in /etc/rc.conf . You can adjust/etc/fstab to get the filesystem mounted at boot:

/dev/ccd0c /home ffs rw,softdep 1 2

125

Chapter 16

NetBSD RAIDframe

16.1 RAIDframe Introduction

16.1.1 About RAIDframe

NetBSD uses the CMU RAIDframe (http://www.pdl.cmu.edu/RAIDframe/) software for its RAID
subsystem. NetBSD is the primary platform for RAIDframe development. RAIDframe can also be found
in OpenBSD and older versions of FreeBSD. NetBSD also has another in-kernel RAID level 0 system in
its ccd(4) subsystem (seeChapter 15). You should possess some basic knowledge
(http://www.acnc.com/04_00.html) about RAID concepts and terminology before continuing. You should
also be at least familiar with the different levels of RAID - Adaptec provides an excellent reference
(http://www.adaptec.com/en-US/_common/compatibility/_education/RAID_level_compar_wp.htm), and
the raid(4) manpage contains a short overview too.

16.1.2 A warning about Data Integrity, Backups, and High Ava ilability

RAIDframe is a Software RAID implementation, as opposed to Hardware RAID. As such, it does not
need special disk controllers supported by NetBSD. System administrators should give a great deal of
consideration to whether software RAID or hardware RAID is more appropriate for their “Mission
Critical” applications. For some projects you might consider the use of many of the hardware RAID
devices supported by NetBSD (http://www.NetBSD.org/support/hardware/). It is truly at your discretion
what type of RAID you use, but it is recommend that you consider factors such as: manageability,
commercial vendor support, load-balancing and failover, etc.

Depending on the RAID level used, RAIDframe does provide redundancy in the event of a hardware
failure. However, it isnot a replacement for reliable backups! Software and user-error can still cause data
loss. RAIDframe may be used as a mechanism for facilitating backups in systems without backup
hardware, but this is not an ideal configuration. Finally, with regard to "high availability", RAID is only a
very small component to ensuring data availability.

Once more for good measure:Back up your data!

16.1.3 Getting Help

If you encounter problems using RAIDframe, you have severaloptions for obtaining help.

1. Read the RAIDframe man pages: raid(4) and raidctl(8) thoroughly.

2. Search the mailing list archives. Unfortunately, there is no NetBSD list dedicated to RAIDframe
support. Depending on the nature of the problem, posts tend to end up in a variety of lists. At a very

126

Chapter 16 NetBSD RAIDframe

minimum, search netbsd-help (http://mail-index.NetBSD.org/netbsd-help/),
netbsd-users@NetBSD.org (http://mail-index.NetBSD.org/netbsd-users/),
current-users@NetBSD.org (http://mail-index.NetBSD.org/current-users/). Also search the list for
the NetBSD platform on which you are using RAIDframe: port-${ARCH}@NetBSD.org.

Caution
Because RAIDframe is constantly undergoing development, some
information in mailing list archives has the potential of being dated and
inaccurate.

3. Search the Problem Report database (http://www.NetBSD.org/support/send-pr.html).

4. If your problem persists: Post to the mailing list most appropriate (judgment call). Collect as much
verbosely detailed information as possible before posting: Include your dmesg(8) output from

/var/run/dmesg.boot , your kernel config(8) , your/etc/raid[0-9].conf , any relevant
errors on/dev/console , /var/log/messages , or tostdout/stderr of raidctl(8). The output
of raidctl -s (if available) will be useful as well. Also include details on the troubleshooting steps
you’ve taken thus far, exactly when the problem started, andany notes on recent changes that may
have prompted the problem to develop. Remember to be patientwhen waiting for a response.

16.2 Setup RAIDframe Support
The use of RAID will require software and hardware configuration changes.

16.2.1 Kernel Support

The GENERIC kernel already has support for RAIDframe. If youhave built a custom kernel for your
environment the kernel configuration must have the following options:

pseudo-device raid 8 # RAIDframe disk driver
options RAID_AUTOCONFIG # auto-configuration of RAID comp onents

The RAID support must be detected by the NetBSD kernel, whichcan be checked by looking at the
output of the dmesg(8) command.

dmesg|grep -i raid
Kernelized RAIDframe activated

Historically, the kernel must also contain static mappingsbetween bus addresses and device nodes in
/dev . This used to ensure consistency of devices within RAID setsin the event of a device failure after
reboot. Since NetBSD 1.6, however, using the auto-configuration features of RAIDframe has been
recommended over statically mapping devices. The auto-configuration features allow drives to move
around on the system, and RAIDframe will automatically determine which components belong to which
RAID sets.

127

Chapter 16 NetBSD RAIDframe

16.2.2 Power Redundancy and Disk Caching

If your system has an Uninterruptible Power Supply (UPS), and/or if your system has redundant power
supplies, you should consider enabling the read and write caches on your drives. On systems with
redundant power, this will improve drive performance. On systems without redundant power, the write
cache could endanger the integrity of RAID data in the event of a power loss.

The dkctl(8) utility to can be used for this on all kinds of disks that support the operation (SCSI, EIDE,
SATA, ...):

dkctl wd0 getcache
/dev/rwd0d: read cache enabled
/dev/rwd0d: read cache enable is not changeable
/dev/rwd0d: write cache enable is changeable
/dev/rwd0d: cache parameters are not savable
dkctl wd0 setcache rw
dkctl wd0 getcache
/dev/rwd0d: read cache enabled
/dev/rwd0d: write-back cache enabled
/dev/rwd0d: read cache enable is not changeable
/dev/rwd0d: write cache enable is changeable
/dev/rwd0d: cache parameters are not savable

16.3 Example: RAID-1 Root Disk
This example explains how to setup RAID-1 root disk. With RAID-1 components are mirrored and
therefore the server can be fully functional in the event of asingle component failure. The goal is to
provide a level of redundancy that will allow the system to encounter a component failure on either
component disk in the RAID and:

• Continue normal operations until a maintenance window can be scheduled.

• Or, in the unlikely event that the component failure causes asystem reboot, be able to quickly
reconfigure the system to boot from the remaining component (platform dependant).

Figure 16-1. RAID-1 Disk Logical Layout

Because RAID-1 provides both redundancy and performance improvements, its most practical
application is on critical "system" partitions such as/ , /usr , /var , swap, etc., where read operations are
more frequent than write operations. For other file systems,such as/home or /var/ {application},

128

Chapter 16 NetBSD RAIDframe

other RAID levels might be considered (see the references above). If one were simply creating a generic
RAID-1 volume for a non-root file system, the cookie-cutter examples from the man page could be
followed, but because the root volume must be bootable, certain special steps must be taken during initial
setup.

Note: This example will outline a process that differs only slightly between the i386 and sparc64
platforms. In an attempt to reduce excessive duplication of content, where differences do exist and
are cosmetic in nature, they will be pointed out using a section such as this. If the process is
drastically different, the process will branch into separate, platform dependant steps.

16.3.1 Pseudo-Process Outline

Although a much more refined process could be developed usinga custom copy of NetBSD installed on
custom-developed removable media, presently the NetBSD install media lacks RAIDframe tools and
support, so the following pseudo process has become the de facto standard for setting up RAID-1 Root.

1. Install a stock NetBSD onto Disk0 of your system.

Figure 16-2. Perform generic install onto Disk0/wd0

2. Use the installed system on Disk0/wd0 to setup a RAID Set composed of Disk1/wd1 only.

Figure 16-3. Setup RAID Set

3. Reboot the system off the Disk1/wd1 with the newly createdRAID volume.

129

Chapter 16 NetBSD RAIDframe

Figure 16-4. Reboot using Disk1/wd1 of RAID

4. Add / re-sync Disk0/wd0 back into the RAID set.

Figure 16-5. Mirror Disk1/wd1 back to Disk0/wd0

16.3.2 Hardware Review

At present, the alpha, amd64, i386, pmax, sparc, sparc64, and vax NetBSD platforms support booting
from RAID-1. Booting is not supported from any other RAID level. Booting from a RAID set is
accomplished by teaching the 1st stage boot loader to understand both 4.2BSD/FFS and RAID partitions.
The 1st boot block code only needs to know enough about the disk partitions and file systems to be able
to read the 2nd stage boot blocks. Therefore, at any time, thesystem’s BIOS / firmware must be able to
read a drive with 1st stage boot blocks installed. On the i386platform, configuring this is entirely
dependant on the vendor of the controller card / host bus adapter to which your disks are connected. On
sparc64 this is controlled by the IEEE 1275 Sun OpenBoot Firmware.

This article assumes two identical IDE disks (/dev/wd {0,1}) which we are going to mirror (RAID-1).
These disks are identified as:

grep ^wd /var/run/dmesg.boot
wd0 at atabus0 drive 0: <WDC WD100BB-75CLB0>
wd0: drive supports 16-sector PIO transfers, LBA addressin g
wd0: 9541 MB, 19386 cyl, 16 head, 63 sec, 512 bytes/sect x 1954 1088 sectors
wd0: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 5 (U ltra/100)
wd0(piixide0:0:0): using PIO mode 4, Ultra-DMA mode 2 (Ultr a/33) (using DMA data transfers)

wd1 at atabus1 drive 0: <WDC WD100BB-75CLB0>

130

Chapter 16 NetBSD RAIDframe

wd1: drive supports 16-sector PIO transfers, LBA addressin g
wd1: 9541 MB, 19386 cyl, 16 head, 63 sec, 512 bytes/sect x 1954 1088 sectors
wd1: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 5 (U ltra/100)
wd1(piixide0:1:0): using PIO mode 4, Ultra-DMA mode 2 (Ultr a/33) (using DMA data transfers)

Note: If you are using SCSI, replace /dev/{,r}wd{0,1} with /dev/{,r}sd{0,1}

In this example, both disks are jumpered as Master on separate channels on the same controller. You
would never want to have both disks on the same bus on the same controller; this creates a single point of
failure. Ideally you would have the disks on separate channels on separate controllers. Some SCSI
controllers have multiple channels on the same controller,however, a SCSI bus reset on one channel
could adversely affect the other channel if the ASIC/IC becomes overloaded. The trade-off with two
controllers is that twice the bandwidth is used on the systembus. For purposes of simplification, this
example shows two disks on different channels on the same controller.

Note: RAIDframe requires that all components be of the same size. Actually, it will use the lowest
common denominator among components of dissimilar sizes. For purposes of illustration, the
example uses two disks of identical geometries. Also, consider the availability of replacement disks if
a component suffers a critical hardware failure.

Tip: Two disks of identical vendor model numbers could have different geometries if the drive
possesses "grown defects". Use a low-level program to examine the grown defects table of the disk.
These disks are obviously suboptimal candidates for use in RAID and should be avoided.

16.3.3 Initial Install on Disk0/wd0

Perform a very generic installation onto your Disk0/wd0. Follow the INSTALL instructions for your
platform. Install all the sets but do not bother customizinganything other than the kernel as it will be
overwritten.

Tip: On i386, during the sysinst install, when prompted if you want to "use the entire disk for
NetBSD", answer "yes".

• Chapter 2

• NetBSD/i386 Install Directions
(ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-3.0/i386/INSTALL.html)

• NetBSD/sparc64 Install Directions
(ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-3.0/sparc64/INSTALL.html)

131

Chapter 16 NetBSD RAIDframe

Once the installation is complete, you should examine the disklabel(8) and fdisk(8) / sunlabel(8) outputs
on the system:

df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/wd0a 9343708 191717 8684806 2% /

On i386:

disklabel -r wd0
type: unknown
disk: Disk00
label:
flags:
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 19386
total sectors: 19541088
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

16 partitions:
size offset fstype [fsize bsize cpg/sgs]

a: 19276992 63 4.2BSD 1024 8192 46568 # (Cyl. 0 * - 19124 *)
b: 264033 19277055 swap # (Cyl. 19124 * - 19385)
c: 19541025 63 unused 0 0 # (Cyl. 0 * - 19385)
d: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)

fdisk /dev/rwd0d
Disk: /dev/rwd0d
NetBSD disklabel disk geometry:
cylinders: 19386, heads: 16, sectors/track: 63 (1008 secto rs/cylinder)
total sectors: 19541088

BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sect ors/cylinder)
total sectors: 19541088

Partition table:
0: NetBSD (sysid 169)

start 63, size 19541025 (9542 MB, Cyls 0-1216/96/1), Active
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.

132

Chapter 16 NetBSD RAIDframe

On Sparc64 the command / output differs slightly:

disklabel -r wd0
type: unknown
disk: Disk0
[...snip...]
8 partitions:
size offset fstype [fsize bsize cpg/sgs]

a: 19278000 0 4.2BSD 1024 8192 46568 # (Cyl. 0 - 19124)
b: 263088 19278000 swap # (Cyl. 19125 - 19385)
c: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)

sunlabel /dev/rwd0c
sunlabel> P
a: start cyl = 0, size = 19278000 (19125/0/0 - 9413.09Mb)
b: start cyl = 19125, size = 263088 (261/0/0 - 128.461Mb)
c: start cyl = 0, size = 19541088 (19386/0/0 - 9541.55Mb)

16.3.4 Preparing Disk1/wd1

Once you have a stock install of NetBSD on Disk0/wd0, you are ready to begin. Disk1/wd1 will be
visible and unused by the system. To setup Disk1/wd1, you will use disklabel(8) to allocate the entire
second disk to the RAID-1 set.

Tip: The best way to ensure that Disk1/wd1 is completely empty is to ’zero’ out the first few sectors
of the disk with dd(1) . This will erase the MBR (i386) or Sun disk label (sparc64), as well as the
NetBSD disk label. If you make a mistake at any point during the RAID setup process, you can
always refer to this process to restore the disk to an empty state.

Note: On sparc64, use /dev/rwd1c instead of /dev/rwd1d !

dd if=/dev/zero of=/dev/rwd1d bs=8k count=1
1+0 records in
1+0 records out
8192 bytes transferred in 0.003 secs (2730666 bytes/sec)

Once this is complete, on i386, verify that both the MBR and NetBSD disk labels are gone. On sparc64,
verify that the Sun Disk label is gone as well.

On i386:

fdisk /dev/rwd1d

fdisk: primary partition table invalid, no magic in sector 0
Disk: /dev/rwd1d
NetBSD disklabel disk geometry:
cylinders: 19386, heads: 16, sectors/track: 63 (1008 secto rs/cylinder)
total sectors: 19541088

133

Chapter 16 NetBSD RAIDframe

BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sect ors/cylinder)
total sectors: 19541088

Partition table:
0: <UNUSED>
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.

disklabel -r wd1

[...snip...]
16 partitions:
size offset fstype [fsize bsize cpg/sgs]

c: 19541025 63 unused 0 0 # (Cyl. 0 * - 19385)
d: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)

On sparc64:

sunlabel /dev/rwd1c

sunlabel: bogus label on ‘/dev/wd1c’ (bad magic number)

disklabel -r wd1

[...snip...]
3 partitions:
size offset fstype [fsize bsize cpg/sgs]

c: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)
disklabel: boot block size 0
disklabel: super block size 0

Now that you are certain the second disk is empty, on i386 you must establish the MBR on the second
disk using the values obtained from Disk0/wd0 above. We mustremember to mark the NetBSD partition
active or the system will not boot. You must also create a NetBSD disklabel on Disk1/wd1 that will
enable a RAID volume to exist upon it. On sparc64, you will need to simply disklabel(8) the second disk
which will write the proper Sun Disk Label.

Tip: disklabel(8) will use your shell’ s environment variable $EDITOR variable to edit the disklabel.
The default is vi(1)

On i386:

fdisk -0ua /dev/rwd1d
fdisk: primary partition table invalid, no magic in sector 0
Disk: /dev/rwd1d
NetBSD disklabel disk geometry:
cylinders: 19386, heads: 16, sectors/track: 63 (1008 secto rs/cylinder)

134

Chapter 16 NetBSD RAIDframe

total sectors: 19541088

BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sect ors/cylinder)
total sectors: 19541088

Do you want to change our idea of what BIOS thinks? [n]

Partition 0:
<UNUSED>
The data for partition 0 is:
<UNUSED>
sysid: [0..255 default: 169]
start: [0..1216cyl default: 63, 0cyl, 0MB]
size: [0..1216cyl default: 19541025, 1216cyl, 9542MB]
bootmenu: []
Do you want to change the active partition? [n] y
Choosing 4 will make no partition active.
active partition: [0..4 default: 0] 0
Are you happy with this choice? [n] y

We haven’t written the MBR back to disk yet. This is your last c hance.
Partition table:
0: NetBSD (sysid 169)

start 63, size 19541025 (9542 MB, Cyls 0-1216/96/1), Active
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.
Should we write new partition table? [n] y

disklabel -r -e -I wd1
type: unknown
disk: Disk1
label:
flags:
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 19386
total sectors: 19541088
[...snip...]
16 partitions:
size offset fstype [fsize bsize cpg/sgs]

a: 19541025 63 RAID # (Cyl. 0 * -19385)
c: 19541025 63 unused 0 0 # (Cyl. 0 * -19385)
d: 19541088 0 unused 0 0 # (Cyl. 0 -19385)

On sparc64:

disklabel -r -e -I wd1
type: unknown

135

Chapter 16 NetBSD RAIDframe

disk: Disk1
label:
flags:
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 19386
total sectors: 19541088
[...snip...]
3 partitions:
size offset fstype [fsize bsize cpg/sgs]

a: 19541088 0 RAID # (Cyl. 0 - 19385)
c: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)

sunlabel /dev/rwd1c
sunlabel> P
a: start cyl = 0, size = 19541088 (19386/0/0 - 9541.55Mb)
c: start cyl = 0, size = 19541088 (19386/0/0 - 9541.55Mb)

Note: On i386, the c: and d: slices are reserved. c: represents the NetBSD portion of the disk. d:
represents the entire disk. Because we want to allocate the entire NetBSD MBR partition to RAID,
and because a: resides within the bounds of c: , the a: and c: slices have same size and offset
values and sizes. The offset must start at a track boundary (an increment of sectors matching the
sectors/track value in the disk label). On sparc64 however, c: represents the entire NetBSD partition
in the Sun disk label and d: is not reserved. Also note that sparc64’s c: and a: require no offset from
the beginning of the disk, however if they should need to be, the offset must start at a cylinder
boundary (an increment of sectors matching the sectors/cylinder value).

16.3.5 Initializing the RAID Device

Next we create the configuration file for the RAID set / volume.Traditionally, RAIDframe configuration
files belong in/etc and would be read and initialized at boot time, however, because we are creating a
bootable RAID volume, the configuration data will actually be written into the RAID volume using the
"auto-configure" feature. Therefore, files are needed only during the initial setup and should not reside in
/etc .

vi /var/tmp/raid0.conf
START array
1 2 0

START disks
/dev/wd9a
/dev/wd1a

START layout
128 1 1 1

START queue

136

Chapter 16 NetBSD RAIDframe

fifo 100

Note thatwd9 is a non-existing disk. This will allow us to establish the RAID volume with a bogus
component that we will substitute for Disk0/wd0 at a later time. Regardless, a device node in/dev for
wd9 must exist.

cd /dev
sh MAKEDEV wd9
cd -

Tip: On systems running NetBSD 2.0+, you may substitute a "bogus" component such as
/dev/wd9a for a special disk name "absent"

Next we configure the RAID device and initialize the serial number to something unique. In this example
we use a "YYYYMMDDRevision" scheme. The format you choose is entirely at your discretion,
however the scheme you choose should ensure that no two RAID sets use the same serial number at the
same time.

After that we initialize the RAID set for the first time, safely ignoring the errors regarding the bogus
component.

raidctl -v -C /var/tmp/raid0.conf raid0
raidlookup on device: /dev/wd9a failed!
raid0: Component /dev/wd9a being configured at col: 0

Column: 0 Num Columns: 0
Version: 0 Serial Number: 0 Mod Counter: 0
Clean: No Status: 0

Number of columns do not match for: /dev/wd9a
/dev/wd9a is not clean!
raid0: Component /dev/wd1a being configured at col: 1

Column: 0 Num Columns: 0
Version: 0 Serial Number: 0 Mod Counter: 0
Clean: No Status: 0

Column out of alignment for: /dev/wd1a
Number of columns do not match for: /dev/wd1a
/dev/wd1a is not clean!
raid0: There were fatal errors
raid0: Fatal errors being ignored.
raid0: RAID Level 1
raid0: Components: /dev/wd9a[** FAILED**] /dev/wd1a
raid0: Total Sectors: 19540864 (9541 MB)
raidctl -v -I 2004082401 raid0
raidctl -v -i raid0
Initiating re-write of parity
tail -1 /var/log/messages
raid0: Error re-writing parity!
raidctl -v -s raid0
Components:

/dev/wd9a: failed
/dev/wd1a: optimal

No spares.

137

Chapter 16 NetBSD RAIDframe

/dev/wd9a status is: failed. Skipping label.
Component label for /dev/wd1a:

Row: 0, Column: 1, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2004082401, Mod Counter: 7
Clean: No, Status: 0
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1
Autoconfig: No
Root partition: No
Last configured as: raid0

Parity status: DIRTY
Reconstruction is 100% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.

16.3.6 Setting up Filesystems

Caution
The root filesystem must begin at sector 0 of the RAID device. Else, the primary
boot loader will be unable to find the secondary boot loader.

The RAID device is now configured and available. The RAID device is a pseudo disk-device. It will be
created with a default disk label. You must now determine theproper sizes for disklabel slices for your
production environment. For purposes of simplification in this example, our system will have 8.5
gigabytes dedicated to/ as/dev/raid0aand the rest allocated toswap as/dev/raid0b.

Caution
This is an unrealistic disk layout for a production server; the NetBSD Guide can
expand on proper partitioning technique. See Chapter 2

Note: Note that 1 GB is 2*1024*1024=2097152 blocks (1 block is 512 bytes, or 0.5 kilobytes).
Despite what the underlying hardware composing a RAID set is, the RAID pseudo disk will always
have 512 bytes/sector.

Note: In our example, the space allocated to the underlying a: slice composing the RAID set differed
between i386 and sparc64, therefore the total sectors of the RAID volumes differs:

On i386:

disklabel -r -e -I raid0
type: RAID
disk: raid

138

Chapter 16 NetBSD RAIDframe

label: fictitious
flags:
bytes/sector: 512
sectors/track: 128
tracks/cylinder: 8
sectors/cylinder: 1024
cylinders: 19082
total sectors: 19540864
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

size offset fstype [fsize bsize cpg/sgs]
a: 19015680 0 4.2BSD 0 0 0 # (Cyl. 0 - 18569)
b: 525184 19015680 swap # (Cyl. 18570 - 19082 *)
d: 19540864 0 unused 0 0 # (Cyl. 0 - 19082 *)

On sparc64:

disklabel -r -e -I raid0
[...snip...]
total sectors: 19539968
[...snip...]
3 partitions:
size offset fstype [fsize bsize cpg/sgs]

a: 19251200 0 4.2BSD 0 0 0 # (Cyl. 0 - 18799)
b: 288768 19251200 swap # (Cyl. 18800 - 19081)
c: 19539968 0 unused 0 0 # (Cyl. 0 - 19081)

Next, format the newly created/ partition as a 4.2BSD FFSv1 File System:

newfs -O 1 /dev/rraid0a
/dev/rraid0a: 9285.0MB (19015680 sectors) block size 1638 4, fragment size 2048

using 51 cylinder groups of 182.06MB, 11652 blks, 22912 inod es.
super-block backups (for fsck -b #) at:

32, 372896, 745760, 1118624, 1491488, 1864352, 2237216, 26 10080,
2982944, 3355808, 3728672, 4101536, 4474400, 4847264, 522 0128, 5592992,
5965856, 6338720, 6711584, 7084448, 7457312, 7830176, 820 3040, 8575904,
8948768, 9321632, 9694496, 10067360, 10440224, 10813088, 11185952,11558816,

11931680, 12304544, 12677408, 13050272, 13423136, 137960 00, 14168864,14541728,
14914592, 15287456, 15660320, 16033184, 16406048, 167789 12, 17151776,17524640,
17897504, 18270368, 18643232,

fsck -fy /dev/rraid0a

** /dev/rraid0a

** File system is already clean

** Last Mounted on

** Phase 1 - Check Blocks and Sizes

** Phase 2 - Check Pathnames

139

Chapter 16 NetBSD RAIDframe

** Phase 3 - Check Connectivity

** Phase 4 - Check Reference Counts

** Phase 5 - Check Cyl groups
1 files, 1 used, 4680062 free (14 frags, 585006 blocks, 0.0% f ragmentation)

16.3.7 Setting up kernel dumps

The normal swap area in our case is on raid0b. In NetBSD 5.0 andnewer raid0b can automatically be
used for kernel dumps if raid0 is a RAID level 1 set.

In NetBSD versions prior to 5.0 kernel dumps can only be made to a real disk device. Since nothing
stops us from defining a dump area which overlaps with raid0b th trick here is to calculate the correct
start offset for our crash dump area. This is dangerous and itis possible to destroy valuable data if we
make a mistake in these calculations! Data corruption will happen when the kernel writes its memory
dump over a normal filesystem. So we must be extra careful here. (The author destroyed his 100+ GB
/home with a kernel crash dump!)

First we need to take a look at the disklabel for swap (raid0b)and the real physical disk (wd1).

On i386:

disklabel raid0

8 partitions:
size offset fstype [fsize bsize cpg/sgs]

a: 19015680 0 4.2BSD 1024 8192 64
b: 525184 19015680 swap
d: 19540864 0 unused 0 0 0

disklabel wd1

8 partitions:
size offset fstype [fsize bsize cpg/sgs]

a: 19541025 63 RAID
c: 19541025 63 unused 0 0
d: 19541088 0 unused 0 0

Each component of a RAID set has a 64 block reserved area (see RF_PROTECTED_SECTORS in
<dev/raidframe/raidframevar.h>) in the beginning of the component to store the internal RAID structures.

dc
63 # offset of wd1a
64 # RF_PROTECTED_SECTORS
+
19015680 # offset of raid0b
+p
19015807 # offset of swap within wd1
q

140

Chapter 16 NetBSD RAIDframe

We know now the real offset of the still-nonexisting wd1b is 19015807 and size is 525184. Next we need
to add wd1b to wd1’s disklabel.

disklabel wd1 > disklabel.wd1
vi disklabel.wd1

8 partitions:
size offset fstype [fsize bsize cpg/sgs]

a: 19541025 63 RAID
b: 525184 19015807 swap
c: 19541025 63 unused 0 0
d: 19541088 0 unused 0 0

Next we install the new disklabel.

disklabel -R -r wd1 disklabel.wd1

On sparc64:

On sparc64 (and sparc), all partitions must start on cylinder boundaries. Due to this, the start of the dump
partition must be moved up to the next cylinder boundary, andthe size shrunk by the difference that the
start was moved:

disklabel raid0

3 partitions:
size offset fstype [fsize bsize cpg/sgs]

a: 19251200 0 4.2BSD 0 0 0 # (Cyl. 0 - 18799)
b: 288768 19251200 swap # (Cyl. 18800 - 19081)
c: 19539968 0 unused 0 0 # (Cyl. 0 - 19081)

disklabel wd1
...
sectors/cylinder: 1008
...
3 partitions:
size offset fstype [fsize bsize cpg/sgs]

a: 19541088 0 RAID # (Cyl. 0 - 19385)
c: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)

Like on i386, each component of a RAID set has a 64 block reserved area (see
RF_PROTECTED_SECTORS in <dev/raidframe/raidframevar.h>) in the beginning of the component to
store the internal RAID structures. This needs to be skipped, and then moved up to the next cylinder
boundary as outlines above:

dc
0 # offset of wd1a
64 # RF_PROTECTED_SECTORS
+

141

Chapter 16 NetBSD RAIDframe

19251200 # offset of raid0b
+p
19251264 # offset of swap within wd1
sa la # Remember the new offset
1008 / # determine cylinder offset
1 + # move to next full cylinder boundary
1008 * p # convert back to sectors
19251792 # Our real, cylinder-aligned offset of wd1b
sb lb la -p # Determine how far the offset was moved
528
sc # Remember how many sectors we moved the start
288768 # Size of swap on raid0
lc -p
288240 # Our real, smaller swap/dump size of wd1b
q

We know now the real offset of the still-nonexisting wd1b is 19251792 and size is 288240. Next we need
to add wd1b to wd1’s disklabel.

disklabel wd1 > disklabel.wd1
vi disklabel.wd1

8 partitions:
size offset fstype [fsize bsize cpg/sgs]

a: 19541088 0 RAID # (Cyl. 0 - 19385)
b: 288240 19251792 swap
c: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)

Next we install the new disklabel.

disklabel -R -r wd1 disklabel.wd1

Why isn’t sizeof(raid0d) == (sizeof(wd1a) - RF_PROTECTED_SECTORS)? Size of raid0d is based on
the largest multiple of the stripe size used for a RAID set. Asan example, with stripe width of 128, size
of raid0d is:

dc
19541025 # size of wd1a
64 # RF_PROTECTED_SECTORS
-
128 # stripe width
/p
152663 # number of stripes
128 # number of blocks per stripe

* p
19540864 # size of raid0d

142

Chapter 16 NetBSD RAIDframe

16.3.8 Migrating System to RAID

The new RAID filesystems are now ready for use. We mount them under/mnt and copy all files from
the old system. This can be done using dump(8) or pax(1).

mount /dev/raid0a /mnt
df -h /mnt
Filesystem Size Used Avail Capacity Mounted on
/dev/raid0a 9.0G 2.0K 8.6G 0% /mnt
cd /; pax -v -X -rw -pe . /mnt
[...snip...]

The NetBSD install now exists on the RAID filesystem. We need to fix the mount-points in the new copy
of /etc/fstab or the system will not come up correctly. Replace instances of wd0 with raid0 .

Note that for NetBSD releases prior to 5.0 the kernel crash dumps must not be saved on a RAID device
but on a real physical disk (wd0b). This dump area was createdin the previous chapter on the second
disk (wd1b) but we will make wd0 an identical copy of wd1 laterso wd0b and wd1b will have the same
size and offset. If wd0 fails and is removed from the server wd1 becomes wd0 after reboot and crash
dumps will still work as we are using wd0b in/etc/fstab . The only fault in this configuration is when
the original, failed wd0 is replaces by a new drive and we haven’t initialized it yet with fdisk and
disklabel. In this short period of time we can not make crash dumps in case of kernel panic. Note how the
dump device has the “dp” keyword on the 4th field.

vi /mnt/etc/fstab

/dev/raid0a / ffs rw 1 1
/dev/raid0b none swap sw 0 0
/dev/wd0b none swap dp 0 0
kernfs /kern kernfs rw
procfs /proc procfs rw

The swap should be unconfigured upon shutdown to avoid parityerrors on the RAID device. This can be
done with a simple, one-line setting in/etc/rc.conf .

vi /mnt/etc/rc.conf
swapoff=YES

Next the boot loader must be installed on Disk1/wd1. Failureto install the loader on Disk1/wd1 will
render the system un-bootable if Disk0/wd0 fails making theRAID-1 pointless.

Tip: Because the BIOS/CMOS menus in many i386 based systems are misleading with regard to
device boot order. I highly recommend utilizing the "-o timeout=X" option supported by the i386 1st
stage boot loader. Setup unique values for each disk as a point of reference so that you can easily
determine from which disk the system is booting.

143

Chapter 16 NetBSD RAIDframe

Caution
Although it may seem logical to install the 1st stage boot block into
/dev/rwd1 {c,d} (which is historically correct with NetBSD 1.6.x installboot(8) , this
is no longer the case. If you make this mistake, the boot sector will become
irrecoverably damaged and you will need to start the process over again.

On i386, install the boot loader into/dev/rwd1a :

/usr/sbin/installboot -o timeout=30 -v /dev/rwd1a /usr/mdec/bootxx_ffsv1
File system: /dev/rwd1a
File system type: raw (blocksize 8192, needswap 1)
Primary bootstrap: /usr/mdec/bootxx_ffsv1
Preserving 51 (0x33) bytes of the BPB

On sparc64, install the boot loader into/dev/rwd1a as well, however the "-o" flag is unsupported (and
un-needed thanks to OpenBoot):

/usr/sbin/installboot -v /dev/rwd1a /usr/mdec/bootblk
File system: /dev/rwd1a
File system type: raw (blocksize 8192, needswap 0)
Primary bootstrap: /usr/mdec/bootblk
Bootstrap start sector: 1
Bootstrap byte count: 4915
Writing bootstrap

Finally the RAID set must be made auto-configurable and the system should be rebooted. After the
reboot everything is mounted from the RAID devices.

raidctl -v -A root raid0
raid0: Autoconfigure: Yes
raid0: Root: Yes
tail -2 /var/log/messages
raid0: New autoconfig value is: 1
raid0: New rootpartition value is: 1
raidctl -v -s raid0
[...snip...]

Autoconfig: Yes
Root partition: Yes
Last configured as: raid0

[...snip...]
shutdown -r now

Warning
Always use shutdown(8) when shutting down. Never simply use reboot(8).
reboot(8) will not properly run shutdown RC scripts and will not safely disable
swap. This will cause dirty parity at every reboot.

144

Chapter 16 NetBSD RAIDframe

16.3.9 The first boot with RAID

At this point, temporarily configure your system to boot Disk1/wd1. See notes inSection 16.3.11for
details on this process. The system should boot now and all filesystems should be on the RAID devices.
The RAID will be functional with a single component, howeverthe set is not fully functional because the
bogus drive (wd9) has failed.

egrep -i "raid|root" /var/run/dmesg.boot
raid0: RAID Level 1
raid0: Components: component0[** FAILED**] /dev/wd1a
raid0: Total Sectors: 19540864 (9541 MB)
boot device: raid0
root on raid0a dumps on raid0b
root file system type: ffs

df -h
Filesystem Size Used Avail Capacity Mounted on
/dev/raid0a 8.9G 196M 8.3G 2% /
kernfs 1.0K 1.0K 0B 100% /kern

swapctl -l
Device 1K-blocks Used Avail Capacity Priority
/dev/raid0b 262592 0 262592 0% 0
raidctl -s raid0
Components:

component0: failed
/dev/wd1a: optimal

No spares.
component0 status is: failed. Skipping label.
Component label for /dev/wd1a:

Row: 0, Column: 1, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2004082401, Mod Counter: 65
Clean: No, Status: 0
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1
Autoconfig: Yes
Root partition: Yes
Last configured as: raid0

Parity status: DIRTY
Reconstruction is 100% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.

16.3.10 Adding Disk0/wd0 to RAID

We will now add Disk0/wd0 as a component of the RAID. This willdestroy the original file system
structure. On i386, the MBR disklabel will be unaffected (remember we copied wd0’s label to wd1
anyway) , therefore there is no need to "zero" Disk0/wd0. However, we need to relabel Disk0/wd0 to
have an identical NetBSD disklabel layout as Disk1/wd1. Then we add Disk0/wd0 as "hot-spare" to the

145

Chapter 16 NetBSD RAIDframe

RAID set and initiate the parity reconstruction for all RAIDdevices, effectively bringing Disk0/wd0 into
the RAID-1 set and "synching up" both disks.

disklabel -r wd1 > /tmp/disklabel.wd1
disklabel -R -r wd0 /tmp/disklabel.wd1

As a last-minute sanity check, you might want to use diff(1) to ensure that the disklabels of Disk0/wd0
match Disk1/wd1. You should also backup these files for reference in the event of an emergency.

disklabel -r wd0 > /tmp/disklabel.wd0
disklabel -r wd1 > /tmp/disklabel.wd1
diff /tmp/disklabel.wd0 /tmp/disklabel.wd1
fdisk /dev/rwd0 > /tmp/fdisk.wd0
fdisk /dev/rwd1 > /tmp/fdisk.wd1
diff /tmp/fdisk.wd0 /tmp/fdisk.wd1
mkdir /root/RFbackup
cp -p /tmp/{disklabel,fdisk}* /root/RFbackup

Once you are certain, add Disk0/wd0 as a spare component, andstart reconstruction:

raidctl -v -a /dev/wd0a raid0
/netbsd: Warning: truncating spare disk /dev/wd0a to 24125 4528 blocks
raidctl -v -s raid0
Components:

component0: failed
/dev/wd1a: optimal

Spares:
/dev/wd0a: spare

[...snip...]
raidctl -F component0 raid0
RECON: initiating reconstruction on col 0 -> spare at col 2

11% | **** | ETA: 04:26 \

Depending on the speed of your hardware, the reconstructiontime will vary. You may wish to watch it on
another terminal:

raidctl -S raid0
Reconstruction is 0% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.
Reconstruction status:

17% | ****** | ETA: 03:08 -

After reconstruction, both disks should be “optimal”.

tail -f /var/log/messages
raid0: Reconstruction of disk at col 0 completed
raid0: Recon time was 1290.625033 seconds, accumulated XOR time was 0 us (0.000000)
raid0: (start time 1093407069 sec 145393 usec, end time 1093 408359 sec 770426 usec)
raid0: Total head-sep stall count was 0
raid0: 305318 recon event waits, 1 recon delays
raid0: 1093407069060000 max exec ticks

raidctl -v -s raid0

146

Chapter 16 NetBSD RAIDframe

Components:
component0: spared
/dev/wd1a: optimal

Spares:
/dev/wd0a: used_spare
[...snip...]

When the reconstruction is finished we need to install the boot loader on the Disk0/wd0. On i386, install
the boot loader into/dev/rwd0a :

/usr/sbin/installboot -o timeout=15 -v /dev/rwd0a /usr/mdec/bootxx_ffsv1
File system: /dev/rwd1a
File system type: raw (blocksize 8192, needswap 1)
Primary bootstrap: /usr/mdec/bootxx_ffsv1
Preserving 51 (0x33) bytes of the BPB

On sparc64:

/usr/sbin/installboot -v /dev/rwd0a /usr/mdec/bootblk
File system: /dev/rwd0a
File system type: raw (blocksize 8192, needswap 0)
Primary bootstrap: /usr/mdec/bootblk
Bootstrap start sector: 1
Bootstrap byte count: 4915
Writing bootstrap

And finally, reboot the machine one last time before proceeding. This is required to migrate Disk0/wd0
from status "used_spare" as "Component0" to state "optimal". Refer to notes in the next section
regarding verification of clean parity after each reboot.

shutdown -r now

16.3.11 Testing Boot Blocks

At this point, you need to ensure that your system’s hardwarecan properly boot using the boot blocks on
either disk. On i386, this is a hardware- dependant process that may be done via your motherboard
CMOS/BIOS menu or your controller card’s configuration menu.

On i386, use the menu system on your machine to set the boot device order / priority to Disk1/wd1
before Disk0/wd0. The examples here depict a generic Award BIOS.

147

Chapter 16 NetBSD RAIDframe

Figure 16-6. Award BIOS i386 Boot Disk1/wd1

Save changes and exit.

>> NetBSD/i386 BIOS Boot, Revision 3.1
>> (seklecki@localhost, Fri Aug 13 08:08:47 EDT 2004)
>> Memory: 640/31744 k
Press return to boot now, any other key for boot menu
booting hd0a:netbsd - starting in 30

You can determine that the BIOS is reading Disk1/wd1 becausethe timeout of the boot loader is 30
seconds instead of 15. After the reboot, re-enter the BIOS and configure the drive boot order back to the
default:

Figure 16-7. Award BIOS i386 Boot Disk0/wd0

Save changes and exit.

>> NetBSD/i386 BIOS Boot, Revision 3.1
>> (seklecki@localhost, Fri Aug 13 08:08:47 EDT 2004)
>> Memory: 640/31744 k
Press return to boot now, any other key for boot menu
booting hd0a:netbsd - starting in 15

Notice how your custom kernel detects controller/bus/drive assignments independent of what the BIOS
assigns as the boot disk. This is the expected behavior.

On sparc64, use the Sun OpenBootdevaliasto confirm that both disks are bootable:

Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIi 400MHz), No Keyboar d
OpenBoot 3.15, 128 MB memory installed, Serial #nnnnnnnn.
Ethernet address 8:0:20:a5:d1:3b, Host ID: nnnnnnnn.

148

Chapter 16 NetBSD RAIDframe

ok devalias
[...snip...]
cdrom /pci@1f,0/pci@1,1/ide@3/cdrom@2,0:f
disk /pci@1f,0/pci@1,1/ide@3/disk@0,0
disk3 /pci@1f,0/pci@1,1/ide@3/disk@3,0
disk2 /pci@1f,0/pci@1,1/ide@3/disk@2,0
disk1 /pci@1f,0/pci@1,1/ide@3/disk@1,0
disk0 /pci@1f,0/pci@1,1/ide@3/disk@0,0
[...snip...]

ok boot disk0 netbsd
Initializing Memory [...]
Boot device /pci/pci/ide@3/disk@0,0 File and args: netbsd
NetBSD IEEE 1275 Bootblock
>> NetBSD/sparc64 OpenFirmware Boot, Revision 1.8
>> (lavalamp@j8, Thu Aug 19: 15:45:42 EDT 2004)
loadfile: reading header
elf64_exec: Booting [...]
symbols @ [....]

Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001
The NetBSD Foundation, Inc. All rights reserved.

Copyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights rese rved.

[...snip...]

And the second disk:

ok boot disk2 netbsd
Initializing Memory [...]
Boot device /pci/pci/ide@3/disk@2,0: File and args:netbs d
NetBSD IEEE 1275 Bootblock
>> NetBSD/sparc64 OpenFirmware Boot, Revision 1.8
>> (lavalamp@j8, Thu Aug 19: 15:45:42 EDT 2004)
loadfile: reading header
elf64_exec: Booting [...]
symbols @ [....]

Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001
The NetBSD Foundation, Inc. All rights reserved.

Copyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights rese rved.

[...snip...]

At each boot, the following should appear in the NetBSD kernel dmesg(8) :

raid0: RAID Level 1
raid0: Components: /dev/wd0a /dev/wd1a
raid0: Total Sectors: 19540864 (9541 MB)
boot device: raid0
root on raid0a dumps on raid0b
root file system type: ffs

Once you are certain that both disks are bootable, verify theRAID parity is clean after each reboot:

raidctl -v -s raid0

149

Chapter 16 NetBSD RAIDframe

Components:
/dev/wd0a: optimal
/dev/wd1a: optimal

No spares.
[...snip...]
Component label for /dev/wd0a:

Row: 0, Column: 0, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2004082401, Mod Counter: 67
Clean: No, Status: 0
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1
Autoconfig: Yes
Root partition: Yes
Last configured as: raid0

Component label for /dev/wd1a:
Row: 0, Column: 1, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2004082401, Mod Counter: 67
Clean: No, Status: 0
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1
Autoconfig: Yes
Root partition: Yes
Last configured as: raid0

Parity status: clean
Reconstruction is 100% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.

16.4 Testing kernel dumps
It is also important to test the kernel crash dumps so that they work correctly and do not overwrite any
important filesystems (like the raid0e filesystem).

Press Ctrl+Alt+Esc to test the kernel crash dump. This will invoke the kernel debugger. Typesyncor
reboot 0x104and press Enter. This will save the current kernel memory to the dump area (raid0b in
NetBSD 5.0 and newer, wd0b in others) for further analysis. Most likely the offset and/or size of wd0b is
wrong if the system will not come up correctly after reboot (unable to mount /home, corrupted
super-blocks, etc). It is very important to test this now, not when we have lots of valuable files in/home .
As an example, the author destroyed his 100+ GB/home partition with a kernel crash dump! No real
harm was caused by this because of up-to-date backups (backup was made just before converting to
RAID-1). One more time: take a backup of all your files before following these instructions!

150

Chapter 17

Pluggable Authentication
Modules (PAM)

17.1 About
This article describes the underlying principles and mechanisms of the Pluggable Authentication
Modules (PAM) library, and explains how to configure PAM, howto integrate PAM into applications,
and how to write PAM modules.

SeeSection D.3.2for the license of this chapter.

17.2 Introduction
The Pluggable Authentication Modules (PAM) library is a generalized API for authentication-related
services which allows a system administrator to add new authentication methods simply by installing
new PAM modules, and to modify authentication policies by editing configuration files.

PAM was defined and developed in 1995 by Vipin Samar and Charlie Lai of Sun Microsystems, and has
not changed much since. In 1997, the Open Group published theX/Open Single Sign-on (XSSO)
preliminary specification, which standardized the PAM API and added extensions for single (or rather
integrated) sign-on. At the time of this writing, this specification has not yet been adopted as a standard.

Although this article focuses primarily on FreeBSD 5.x and NetBSD 3.x, which both use OpenPAM, it
should be equally applicable to FreeBSD 4.x, which uses Linux-PAM, and other operating systems such
as Linux and Solaris™.

17.3 Terms and conventions

17.3.1 Definitions

The terminology surrounding PAM is rather confused. Neither Samar and Lai’s original paper nor the
XSSO specification made any attempt at formally defining terms for the various actors and entities
involved in PAM, and the terms that they do use (but do not define) are sometimes misleading and
ambiguous. The first attempt at establishing a consistent and unambiguous terminology was a whitepaper
written by Andrew G. Morgan (author of Linux-PAM) in 1999. While Morgan’s choice of terminology
was a huge leap forward, it is in this author’s opinion by no means perfect. What follows is an attempt,
heavily inspired by Morgan, to define precise and unambiguous terms for all actors and entities involved
in PAM.

151

Chapter 17 Pluggable Authentication Modules (PAM)

account

The set of credentials the applicant is requesting from the arbitrator.

applicant

The user or entity requesting authentication.

arbitrator

The user or entity who has the privileges necessary to verifythe applicant’s credentials and the
authority to grant or deny the request.

chain

A sequence of modules that will be invoked in response to a PAMrequest. The chain includes
information about the order in which to invoke the modules, what arguments to pass to them, and
how to interpret the results.

client

The application responsible for initiating an authentication request on behalf of the applicant and
for obtaining the necessary authentication information from him.

facility

One of the four basic groups of functionality provided by PAM: authentication, account
management, session management and authentication token update.

module

A collection of one or more related functions implementing aparticular authentication facility,
gathered into a single (normally dynamically loadable) binary file and identified by a single name.

policy

The complete set of configuration statements describing howto handle PAM requests for a
particular service. A policy normally consists of four chains, one for each facility, though some
services do not use all four facilities.

152

Chapter 17 Pluggable Authentication Modules (PAM)

server

The application acting on behalf of the arbitrator to converse with the client, retrieve authentication
information, verify the applicant’s credentials and grantor deny requests.

service

A class of servers providing similar or related functionality and requiring similar authentication.
PAM policies are defined on a per-service basis, so all servers that claim the same service name will
be subject to the same policy.

session

The context within which service is rendered to the applicant by the server. One of PAM’s four
facilities, session management, is concerned exclusivelywith setting up and tearing down this
context.

token

A chunk of information associated with the account, such as apassword or passphrase, which the
applicant must provide to prove his identity.

transaction

A sequence of requests from the same applicant to the same instance of the same server, beginning
with authentication and session set-up and ending with session tear-down.

17.3.2 Usage examples

This section aims to illustrate the meanings of some of the terms defined above by way of a handful of
simple examples.

17.3.2.1 Client and server are one

This simple example showsalice su(1)’ing toroot .

$ whoami

alice
$ ls -l ‘which su‘

-r-sr-xr-x 1 root wheel 10744 Dec 6 19:06 /usr/bin/su
$ su -

Password: xi3kiune

whoami

153

Chapter 17 Pluggable Authentication Modules (PAM)

root

• The applicant isalice .

• The account isroot .

• The su(1) process is both client and server.

• The authentication token isxi3kiune .

• The arbitrator isroot , which is why su(1) is setuidroot .

17.3.2.2 Client and server are separate

The example below showseve try to initiate an ssh(1) connection tologin.example.com , ask to log
in asbob , and succeed. Bob should have chosen a better password!

$ whoami

eve
$ ssh bob@login.example.com

bob@login.example.com’s password: god

Last login: Thu Oct 11 09:52:57 2001 from 192.168.0.1
NetBSD 3.0 (LOGIN) #1: Thu Mar 10 18:22:36 WET 2005

Welcome to NetBSD!
$

• The applicant iseve .

• The client is Eve’s ssh(1) process.

• The server is the sshd(8) process onlogin.example.com

• The account isbob .

• The authentication token isgod .

• Although this is not shown in this example, the arbitrator isroot .

17.3.2.3 Sample policy

The following is FreeBSD’s default policy forsshd :

sshd auth required pam_nologin.so no_warn
sshd auth required pam_unix.so no_warn try_first_pass
sshd account required pam_login_access.so
sshd account required pam_unix.so
sshd session required pam_lastlog.so no_fail
sshd password required pam_permit.so

• This policy applies to thesshd service (which is not necessarily restricted to the sshd(8)server.)

154

Chapter 17 Pluggable Authentication Modules (PAM)

• auth , account , session andpassword are facilities.

• pam_nologin.so , pam_unix.so , pam_login_access.so , pam_lastlog.so and
pam_permit.so are modules. It is clear from this example thatpam_unix.so provides at least two
facilities (authentication and account management.)

There are some differences between FreeBSD and NetBSD PAM policies:

• By default, every configuration is done under/etc/pam.d .

• If configuration is non-existent, you will not have access tothe system, in contrast with FreeBSD that
has a default policy of allowing authentication.

• For authentication, NetBSD forces at least onerequired , requisite or binding module to be
present.

17.4 PAM Essentials

17.4.1 Facilities and primitives

The PAM API offers six different authentication primitivesgrouped in four facilities, which are
described below.

auth

Authentication.This facility concerns itself with authenticating the applicant and establishing the
account credentials. It provides two primitives:

• pam_authenticate(3) authenticates the applicant, usually by requesting an authentication token
and comparing it with a value stored in a database or obtainedfrom an authentication server.

• pam_setcred(3) establishes account credentials such as user ID, group membership and resource
limits.

account

Account management.This facility handles non-authentication-related issuesof account availability,
such as access restrictions based on the time of day or the server’s work load. It provides a single
primitive:

• pam_acct_mgmt(3) verifies that the requested account is available.

session

Session management.This facility handles tasks associated with session set-upand tear-down, such
as login accounting. It provides two primitives:

• pam_open_session(3) performs tasks associated with session set-up: add an entry in theutmp and
wtmp databases, start an SSH agent, etc.

155

Chapter 17 Pluggable Authentication Modules (PAM)

• pam_close_session(3) performs tasks associated with session tear-down: add an entry in theutmp

andwtmp databases, stop the SSH agent, etc.

password

Password management.This facility is used to change the authentication token associated with an
account, either because it has expired or because the user wishes to change it. It provides a single
primitive:

• pam_chauthtok(3) changes the authentication token, optionally verifying that it is sufficiently
hard to guess, has not been used previously, etc.

17.4.2 Modules

Modules are a very central concept in PAM; after all, they arethe “M” in “PAM”. A PAM module is a
self-contained piece of program code that implements the primitives in one or more facilities for one
particular mechanism; possible mechanisms for the authentication facility, for instance, include the
UNIX® password database, NIS, LDAP and Radius.

17.4.2.1 Module Naming

FreeBSD and NetBSD implement each mechanism in a single module, namedpam_mechanism.so (for
instance,pam_unix.so for the UNIX® mechanism.) Other implementations sometimeshave separate
modules for separate facilities, and include the facility name as well as the mechanism name in the
module name. To name one example, Solaris™ has apam_dial_auth.so.1 module which is
commonly used to authenticate dialup users. Also, almost every module has a man page with the same
name, i.e.: pam_unix(8) explains how thepam_unix.so module works.

17.4.2.2 Module Versioning

FreeBSD’s original PAM implementation, based on Linux-PAM, did not use version numbers for PAM
modules. This would commonly cause problems with legacy applications, which might be linked against
older versions of the system libraries, as there was no way toload a matching version of the required
modules.

OpenPAM, on the other hand, looks for modules that have the same version number as the PAM library
(currently 2 in FreeBSD and 0 in NetBSD), and only falls back to an unversioned module if no versioned
module could be loaded. Thus legacy modules can be provided for legacy applications, while allowing
new (or newly built) applications to take advantage of the most recent modules.

Although Solaris™ PAM modules commonly have a version number, they’re not truly versioned,
because the number is a part of the module name and must be included in the configuration.

17.4.2.3 Module Path

There isn’t a common directory for storing PAM modules. Under FreeBSD, they are located at
/usr/lib and, under NetBSD, you can find them in/usr/lib/security .

156

Chapter 17 Pluggable Authentication Modules (PAM)

17.4.3 Chains and policies

When a server initiates a PAM transaction, the PAM library tries to load a policy for the service specified
in the pam_start(3) call. The policy specifies how authentication requests should be processed, and is
defined in a configuration file. This is the other central concept in PAM: the possibility for the admin to
tune the system security policy (in the wider sense of the word) simply by editing a text file.

A policy consists of four chains, one for each of the four PAM facilities. Each chain is a sequence of
configuration statements, each specifying a module to invoke, some (optional) parameters to pass to the
module, and a control flag that describes how to interpret thereturn code from the module.

Understanding the control flags is essential to understanding PAM configuration files. There are a
number of different control flags:

binding

If the module succeeds and no earlier module in the chain has failed, the chain is immediately
terminated and the request is granted. If the module fails, the rest of the chain is executed, but the
request is ultimately denied.

This control flag was introduced by Sun in Solaris™ 9 (SunOS™ 5.9), and is also supported by
OpenPAM.

required

If the module succeeds, the rest of the chain is executed, andthe request is granted unless some
other module fails. If the module fails, the rest of the chainis also executed, but the request is
ultimately denied.

requisite

If the module succeeds, the rest of the chain is executed, andthe request is granted unless some
other module fails. If the module fails, the chain is immediately terminated and the request is denied.

sufficient

If the module succeeds and no earlier module in the chain has failed, the chain is immediately
terminated and the request is granted. If the module fails, the module is ignored and the rest of the
chain is executed.

As the semantics of this flag may be somewhat confusing, especially when it is used for the last
module in a chain, it is recommended that thebinding control flag be used instead if the
implementation supports it.

optional

The module is executed, but its result is ignored. If all modules in a chain are markedoptional , all
requests will always be granted.

When a server invokes one of the six PAM primitives, PAM retrieves the chain for the facility the
primitive belongs to, and invokes each of the modules listedin the chain, in the order they are listed, until
it reaches the end, or determines that no further processingis necessary (either because abinding or
sufficient module succeeded, or because arequisite module failed.) The request is granted if and
only if at least one module was invoked, and all non-optionalmodules succeeded.

157

Chapter 17 Pluggable Authentication Modules (PAM)

Note that it is possible, though not very common, to have the same module listed several times in the
same chain. For instance, a module that looks up user names and passwords in a directory server could
be invoked multiple times with different parameters specifying different directory servers to contact.
PAM treat different occurrences of the same module in the same chain as different, unrelated modules.

17.4.4 Transactions

The lifecycle of a typical PAM transaction is described below. Note that if any of these steps fails, the
server should report a suitable error message to the client and abort the transaction.

1. If necessary, the server obtains arbitrator credentialsthrough a mechanism independent of
PAM—most commonly by virtue of having been started byroot , or of being setuidroot .

2. The server calls pam_start(3) to initialize the PAM library and specify its service name and the
target account, and register a suitable conversation function.

3. The server obtains various information relating to the transaction (such as the applicant’s user name
and the name of the host the client runs on) and submits it to PAM using pam_set_item(3).

4. The server calls pam_authenticate(3) to authenticate the applicant.

5. The server calls pam_acct_mgmt(3) to verify that the requested account is available and valid. If the
password is correct but has expired, pam_acct_mgmt(3) willreturnPAM_NEW_AUTHTOK_REQD

instead ofPAM_SUCCESS.

6. If the previous step returnedPAM_NEW_AUTHTOK_REQD, the server now calls pam_chauthtok(3) to
force the client to change the authentication token for the requested account.

7. Now that the applicant has been properly authenticated, the server calls pam_setcred(3) to establish
the credentials of the requested account. It is able to do this because it acts on behalf of the
arbitrator, and holds the arbitrator’s credentials.

8. Once the correct credentials have been established, the server calls pam_open_session(3) to set up
the session.

9. The server now performs whatever service the client requested—for instance, provide the applicant
with a shell.

10. Once the server is done serving the client, it calls pam_close_session(3) to tear down the session.

11. Finally, the server calls pam_end(3) to notify the PAM library that it is done and that it can release
whatever resources it has allocated in the course of the transaction.

17.5 PAM Configuration

17.5.1 PAM policy files

17.5.1.1 The /etc/pam.conf file

The traditional PAM policy file is/etc/pam.conf . This file contains all the PAM policies for your
system. Each line of the file describes one step in a chain, as shown below:

158

Chapter 17 Pluggable Authentication Modules (PAM)

login auth required pam_nologin.so no_warn

The fields are, in order: service name, facility name, control flag, module name, and module arguments.
Any additional fields are interpreted as additional module arguments.

A separate chain is constructed for each service / facility pair, so while the order in which lines for the
same service and facility appear is significant, the order inwhich the individual services and facilities are
listed is not. The examples in the original PAM paper groupedconfiguration lines by facility, and the
Solaris™ stockpam.conf still does that, but FreeBSD’s stock configuration groups configuration lines
by service. Either way is fine; either way makes equal sense.

17.5.1.2 The /etc/pam.d directory

OpenPAM and Linux-PAM support an alternate configuration mechanism, which is the preferred
mechanism in FreeBSD and NetBSD. In this scheme, each policyis contained in a separate file bearing
the name of the service it applies to. These files are stored in/etc/pam.d/ .

These per-service policy files have only four fields instead of pam.conf ’s five: the service name field is
omitted. Thus, instead of the samplepam.conf line from the previous section, one would have the
following line in /etc/pam.d/login :

auth required pam_nologin.so no_warn

As a consequence of this simplified syntax, it is possible to use the same policy for multiple services by
linking each service name to a same policy file. For instance,to use the same policy for thesu andsudo

services, one could do as follows:

cd /etc/pam.d

ln -s su sudo

This works because the service name is determined from the file name rather than specified in the policy
file, so the same file can be used for multiple differently-named services.

Since each service’s policy is stored in a separate file, thepam.d mechanism also makes it very easy to
install additional policies for third-party software packages.

17.5.1.3 The policy search order

As we have seen above, PAM policies can be found in a number of places. If no configuration file is
found for a particular service, the/etc/pam.d/other is used instead. If that file does not exist,
/etc/pam.conf is searched for entries matching he specified service or, failing that, the "other" service.

It is essential to understand that PAM’s configuration system is centered on chains.

17.5.2 Breakdown of a configuration line

As explained in thePAM policy filessection, each line in/etc/pam.conf consists of four or more
fields: the service name, the facility name, the control flag,the module name, and zero or more module
arguments.

159

Chapter 17 Pluggable Authentication Modules (PAM)

The service name is generally (though not always) the name ofthe application the statement applies to. If
you are unsure, refer to the individual application’s documentation to determine what service name it
uses.

Note that if you use/etc/pam.d/ instead of/etc/pam.conf , the service name is specified by the
name of the policy file, and omitted from the actual configuration lines, which then start with the facility
name.

The facility is one of the four facility keywords described in theFacilities and primitivessection.

Likewise, the control flag is one of the four keywords described in theChains and policiessection,
describing how to interpret the return code from the module.Linux-PAM supports an alternate syntax
that lets you specify the action to associate with each possible return code, but this should be avoided as
it is non-standard and closely tied in with the way Linux-PAMdispatches service calls (which differs
greatly from the way Solaris™ and OpenPAM do it.) Unsurprisingly, OpenPAM does not support this
syntax.

17.5.3 Policies

To configure PAM correctly, it is essential to understand howpolicies are interpreted.

When an application calls pam_start(3), the PAM library loads the policy for the specified service and
constructs four module chains (one for each facility.) If one or more of these chains are empty, the
corresponding chains from the policy for theother service are substituted.

When the application later calls one of the six PAM primitives, the PAM library retrieves the chain for
the corresponding facility and calls the appropriate service function in each module listed in the chain, in
the order in which they were listed in the configuration. After each call to a service function, the module
type and the error code returned by the service function are used to determine what happens next. With a
few exceptions, which we discuss below, the following tableapplies:

Table 17-1. PAM chain execution summary

PAM_SUCCESS PAM_IGNORE other

binding if (!fail) break; - fail = true;

required - - fail = true;

requisite - - fail = true; break;

sufficient if (!fail) break; - -

optional - - -

If fail is true at the end of a chain, or when a “break” is reached, the dispatcher returns the error code
returned by the first module that failed. Otherwise, it returnsPAM_SUCCESS.

The first exception of note is that the error codePAM_NEW_AUTHTOK_REQDis treated like a success,
except that if no module failed, and at least one module returnedPAM_NEW_AUTHTOK_REQD, the
dispatcher will returnPAM_NEW_AUTHTOK_REQD.

The second exception is that pam_setcred(3) treatsbinding andsufficient modules as if they were
required .

The third and final exception is that pam_chauthtok(3) runs the entire chain twice (once for preliminary

160

Chapter 17 Pluggable Authentication Modules (PAM)

checks and once to actually set the password), and in the preliminary phase it treatsbinding and
sufficient modules as if they wererequired .

17.6 PAM modules

17.6.1 Common Modules

17.6.1.1 pam_deny(8)

The pam_deny(8) module is one of the simplest modules available; it responds to any request with
PAM_AUTH_ERR. It is useful for quickly disabling a service (add it to the top of every chain), or for
terminating chains ofsufficient modules.

17.6.1.2 pam_echo(8)

The pam_echo(8) module simply passes its arguments to the conversation function as a
PAM_TEXT_INFOmessage. It is mostly useful for debugging, but can also serve to display messages such
as “Unauthorized access will be prosecuted” before starting the authentication procedure.

17.6.1.3 pam_exec(8)

The pam_exec(8) module takes its first argument to be the nameof a program to execute, and the
remaining arguments are passed to that program as command-line arguments. One possible application is
to use it to run a program at login time which mounts the user’shome directory.

17.6.1.4 pam_ftpusers(8)

The pam_ftpusers(8) module successes if and only if the useris listed in/etc/ftpusers . Currently, in
NetBSD, this module doesn’t understand the extended syntaxof ftpd(8), but this will be fixed in the
future.

17.6.1.5 pam_group(8)

The pam_group(8) module accepts or rejects applicants on the basis of their membership in a particular
file group (normallywheel for su(1)). It is primarily intended for maintaining the traditional behaviour
of BSD su(1), but has many other uses, such as excluding certain groups of users from a particular
service.

In NetBSD, there is an argument calledauthenticate in which the user is asked to authenticate using
his own password.

161

Chapter 17 Pluggable Authentication Modules (PAM)

17.6.1.6 pam_guest(8)

The pam_guest(8) module allows guest logins using fixed login names. Various requirements can be
placed on the password, but the default behaviour is to allowany password as long as the login name is
that of a guest account. The pam_guest(8) module can easily be used to implement anonymous FTP
logins.

17.6.1.7 pam_krb5(8)

The pam_krb5(8) module provides functions to verify the identity of a user and to set user specific
credentials using Kerberos 5. It prompts the user for a password and obtains a new Kerberos TGT for the
principal. The TGT is verified by obtaining a service ticket for the local host. The newly acquired
credentials are stored in a credential cache and the environment variable KRB5CCNAME is set
appropriately. The credentials cache should be destroyed by the user at logout with kdestroy(1).

17.6.1.8 pam_ksu(8)

The pam_ksu(8) module provides only authentication services for Kerberos 5 to determine whether or
not the applicant is authorized to obtain the privileges of the target account.

17.6.1.9 pam_lastlog(8)

The pam_lastlog(8) module provides only session management services. It records the session in
utmp(5), utmpx(5), wtmp(5), wtmpx(5), lastlog(5) and lastlogx(5) databases.

17.6.1.10 pam_login_access(8)

The pam_login_access(8) module provides an implementation of the account management primitive
which enforces the login restrictions specified in the login.access(5) table.

17.6.1.11 pam_nologin(8)

The pam_nologin(8) module refuses non-root logins when/var/run/nologin exists. This file is
normally created by shutdown(8) when less than five minutes remain until the scheduled shutdown time.

17.6.1.12 pam_permit(8)

The pam_permit(8) module is one of the simplest modules available; it responds to any request with
PAM_SUCCESS. It is useful as a placeholder for services where one or more chains would otherwise be
empty.

17.6.1.13 pam_radius(8)

The pam_radius(8) module provides authentication services based upon the RADIUS (Remote
Authentication Dial In User Service) protocol.

162

Chapter 17 Pluggable Authentication Modules (PAM)

17.6.1.14 pam_rhosts(8)

The pam_rhosts(8) module provides only authentication services. It reports success if and only if the
target user’s ID is not 0 and the remote host and user are listed in /etc/hosts.equiv or in the target
user’s~/.rhosts .

17.6.1.15 pam_rootok(8)

The pam_rootok(8) module reports success if and only if the real user id of the process calling it (which
is assumed to be run by the applicant) is 0. This is useful for non-networked services such as su(1) or
passwd(1), to which theroot should have automatic access.

17.6.1.16 pam_securetty(8)

The pam_securetty(8) module provides only account services. It is used when the applicant is attempting
to authenticate as superuser, and the process is attached toan insecure TTY.

17.6.1.17 pam_self(8)

The pam_self(8) module reports success if and only if the names of the applicant matches that of the
target account. It is most useful for non-networked services such as su(1), where the identity of the
applicant can be easily verified.

17.6.1.18 pam_ssh(8)

The pam_ssh(8) module provides both authentication and session services. The authentication service
allows users who have passphrase-protected SSH secret keysin their ~/.ssh directory to authenticate
themselves by typing their passphrase. The session servicestarts ssh-agent(1) and preloads it with the
keys that were decrypted in the authentication phase. This feature is particularly useful for local logins,
whether in X (using xdm(1) or another PAM-aware X login manager) or at the console.

This module implements what is fundamentally a password authentication scheme. Care should be taken
to only use this module over a secure session (secure TTY, encrypted session, etc.), otherwise the user’s
SSH passphrase could be compromised.

Additional consideration should be given to the use of pam_ssh(8). Users often assume that file
permissions are sufficient to protect their SSH keys, and thus use weak or no passphrases. Since the
system administrator has no effective means of enforcing SSH passphrase quality, this has the potential
to expose the system to security risks.

17.6.1.19 pam_unix(8)

The pam_unix(8) module implements traditional UNIX® password authentication, using getpwnam(3)
under FreeBSD or getpwnam_r(3) under NetBSD to obtain the target account’s password and compare it
with the one provided by the applicant. It also provides account management services (enforcing account
and password expiration times) and password-changing services. This is probably the single most useful
module, as the great majority of admins will want to maintainhistorical behaviour for at least some
services.

163

Chapter 17 Pluggable Authentication Modules (PAM)

17.6.2 FreeBSD-specific PAM Modules

17.6.2.1 pam_opie(8)

The pam_opie(8) module implements the opie(4) authentication method. The opie(4) system is a
challenge-response mechanism where the response to each challenge is a direct function of the challenge
and a passphrase, so the response can be easily computed “just in time” by anyone possessing the
passphrase, eliminating the need for password lists. Moreover, since opie(4) never reuses a challenge that
has been correctly answered, it is not vulnerable to replay attacks.

17.6.2.2 pam_opieaccess(8)

The pam_opieaccess(8) module is a companion module to pam_opie(8). Its purpose is to enforce the
restrictions codified in opieaccess(5), which regulate theconditions under which a user who would
normally authenticate herself using opie(4) is allowed to use alternate methods. This is most often used
to prohibit the use of password authentication from untrusted hosts.

In order to be effective, the pam_opieaccess(8) module mustbe listed asrequisite immediately after a
sufficient entry for pam_opie(8), and before any other modules, in theauth chain.

17.6.2.3 pam_passwdqc(8)

The pam_passwdqc(8) module is a simple password strength checking module for PAM. In addition to
checking regular passwords, it offers support for passphrases and can provide randomly generated
passwords.

17.6.2.4 pam_tacplus(8)

The pam_tacplus(8) module provides authentication services based upon the TACACS+ protocol for the
PAM (Pluggable Authentication Module) framework.

17.6.3 NetBSD-specific PAM Modules

17.6.3.1 pam_skey(8)

The pam_skey(8) module implements S/Key One Time Password (OTP) authentication methods, using
the/etc/skeykeys database.

17.7 PAM Application Programming
This section has not yet been written.

164

Chapter 17 Pluggable Authentication Modules (PAM)

17.8 PAM Module Programming
This section has not yet been written.

17.9 Sample PAM Application
The following is a minimal implementation of su(1) using PAM. Note that it uses the OpenPAM-specific
openpam_ttyconv(3) conversation function, which is prototyped insecurity/openpam.h . If you wish
build this application on a system with a different PAM library, you will have to provide your own
conversation function. A robust conversation function is surprisingly difficult to implement; the one
presented in theSample PAM Conversation Functionsub-chapter is a good starting point, but should not
be used in real-world applications.

#include <sys/param.h>
#include <sys/wait.h>

#include <err.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <unistd.h>

#include <security/pam_appl.h>
#include <security/openpam.h> / * for openpam_ttyconv() * /

extern char ** environ;

static pam_handle_t * pamh;
static struct pam_conv pamc;

static void
usage(void)
{

fprintf(stderr, "Usage: su [login [args]]\n");
exit(1);

}

int
main(int argc, char * argv[])
{

char hostname[MAXHOSTNAMELEN];
const char * user, * tty;
char ** args, ** pam_envlist, ** pam_env;
struct passwd * pwd;
int o, pam_err, status;
pid_t pid;

while ((o = getopt(argc, argv, "h")) != -1)

165

Chapter 17 Pluggable Authentication Modules (PAM)

switch (o) {
case ’h’:
default:

usage();
}

argc -= optind;
argv += optind;

if (argc > 0) {
user = * argv;
--argc;
++argv;

} else {
user = "root";

}

/ * initialize PAM * /
pamc.conv = &openpam_ttyconv;
pam_start("su", user, &pamc, &pamh);

/ * set some items * /
gethostname(hostname, sizeof(hostname));
if ((pam_err = pam_set_item(pamh, PAM_RHOST, hostname)) ! = PAM_SUCCESS)

goto pamerr;
user = getlogin();
if ((pam_err = pam_set_item(pamh, PAM_RUSER, user)) != PAM _SUCCESS)

goto pamerr;
tty = ttyname(STDERR_FILENO);
if ((pam_err = pam_set_item(pamh, PAM_TTY, tty)) != PAM_SU CCESS)

goto pamerr;

/ * authenticate the applicant * /
if ((pam_err = pam_authenticate(pamh, 0)) != PAM_SUCCESS)

goto pamerr;
if ((pam_err = pam_acct_mgmt(pamh, 0)) == PAM_NEW_AUTHTOK _REQD)

pam_err = pam_chauthtok(pamh, PAM_CHANGE_EXPIRED_AUTHT OK);
if (pam_err != PAM_SUCCESS)

goto pamerr;

/ * establish the requested credentials * /
if ((pam_err = pam_setcred(pamh, PAM_ESTABLISH_CRED)) != PAM_SUCCESS)

goto pamerr;

/ * authentication succeeded; open a session * /
if ((pam_err = pam_open_session(pamh, 0)) != PAM_SUCCESS)

goto pamerr;

/ * get mapped user name; PAM may have changed it * /
pam_err = pam_get_item(pamh, PAM_USER, (const void **)&user);
if (pam_err != PAM_SUCCESS || (pwd = getpwnam(user)) == NULL)

goto pamerr;

166

Chapter 17 Pluggable Authentication Modules (PAM)

/ * export PAM environment * /
if ((pam_envlist = pam_getenvlist(pamh)) != NULL) {

for (pam_env = pam_envlist; * pam_env != NULL; ++pam_env) {
putenv(* pam_env);
free(* pam_env);

}
free(pam_envlist);

}

/ * build argument list * /
if ((args = calloc(argc + 2, sizeof * args)) == NULL) {

warn("calloc()");
goto err;

}

* args = pwd->pw_shell;
memcpy(args + 1, argv, argc * sizeof * args);

/ * fork and exec * /
switch ((pid = fork())) {
case -1:

warn("fork()");
goto err;

case 0:
/ * child: give up privs and start a shell * /

/ * set uid and groups * /
if (initgroups(pwd->pw_name, pwd->pw_gid) == -1) {

warn("initgroups()");
_exit(1);

}
if (setgid(pwd->pw_gid) == -1) {

warn("setgid()");
_exit(1);

}
if (setuid(pwd->pw_uid) == -1) {

warn("setuid()");
_exit(1);

}
execve(* args, args, environ);
warn("execve()");
_exit(1);

default:
/ * parent: wait for child to exit * /
waitpid(pid, &status, 0);

/ * close the session and release PAM resources * /
pam_err = pam_close_session(pamh, 0);
pam_end(pamh, pam_err);

exit(WEXITSTATUS(status));
}

pamerr:

167

Chapter 17 Pluggable Authentication Modules (PAM)

fprintf(stderr, "Sorry\n");
err:

pam_end(pamh, pam_err);
exit(1);

}

17.10 Sample PAM Module
The following is a minimal implementation of pam_unix(8), offering only authentication services. It
should build and run with most PAM implementations, but takes advantage of OpenPAM extensions if
available: note the use of pam_get_authtok(3), which enormously simplifies prompting the user for a
password.

#include <sys/param.h>

#include <pwd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <security/pam_modules.h>
#include <security/pam_appl.h>

#ifndef _OPENPAM
static char password_prompt[] = "Password:";
#endif

#ifndef PAM_EXTERN
#define PAM_EXTERN
#endif

PAM_EXTERN int
pam_sm_authenticate(pam_handle_t * pamh, int flags,

int argc, const char * argv[])
{
#ifndef _OPENPAM

const void * ptr;
const struct pam_conv * conv;
struct pam_message msg;
const struct pam_message * msgp;
struct pam_response * resp;

#endif
struct passwd * pwd;
const char * user;
char * crypt_password, * password;
int pam_err, retry;

/ * identify user * /
if ((pam_err = pam_get_user(pamh, &user, NULL)) != PAM_SUC CESS)

return (pam_err);

168

Chapter 17 Pluggable Authentication Modules (PAM)

if ((pwd = getpwnam(user)) == NULL)
return (PAM_USER_UNKNOWN);

/ * get password * /
#ifndef _OPENPAM

pam_err = pam_get_item(pamh, PAM_CONV, &ptr);
if (pam_err != PAM_SUCCESS)

return (PAM_SYSTEM_ERR);
conv = ptr;
msg.msg_style = PAM_PROMPT_ECHO_OFF;
msg.msg = password_prompt;
msgp = &msg;

#endif
password = NULL;
for (retry = 0; retry < 3; ++retry) {

#ifdef _OPENPAM
pam_err = pam_get_authtok(pamh, PAM_AUTHTOK,

(const char **)&password, NULL);
#else

resp = NULL;
pam_err = (* conv->conv)(1, &msgp, &resp, conv->appdata_ptr);
if (resp != NULL) {

if (pam_err == PAM_SUCCESS)
password = resp->resp;

else
free(resp->resp);

free(resp);
}

#endif
if (pam_err == PAM_SUCCESS)

break;
}
if (pam_err == PAM_CONV_ERR)

return (pam_err);
if (pam_err != PAM_SUCCESS)

return (PAM_AUTH_ERR);

/ * compare passwords * /
if ((!pwd->pw_passwd[0] && (flags & PAM_DISALLOW_NULL_AU THTOK)) ||

(crypt_password = crypt(password, pwd->pw_passwd)) == NU LL ||
strcmp(crypt_password, pwd->pw_passwd) != 0)

pam_err = PAM_AUTH_ERR;
else

pam_err = PAM_SUCCESS;
#ifndef _OPENPAM

free(password);
#endif

return (pam_err);
}

PAM_EXTERN int
pam_sm_setcred(pam_handle_t * pamh, int flags,

int argc, const char * argv[])

169

Chapter 17 Pluggable Authentication Modules (PAM)

{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_acct_mgmt(pam_handle_t * pamh, int flags,

int argc, const char * argv[])
{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_open_session(pam_handle_t * pamh, int flags,

int argc, const char * argv[])
{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_close_session(pam_handle_t * pamh, int flags,

int argc, const char * argv[])
{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_chauthtok(pam_handle_t * pamh, int flags,

int argc, const char * argv[])
{

return (PAM_SERVICE_ERR);
}

#ifdef PAM_MODULE_ENTRY
PAM_MODULE_ENTRY("pam_unix");
#endif

17.11 Sample PAM Conversation Function
The conversation function presented below is a greatly simplified version of OpenPAM’s
openpam_ttyconv(3). It is fully functional, and should give the reader a good idea of how a conversation
function should behave, but it is far too simple for real-world use. Even if you’re not using OpenPAM,
feel free to download the source code and adapt openpam_ttyconv(3) to your uses; we believe it to be as
robust as a tty-oriented conversation function can reasonably get.

#include <stdio.h>
#include <stdlib.h>

170

Chapter 17 Pluggable Authentication Modules (PAM)

#include <string.h>
#include <unistd.h>

#include <security/pam_appl.h>

int
converse(int n, const struct pam_message ** msg,

struct pam_response ** resp, void * data)
{

struct pam_response * aresp;
char buf[PAM_MAX_RESP_SIZE];
int i;

data = data;
if (n <= 0 || n > PAM_MAX_NUM_MSG)

return (PAM_CONV_ERR);
if ((aresp = calloc(n, sizeof * aresp)) == NULL)

return (PAM_BUF_ERR);
for (i = 0; i < n; ++i) {

aresp[i].resp_retcode = 0;
aresp[i].resp = NULL;
switch (msg[i]->msg_style) {
case PAM_PROMPT_ECHO_OFF:

aresp[i].resp = strdup(getpass(msg[i]->msg));
if (aresp[i].resp == NULL)

goto fail;
break;

case PAM_PROMPT_ECHO_ON:
fputs(msg[i]->msg, stderr);
if (fgets(buf, sizeof buf, stdin) == NULL)

goto fail;
aresp[i].resp = strdup(buf);
if (aresp[i].resp == NULL)

goto fail;
break;

case PAM_ERROR_MSG:
fputs(msg[i]->msg, stderr);
if (strlen(msg[i]->msg) > 0 &&

msg[i]->msg[strlen(msg[i]->msg) - 1] != ’\n’)
fputc(’\n’, stderr);

break;
case PAM_TEXT_INFO:

fputs(msg[i]->msg, stdout);
if (strlen(msg[i]->msg) > 0 &&

msg[i]->msg[strlen(msg[i]->msg) - 1] != ’\n’)
fputc(’\n’, stdout);

break;
default:

goto fail;
}

}

* resp = aresp;
return (PAM_SUCCESS);

171

Chapter 17 Pluggable Authentication Modules (PAM)

fail:
for (i = 0; i < n; ++i) {

if (aresp[i].resp != NULL) {
memset(aresp[i].resp, 0, strlen(aresp[i].resp));
free(aresp[i].resp);

}
}
memset(aresp, 0, n * sizeof * aresp);

* resp = NULL;
return (PAM_CONV_ERR);

}

17.12 Further Reading

Bibliography

Papers

Making Login Services Independent of Authentication Technologies
(http://www.sun.com/software/solaris/pam/pam.external.pdf), Vipin Samar and Charlie Lai, Sun
Microsystems.

X/Open Single Sign-on Preliminary Specification (http://www.opengroup.org/pubs/catalog/p702.htm),
The Open Group, 1-85912-144-6, June 1997.

Pluggable Authentication Modules (http://www.kernel.org/pub/linux/libs/pam/pre/doc/current-draft.txt),
Andrew G. Morgan, October 6, 1999.

User Manuals

PAM Administration (http://www.sun.com/software/solaris/pam/pam.admin.pdf), Sun Microsystems.

Related Web pages

OpenPAM homepage (http://openpam.sourceforge.net/), Dag-Erling Smørgrav, ThinkSec AS.

Linux-PAM homepage (http://www.kernel.org/pub/linux/libs/pam/), Andrew G. Morgan.

Solaris PAM homepage (http://www.sun.com/software/solaris/pam/), Sun Microsystems.

172

Chapter 18

Tuning NetBSD

18.1 Introduction

18.1.1 Overview

This section covers a variety of performance tuning topics.It attempts to span tuning from the
perspective of the system administrator to systems programmer. The art of performance tuning itself is
very old. To tune something means to make it operate more efficiently, whether one is referring to a
NetBSD based technical server or a vacuum cleaner, the goal is to improve something, whether that be
the way something is done, how it works or how it is put together.

18.1.1.1 What is Performance Tuning?

A view from 10,000 feet pretty much dictates that everythingwe do is task oriented, this pertains to a
NetBSD system as well. When the system boots, it automatically begins to perform a variety of tasks.
When a user logs in, they usually have a wide variety of tasks they have to accomplish. In the scope of
these documents, however, performance tuning strictly means to improve how efficient a NetBSD system
performs.

The most common thought that crops into someone’s mind when they think "tuning" is some sort of
speed increase or decreasing the size of the kernel - while those are ways to improve performance, they
are not the only ends an administrator may have to take for increasing efficiency. For our purposes,
performance tuning means this:To make a NetBSD system operate in an optimum state.

Which could mean a variety of things, not necessarily speed enhancements. A good example of this is
filesystem formatting parameters, on a system that has a lot of small files (say like a source repository) an
administrator may need to increase the number of inodes by making their size smaller (say down to
1024k) and then increasing the amount of inodes. In this casethe number of inodes was increased,
however, it keeps the administrator from getting those nasty out of inodes messages, which ultimately
makes the system more efficient.

Tuning normally revolves around finding and eliminating bottlenecks. Most of the time, such bottlenecks
are spurious, for example, a release of Mozilla that does notquite handle java applets too well can cause
Mozilla to start crunching the CPU, especially applets thatare not done well. Occasions when processes
seem to spin off into nowhere and eat CPU are almost always resolved with a kill. There are instances,
however, when resolving bottlenecks takes a lot longer, forexample, say an rsynced server is just getting
larger and larger. Slowly, performance begins to fade and the administrator may have to take some sort of
action to speed things up, however, the situation is relative to say an emergency like an instantly spiked
CPU.

173

Chapter 18 Tuning NetBSD

18.1.1.2 When does one tune?

Many NetBSD users rarely have to tune a system. The GENERIC kernel may run just fine and the
layout/configuration of the system may do the job as well. By the same token, as a pragma it is always
good to know how to tune a system. Most often tuning comes as a result of a sudden bottleneck issue
(which may occur randomly) or a gradual loss of performance.It does happen in a sense to everyone at
some point, one process that is eating the CPU is a bottleneckas much as a gradual increase in paging.
So, the question should not be when to tune so much as when to learn to tune.

One last time to tune is if you can tune in a preventive manner (and you think you might need to) then do
it. One example of this was on a system that needed to be able toreboot quickly. Instead of waiting, I did
everything I could to trim the kernel and make sure there was absolutely nothing running that was not
needed, I even removed drivers that did have devices, but were never used (lp). The result was reducing
reboot time by nearly two-thirds. In the long run, it was a smart move to tune it before it became an issue.

18.1.1.3 What these Documents Will Not Cover

Before I wrap up the introduction, I think it is important to note what these documents will not cover.
This guide will pertain only to the core NetBSD system. In other words, it will not cover tuning a web
server’s configuration to make it run better; however, it might mention how to tune NetBSD to run better
as a web server. The logic behind this is simple: web servers,database software, etc. are third party and
almost limitless. I could easily get mired down in details that do not apply to the NetBSD system.
Almost all third party software have their own documentation about tuning anyhow.

18.1.1.4 How Examples are Laid Out

Since there is ample man page documentation, only used options and arguments with examples are
discussed. In some cases, material is truncated for brevityand not thoroughly discussed because, quite
simply, there is too much. For example, every single device driver entry in the kernel will not be
discussed, however, an example of determining whether or not a given system needs one will be. Nothing
in this Guide is concrete, tuning and performance are very subjective, instead, it is a guide for the reader
to learn what some of the tools available to them can do.

18.2 Tuning Considerations
Tuning a system is not really too difficult when pro-active tuning is the approach. This document
approaches tuning from a “before it comes up” approach. While tuning in spare time is considerably
easier versus say, a server that is almost completely boggeddown to 0.1% idle time, there are still a few
things that should be mulled over about tuning before actually doing it, hopefully, before a system is
even installed.

18.2.1 General System Configuration

Of course, how the system is setup makes a big difference. Sometimes small items can be overlooked
which may in fact cause some sort of long term performance problem.

174

Chapter 18 Tuning NetBSD

18.2.1.1 Filesystems and Disks

How the filesystem is laid out relative to disk drives is very important. On hardware RAID systems, it is
not such a big deal, but, many NetBSD users specifically use NetBSD on older hardware where hardware
RAID simply is not an option. The idea of/ being close to the first drive is a good one, but for example
if there are several drives to choose from that will be the first one, is the best performing the one that/

will be on? On a related note, is it wise to split off/usr ? Will the system see heavy usage say in
/usr/pkgsrc ? It might make sense to slap a fast drive in and mount it under/usr/pkgsrc , or it might
not. Like all things in performance tuning, this is subjective.

18.2.1.2 Swap Configuration

There are three schools of thought on swap size and about fiftyon using split swap files with prioritizing
and how that should be done. In the swap size arena, the vendorschools (at least most commercial ones)
usually have their own formulas per OS. As an example, on a particular version of HP-UX with a
particular version of Oracle the formula was:

2.5 GB * Number_of_processor

Well, that all really depends on what type of usage the database is having and how large it is, for instance
if it is so large that it must be distributed, that formula does not fit well.

The next school of thought about swap sizing is sort of strange but makes some sense, it says, if possible,
get a reference amount of memory used by the system. It goes something like this:

1. Startup a machine and estimate total memory needs by running everything that may ever be needed
at once. Databases, web servers whatever. Total up the amount.

2. Add a few MB for padding.

3. Subtract the amount of physical RAM from this total.

If the amount leftover is 3 times the size of physical RAM, consider getting more RAM. The problem, of
course, is figuring out what is needed and how much space it will take. There is also another flaw in this
method, some programs do not behave well. A glaring example of misbehaved software is web browsers.
On certain versions of Netscape, when something went wrong it had a tendency to runaway and eat swap
space. So, the more spare space available, the more time to kill it.

Last and not least is the tried and true PHYSICAL_RAM * 2 method. On modern machines and even
older ones (with limited purpose of course) this seems to work best.

All in all, it is hard to tell when swapping will start. Even onsmall 16MB RAM machines (and less)
NetBSD has always worked well for most people until misbehaving software is running.

18.2.2 System Services

On servers, system services have a large impact. Getting them to run at their best almost always requires
some sort of network level change or a fundamental speed increase in the underlying system (which of
course is what this is all about). There are instances when some simple solutions can improve services.
One example, an ftp server is becoming slower and a new release of the ftp server that is shipped with the

175

Chapter 18 Tuning NetBSD

system comes out that, just happens to run faster. By upgrading the ftp software, a performance boost is
accomplished.

Another good example where services are concerned is the ageold question: “To use inetd or not to use
inetd?” A great service example is pop3. Pop3 connections can conceivably clog up inetd. While the
pop3 service itself starts to degrade slowly, other services that are multiplexed through inetd will also
degrade (in some case more than pop3). Setting up pop3 to run outside of inetd and on its own may help.

18.2.3 The NetBSD Kernel

The NetBSD kernel obviously plays a key role in how well a system performs, while rebuilding and
tuning the kernel is covered later in the text, it is worth discussing in the local context from a high level.

Tuning the NetBSD kernel really involves three main areas:

1. removing unrequired drivers

2. configuring options

3. system settings

18.2.3.1 Removing Unrequired Drivers

Taking drivers out of the kernel that are not needed achievesseveral results; first, the system boots faster
since the kernel is smaller, second again since the kernel issmaller, more memory is free to users and
processes and third, the kernel tends to respond quicker.

18.2.3.2 Configuring Options

Configuring options such as enabling/disabling certain subsystems, specific hardware and filesystems
can also improve performance pretty much the same way removing unrequired drivers does. A very
simple example of this is a FTP server that only hosts ftp files- nothing else. On this particular server
there is no need to have anything but native filesystem support and perhaps a few options to help speed
things along. Why would it ever need NTFS support for example? Besides, if it did, support for NTFS
could be added at some later time. In an opposite case, a workstation may need to support a lot of
different filesystem types to share and access files.

18.2.3.3 System Settings

System wide settings are controlled by the kernel, a few examples are filesystem settings, network
settings and core kernel settings such as the maximum numberof processes. Almost all system settings
can be at least looked at or modified via the sysctl facility. Examples using the sysctl facility are given
later on.

176

Chapter 18 Tuning NetBSD

18.3 Visual Monitoring Tools
NetBSD ships a variety of performance monitoring tools withthe system. Most of these tools are
common on all UNIX systems. In this section some example usage of the tools is given with
interpretation of the output.

18.3.1 The top Process Monitor

The top monitor does exactly what it says: it displays the CPUhogs on the system. To run the monitor,
simply type top at the prompt. Without any arguments, it should look like:

load averages: 0.09, 0.12, 0.08 20:23:41
21 processes: 20 sleeping, 1 on processor
CPU states: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrup t, 100% idle
Memory: 15M Act, 1104K Inact, 208K Wired, 22M Free, 129M Swap free

PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
13663 root 2 0 1552K 1836K sleep 0:08 0.00% 0.00% httpd

127 root 10 0 129M 4464K sleep 0:01 0.00% 0.00% mount_mfs
22591 root 2 0 388K 1156K sleep 0:01 0.00% 0.00% sshd

108 root 2 0 132K 472K sleep 0:01 0.00% 0.00% syslogd
22597 jrf 28 0 156K 616K onproc 0:00 0.00% 0.00% top
22592 jrf 18 0 828K 1128K sleep 0:00 0.00% 0.00% tcsh

203 root 10 0 220K 424K sleep 0:00 0.00% 0.00% cron
1 root 10 0 312K 192K sleep 0:00 0.00% 0.00% init

205 root 3 0 48K 432K sleep 0:00 0.00% 0.00% getty
206 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
208 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
207 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty

13667 nobody 2 0 1660K 1508K sleep 0:00 0.00% 0.00% httpd
9926 root 2 0 336K 588K sleep 0:00 0.00% 0.00% sshd

200 root 2 0 76K 456K sleep 0:00 0.00% 0.00% inetd
182 root 2 0 92K 436K sleep 0:00 0.00% 0.00% portsentry
180 root 2 0 92K 436K sleep 0:00 0.00% 0.00% portsentry

13666 nobody -4 0 1600K 1260K sleep 0:00 0.00% 0.00% httpd

The top utility is great for finding CPU hogs, runaway processes or groups of processes that may be
causing problems. The output shown above indicates that this particular system is in good health. Now,
the next display should show some very different results:

load averages: 0.34, 0.16, 0.13 21:13:47
25 processes: 24 sleeping, 1 on processor
CPU states: 0.5% user, 0.0% nice, 9.0% system, 1.0% interrup t, 89.6% idle
Memory: 20M Act, 1712K Inact, 240K Wired, 30M Free, 129M Swap free

PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
5304 jrf -5 0 56K 336K sleep 0:04 66.07% 19.53% bonnie
5294 root 2 0 412K 1176K sleep 0:02 1.01% 0.93% sshd

108 root 2 0 132K 472K sleep 1:23 0.00% 0.00% syslogd
187 root 2 0 1552K 1824K sleep 0:07 0.00% 0.00% httpd

5288 root 2 0 412K 1176K sleep 0:02 0.00% 0.00% sshd
5302 jrf 28 0 160K 620K onproc 0:00 0.00% 0.00% top

177

Chapter 18 Tuning NetBSD

5295 jrf 18 0 828K 1116K sleep 0:00 0.00% 0.00% tcsh
5289 jrf 18 0 828K 1112K sleep 0:00 0.00% 0.00% tcsh

127 root 10 0 129M 8388K sleep 0:00 0.00% 0.00% mount_mfs
204 root 10 0 220K 424K sleep 0:00 0.00% 0.00% cron

1 root 10 0 312K 192K sleep 0:00 0.00% 0.00% init
208 root 3 0 48K 432K sleep 0:00 0.00% 0.00% getty
210 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
209 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
211 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
217 nobody 2 0 1616K 1272K sleep 0:00 0.00% 0.00% httpd
184 root 2 0 336K 580K sleep 0:00 0.00% 0.00% sshd
201 root 2 0 76K 456K sleep 0:00 0.00% 0.00% inetd

At first, it should seem rather obvious which process is hogging the system, however, what is interesting
in this case is why. The bonnie program is a disk benchmark tool which can write large files in a variety
of sizes and ways. What the previous output indicates is onlythat the bonnie program is a CPU hog, but
not why.

18.3.1.1 Other Neat Things About Top

A careful examination of the manual page top(1) shows that there is a lot more that can be done with top,
for example, processes can have their priority changed and killed. Additionally, filters can be set for
looking at processes.

18.3.2 The sysstat utility

As the man page sysstat(1) indicates, the sysstat utility shows a variety of system statistics using the
curses library. While it is running the screen is shown in twoparts, the upper window shows the current
load average while the lower screen depends on user commands. The exception to the split window view
is when vmstat display is on which takes up the whole screen. Following is what sysstat looks like on a
fairly idle system with no arguments given when it was invoked:

/0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10
Load Average |

/0 /10 /20 /30 /40 /50 /60 /70 /80 /90 /100
<idle> XX

Basically a lot of dead time there, so now have a look with somearguments provided, in this case,
sysstat inet.tcpwhich looks like this:

/0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10
Load Average |

0 connections initiated 19 total TCP packets sent
0 connections accepted 11 data
0 connections established 0 data (retransmit)

8 ack-only
0 connections dropped 0 window probes
0 in embryonic state 0 window updates

178

Chapter 18 Tuning NetBSD

0 on retransmit timeout 0 urgent data only
0 by keepalive 0 control
0 by persist

29 total TCP packets received
11 potential rtt updates 17 in sequence
11 successful rtt updates 0 completely duplicate

9 delayed acks sent 0 with some duplicate data
0 retransmit timeouts 4 out of order
0 persist timeouts 0 duplicate acks
0 keepalive probes 11 acks
0 keepalive timeouts 0 window probes

0 window updates

Now that is informative. The first poll is accumulative, so itis possible to see quite a lot of information in
the output when sysstat is invoked. Now, while that may be interesting, how about a look at the buffer
cache withsysstat bufcache:

/0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10
Load Average

There are 1642 buffers using 6568 kBytes of memory.

File System Bufs used % kB in use % Bufsize kB % Util %
/ 877 53 6171 93 6516 99 94
/var/tmp 5 0 17 0 28 0 60

Total: 882 53 6188 94 6544 99

Again, a pretty boring system, but great information to haveavailable. While this is all nice to look at, it
is time to put a false load on the system to see how sysstat can be used as a performance monitoring tool.
As with top, bonnie++ will be used to put a high load on the I/O subsystems and a little on the CPU. The
bufcache will be looked at again to see of there are any noticeable differences:

/0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10
Load Average |||

There are 1642 buffers using 6568 kBytes of memory.

File System Bufs used % kB in use % Bufsize kB % Util %
/ 811 49 6422 97 6444 98 99

Total: 811 49 6422 97 6444 98

First, notice that the load average shot up, this is to be expected of course, then, while most of the
numbers are close, notice that utilization is at 99%. Throughout the time that bonnie++ was running the
utilization percentage remained at 99, this of course makessense, however, in a real troubleshooting
situation, it could be indicative of a process doing heavy I/O on one particular file or filesystem.

179

Chapter 18 Tuning NetBSD

18.4 Monitoring Tools
In addition to screen oriented monitors and tools, the NetBSD system also ships with a set of command
line oriented tools. Many of the tools that ship with a NetBSDsystem can be found on other UNIX and
UNIX-like systems.

18.4.1 fstat

The fstat(1) utility reports the status of open files on the system, while it is not what many administrators
consider a performance monitor, it can help find out if a particular user or process is using an inordinate
amount of files, generating large files and similar information.

Following is a sample of some fstat output:

USER CMD PID FD MOUNT INUM MODE SZ|DV R/W
jrf tcsh 21607 wd / 29772 drwxr-xr-x 512 r
jrf tcsh 21607 3 * unix stream c057acc0<-> c0553280
jrf tcsh 21607 4 * unix stream c0553280 <-> c057acc0
root sshd 21597 wd / 2 drwxr-xr-x 512 r
root sshd 21597 0 / 11921 crw-rw-rw- null rw
nobody httpd 5032 wd / 2 drwxr-xr-x 512 r
nobody httpd 5032 0 / 11921 crw-rw-rw- null r
nobody httpd 5032 1 / 11921 crw-rw-rw- null w
nobody httpd 5032 2 / 15890 -rw-r--r-- 353533 rw
...

The fields are pretty self explanatory, again, this tool while not as performance oriented as others, can
come in handy when trying to find out information about file usage.

18.4.2 iostat

The iostat(8) command does exactly what it sounds like, it reports the status of the I/O subsystems on the
system. When iostat is employed, the user typically runs it with a certain number of counts and an
interval between them like so:

$ iostat 5 5

tty wd0 cd0 fd0 md0 cpu
tin tout KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s us ni sy in id

0 1 5.13 1 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 0 0 100
0 54 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 0 0 100
0 18 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 0 0 100
0 18 8.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 0 0 100
0 28 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 0 0 100

The above output is from a very quiet ftp server. The fields represent the various I/O devices, the tty
(which, ironically, is the most active because iostat is running), wd0 which is the primary IDE disk, cd0,
the cdrom drive, fd0, the floppy and the memory filesystem.

Now, let’s see if we can pummel the system with some heavy usage. First, a large ftp transaction
consisting of a tarball of netbsd-current source along withthe bonnie++ disk benchmark program
running at the same time.

180

Chapter 18 Tuning NetBSD

$ iostat 5 5

tty wd0 cd0 fd0 md0 cpu
tin tout KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s us ni sy in id

0 1 5.68 1 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 0 0 100
0 54 61.03 150 8.92 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 1 0 18 4 78
0 26 63.14 157 9.71 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 1 0 20 4 75
0 20 43.58 26 1.12 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 0 9 2 88
0 28 19.49 82 1.55 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 1 0 7 3 89

As can be expected, notice that wd0 is very active, what is interesting about this output is how the
processor’s I/O seems to rise in proportion to wd0. This makes perfect sense, however, it is worth noting
that only because this ftp server is hardly being used can that be observed. If, for example, the cpu I/O
subsystem was already under a moderate load and the disk subsystem was under the same load as it is
now, it could appear that the cpu is bottlenecked when in factit would have been the disk. In such a case,
we can observe that "one tool" is rarely enough to completelyanalyze a problem. A quick glance at
processes probably would tell us (after watching iostat) which processes were causing problems.

18.4.3 ps

Using the ps(1) command or process status, a great deal of information about the system can be
discovered. Most of the time, the ps command is used to isolate a particular process by name, group,
owner etc. Invoked with no options or arguments, ps simply prints out information about the user
executing it.

$ ps

PID TT STAT TIME COMMAND
21560 p0 Is 0:00.04 -tcsh
21564 p0 I+ 0:00.37 ssh jrf.odpn.net
21598 p1 Ss 0:00.12 -tcsh
21673 p1 R+ 0:00.00 ps
21638 p2 Is+ 0:00.06 -tcsh

Not very exciting. The fields are self explanatory with the exception of STAT which is actually the state a
process is in. The flags are all documented in the man page, however, in the above example, I is idle, S is
sleeping, R is runnable, the + means the process is in a foreground state, and the s means the process is a
session leader. This all makes perfect sense when looking atthe flags, for example, PID 21560 is a shell,
it is idle and (as would be expected) the shell is the process leader.

In most cases, someone is looking for something very specificin the process listing. As an example,
looking at all processes is specified with -a, to see all processes plus those without controlling terminals
is -ax and to get a much more verbose listing (basically everything plus information about the impact
processes are having) aux:

ps aux

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 0 0.0 9.6 0 6260 ?? DLs 16Jul02 0:01.00 (swapper)
root 23362 0.0 0.8 144 488 ?? S 12:38PM 0:00.01 ftpd -l
root 23328 0.0 0.4 428 280 p1 S 12:34PM 0:00.04 -csh
jrf 23312 0.0 1.8 828 1132 p1 Is 12:32PM 0:00.06 -tcsh
root 23311 0.0 1.8 388 1156 ?? S 12:32PM 0:01.60 sshd: jrf@tty p1
jrf 21951 0.0 1.7 244 1124 p0 S+ 4:22PM 0:02.90 ssh jrf.odpn.n et

181

Chapter 18 Tuning NetBSD

jrf 21947 0.0 1.7 828 1128 p0 Is 4:21PM 0:00.04 -tcsh
root 21946 0.0 1.8 388 1156 ?? S 4:21PM 0:04.94 sshd: jrf@ttyp 0
nobody 5032 0.0 2.0 1616 1300 ?? I 19Jul02 0:00.02 /usr/pkg/s bin/httpd
...

Again, most of the fields are self explanatory with the exception of VSZ and RSS which can be a little
confusing. RSS is the real size of a process in 1024 byte unitswhile VSZ is the virtual size. This is all
great, but again, how can ps help? Well, for one, take a look atthis modified version of the same output:

ps aux

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 0 0.0 9.6 0 6260 ?? DLs 16Jul02 0:01.00 (swapper)
root 23362 0.0 0.8 144 488 ?? S 12:38PM 0:00.01 ftpd -l
root 23328 0.0 0.4 428 280 p1 S 12:34PM 0:00.04 -csh
jrf 23312 0.0 1.8 828 1132 p1 Is 12:32PM 0:00.06 -tcsh
root 23311 0.0 1.8 388 1156 ?? S 12:32PM 0:01.60 sshd: jrf@tty p1
jrf 21951 0.0 1.7 244 1124 p0 S+ 4:22PM 0:02.90 ssh jrf.odpn.n et
jrf 21947 0.0 1.7 828 1128 p0 Is 4:21PM 0:00.04 -tcsh
root 21946 0.0 1.8 388 1156 ?? S 4:21PM 0:04.94 sshd: jrf@ttyp 0
nobody 5032 9.0 2.0 1616 1300 ?? I 19Jul02 0:00.02 /usr/pkg/s bin/httpd
...

Given that on this server, our baseline indicates a relatively quiet system, the PID 5032 has an unusually
large amount of %CPU. Sometimes this can also cause high TIMEnumbers. The ps command can be
grepped on for PIDs, username and process name and hence helptrack down processes that may be
experiencing problems.

18.4.4 vmstat

Using vmstat(1), information pertaining to virtual memorycan be monitored and measured. Not unlike
iostat, vmstat can be invoked with a count and interval. Following is some sample output using 5 5 like
the iostat example:

vmstat 5 5

procs memory page disks faults cpu
r b w avm fre flt re pi po fr sr w0 c0 f0 m0 in sy cs us sy id
0 7 0 17716 33160 2 0 0 0 0 0 1 0 0 0 105 15 4 0 0 100
0 7 0 17724 33156 2 0 0 0 0 0 1 0 0 0 109 6 3 0 0 100
0 7 0 17724 33156 1 0 0 0 0 0 1 0 0 0 105 6 3 0 0 100
0 7 0 17724 33156 1 0 0 0 0 0 0 0 0 0 107 6 3 0 0 100
0 7 0 17724 33156 1 0 0 0 0 0 0 0 0 0 105 6 3 0 0 100

Yet again, relatively quiet, for posterity, the exact same load that was put on this server in the iostat
example will be used. The load is a large file transfer and the bonnie benchmark program.

vmstat 5 5

procs memory page disks faults cpu
r b w avm fre flt re pi po fr sr w0 c0 f0 m0 in sy cs us sy id
1 8 0 18880 31968 2 0 0 0 0 0 1 0 0 0 105 15 4 0 0 100
0 8 0 18888 31964 2 0 0 0 0 0 130 0 0 0 1804 5539 1094 31 22 47
1 7 0 18888 31964 1 0 0 0 0 0 130 0 0 0 1802 5500 1060 36 16 49
1 8 0 18888 31964 1 0 0 0 0 0 160 0 0 0 1849 5905 1107 21 22 57

182

Chapter 18 Tuning NetBSD

1 7 0 18888 31964 1 0 0 0 0 0 175 0 0 0 1893 6167 1082 1 25 75

Just a little different. Notice, since most of the work was I/O based, the actual memory used was not very
much. Since this system uses mfs for/tmp , however, it can certainly get beat up. Have a look at this:

vmstat 5 5

procs memory page disks faults cpu
r b w avm fre flt re pi po fr sr w0 c0 f0 m0 in sy cs us sy id
0 2 0 99188 500 2 0 0 0 0 0 1 0 0 0 105 16 4 0 0 100
0 2 0111596 436 592 0 587 624 586 1210 624 0 0 0 741 883 1088 0 11 89
0 3 0123976 784 666 0 662 643 683 1326 702 0 0 0 828 993 1237 0 12 88
0 2 0134692 1236 581 0 571 563 595 1158 599 0 0 0 722 863 1066 0 9 90
2 0 0142860 912 433 0 406 403 405 808 429 0 0 0 552 602 768 0 7 93

Pretty scary stuff. That was created by running bonnie in/tmp on a memory based filesystem. If it
continued for too long, it is possible the system could have started thrashing. Notice that even though the
VM subsystem was taking a beating, the processors still werenot getting too battered.

18.5 Network Tools
Sometimes a performance problem is not a particular machine, it is the network or some sort of device
on the network such as another host, a router etc. What other machines that provide a service or some
sort of connectivity to a particular NetBSD system do and howthey act can have a very large impact on
performance of the NetBSD system itself, or the perception of performance by users. A really great
example of this is when a DNS server that a NetBSD machine is using suddenly disappears. Lookups
take long and they eventually fail. Someone logged into the NetBSD machine who is not experienced
would undoubtedly (provided they had no other evidence) blame the NetBSD system. One of my
personal favorites, “the Internet is broke” usually means either DNS service or a router/gateway has
dropped offline. Whatever the case may be, a NetBSD system comes adequately armed to deal with
finding out what network issues may be cropping up whether thefault of the local system or some other
issue.

18.5.1 ping

The classic ping(8) utility can tell us if there is just plainconnectivity, it can also tell if host resolution
(depending on hownsswitch.conf dictates) is working. Following is some typical ping outputon a
local network with a count of 3 specified:

ping -c 3 marie

PING marie (172.16.14.12): 56 data bytes
64 bytes from 172.16.14.12: icmp_seq=0 ttl=255 time=0.571 ms
64 bytes from 172.16.14.12: icmp_seq=1 ttl=255 time=0.361 ms
64 bytes from 172.16.14.12: icmp_seq=2 ttl=255 time=0.371 ms

----marie PING Statistics----
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.361/0.434/0.571/0.11 8 ms

183

Chapter 18 Tuning NetBSD

Not only does ping tell us if a host is alive, it tells us how long it took and gives some nice details at the
very end. If a host cannot be resolved, just the IP address canbe specified as well:

ping -c 1 172.16.20.5

PING ash (172.16.20.5): 56 data bytes
64 bytes from 172.16.20.5: icmp_seq=0 ttl=64 time=0.452 ms

----ash PING Statistics----
1 packets transmitted, 1 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.452/0.452/0.452/0.00 0 ms

Now, not unlike any other tool, the times are very subjective, especially in regards to networking. For
example, while the times in the examples are good, take a lookat the localhost ping:

ping -c 4 localhost

PING localhost (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=255 time=0.091 ms
64 bytes from 127.0.0.1: icmp_seq=1 ttl=255 time=0.129 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=255 time=0.120 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=255 time=0.122 ms

----localhost PING Statistics----
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.091/0.115/0.129/0.01 7 ms

Much smaller because the request never left the machine. Pings can be used to gather information about
how well a network is performing. It is also good for problem isolation, for instance, if there are three
relatively close in size NetBSD systems on a network and one of them simply has horrible ping times,
chances are something is wrong on that one particular machine.

18.5.2 traceroute

The traceroute(8) command is great for making sure a path is available or detecting problems on a
particular path. As an example, here is a trace between the example ftp server and ftp.NetBSD.org:

traceroute ftp.NetBSD.org

traceroute to ftp.NetBSD.org (204.152.184.75), 30 hops ma x, 40 byte packets
1 208.44.95.1 (208.44.95.1) 1.646 ms 1.492 ms 1.456 ms
2 63.144.65.170 (63.144.65.170) 7.318 ms 3.249 ms 3.854 ms
3 chcg01-edge18.il.inet.qwest.net (65.113.85.229) 35.9 82 ms 28.667 ms 21.971 ms
4 chcg01-core01.il.inet.qwest.net (205.171.20.1) 22.60 7 ms 26.242 ms 19.631 ms
5 snva01-core01.ca.inet.qwest.net (205.171.8.50) 78.58 6 ms 70.585 ms 84.779 ms
6 snva01-core03.ca.inet.qwest.net (205.171.14.122) 69. 222 ms 85.739 ms 75.979 ms
7 paix01-brdr02.ca.inet.qwest.net (205.171.205.30) 83. 882 ms 67.739 ms 69.937 ms
8 198.32.175.3 (198.32.175.3) 72.782 ms 67.687 ms 73.320 ms
9 so-1-0-0.orpa8.pf.isc.org (192.5.4.231) 78.007 ms 81.8 60 ms 77.069 ms

10 tun0.orrc5.pf.isc.org (192.5.4.165) 70.808 ms 75.151 m s 81.485 ms
11 ftp.NetBSD.org (204.152.184.75) 69.700 ms 69.528 ms 77. 788 ms

All in all, not bad. The trace went from the host to the local router, then out onto the provider network
and finally out onto the Internet looking for the final destination. How to interpret traceroutes, again, are
subjective, but abnormally high times in portions of a path can indicate a bottleneck on a piece of

184

Chapter 18 Tuning NetBSD

network equipment. Not unlike ping, if the host itself is suspect, run traceroute from another host to the
same destination. Now, for the worst case scenario:

traceroute www.microsoft.com

traceroute: Warning: www.microsoft.com has multiple addr esses; using 207.46.230.220
traceroute to www.microsoft.akadns.net (207.46.230.220), 30 hops max, 40 byte packets

1 208.44.95.1 (208.44.95.1) 2.517 ms 4.922 ms 5.987 ms
2 63.144.65.170 (63.144.65.170) 10.981 ms 3.374 ms 3.249 ms
3 chcg01-edge18.il.inet.qwest.net (65.113.85.229) 37.8 10 ms 37.505 ms 20.795 ms
4 chcg01-core03.il.inet.qwest.net (205.171.20.21) 36.9 87 ms 32.320 ms 22.430 ms
5 chcg01-brdr03.il.inet.qwest.net (205.171.20.142) 33. 155 ms 32.859 ms 33.462 ms
6 205.171.1.162 (205.171.1.162) 39.265 ms 20.482 ms 26.084 ms
7 sl-bb24-chi-13-0.sprintlink.net (144.232.26.85) 26.6 81 ms 24.000 ms 28.975 ms
8 sl-bb21-sea-10-0.sprintlink.net (144.232.20.30) 65.3 29 ms 69.694 ms 76.704 ms
9 sl-bb21-tac-9-1.sprintlink.net (144.232.9.221) 65.65 9 ms 66.797 ms 74.408 ms

10 144.232.187.194 (144.232.187.194) 104.657 ms 89.958 ms 91.754 ms
11 207.46.154.1 (207.46.154.1) 89.197 ms 84.527 ms 81.629 m s
12 207.46.155.10 (207.46.155.10) 78.090 ms 91.550 ms 89.48 0 ms
13 * * *
.......

In this case, the Microsoft server cannot be found either because of multiple addresses or somewhere
along the line a system or server cannot reply to the information request. At that point, one might think to
try ping, in the Microsoft case, a ping does not reply, that isbecause somewhere on their network ICMP
is most likely disabled.

18.5.3 netstat

Another problem that can crop up on a NetBSD system is routingtable issues. These issues are not
always the systems fault. The route(8) and netstat(1) commands can show information about routes and
network connections (respectively).

The route command can be used to look at and modify routing tables while netstat can display
information about network connections and routes. First, here is some output from route show:

route show

Routing tables

Internet:
Destination Gateway Flags
default 208.44.95.1 UG
loopback 127.0.0.1 UG
localhost 127.0.0.1 UH
172.15.13.0 172.16.14.37 UG
172.16.0.0 link#2 U
172.16.14.8 0:80:d3:cc:2c:0 UH
172.16.14.10 link#2 UH
marie 0:10:83:f9:6f:2c UH
172.16.14.37 0:5:32:8f:d2:35 UH
172.16.16.15 link#2 UH
loghost 8:0:20:a7:f0:75 UH
artemus 8:0:20:a8:d:7e UH

185

Chapter 18 Tuning NetBSD

ash 0:b0:d0:de:49:df UH
208.44.95.0 link#1 U
208.44.95.1 0:4:27:3:94:20 UH
208.44.95.2 0:5:32:8f:d2:34 UH
208.44.95.25 0:c0:4f:10:79:92 UH

Internet6:
Destination Gateway Flags
default localhost UG
default localhost UG
localhost localhost UH
::127.0.0.0 localhost UG
::224.0.0.0 localhost UG
::255.0.0.0 localhost UG
::ffff:0.0.0.0 localhost UG
2002:: localhost UG
2002:7f00:: localhost UG
2002:e000:: localhost UG
2002:ff00:: localhost UG
fe80:: localhost UG
fe80::%ex0 link#1 U
fe80::%ex1 link#2 U
fe80::%lo0 fe80::1%lo0 U
fec0:: localhost UG
ff01:: localhost U
ff02::%ex0 link#1 U
ff02::%ex1 link#2 U
ff02::%lo0 fe80::1%lo0 U

The flags section shows the status and whether or not it is a gateway. In this case we see U, H and G (U is
up, H is host and G is gateway, see the man page for additional flags).

Now for some netstat output using the -r (routing) and -n (show network numbers) options:

Routing tables

Internet:
Destination Gateway Flags Refs Use Mtu Interface
default 208.44.95.1 UGS 0 330309 1500 ex0
127 127.0.0.1 UGRS 0 0 33228 lo0
127.0.0.1 127.0.0.1 UH 1 1624 33228 lo0
172.15.13/24 172.16.14.37 UGS 0 0 1500 ex1
172.16 link#2 UC 13 0 1500 ex1
...
Internet6:
Destination Gateway Flags Refs Use

Mtu Interface
::/104 ::1 UGRS 0 0
33228 lo0 =>
::/96 ::1 UGRS 0 0

The above output is a little more verbose. So, how can this help? Well, a good example is when routes
between networks get changed while users are connected. I saw this happen several times when someone

186

Chapter 18 Tuning NetBSD

was rebooting routers all day long after each change. Several users called up saying they were getting
kicked out and it was taking very long to log back in. As it turned out, the clients connecting to the
system were redirected to another router (which took a very long route) to reconnect. I observed the M
flag or Modified dynamically (by redirect) on their connections. I deleted the routes, had them reconnect
and summarily followed up with the offending technician.

18.5.4 tcpdump

Last, and definitely not least is tcpdump(8), the network sniffer that can retrieve a lot of information. In
this discussion, there will be some sample output and an explanation of some of the more useful options
of tcpdump.

Following is a small snippet of tcpdump in action just as it starts:

tcpdump

tcpdump: listening on ex0
14:07:29.920651 mail.ssh > 208.44.95.231.3551: P 2951836 801:2951836845(44) ack 2
476972923 win 17520 <nop,nop,timestamp 1219259 128519450 > [tos 0x10]
14:07:29.950594 12.125.61.34 > 208.44.95.16: ESP(spi=25 48773187,seq=0x3e8c) (DF)
14:07:29.983117 smtp.somecorp.com.smtp > 208.44.95.30. 42828: . ack 420285166 win
16500 (DF)
14:07:29.984406 208.44.95.30.42828 > smtp.somecorp.com .smtp: . 1:1376(1375) ack 0

win 7431 (DF)
...

Given that the particular server is a mail server, what is shown makes perfect sense, however, the utility
is very verbose, I prefer to initially run tcpdump with no options and send the text output into a file for
later digestion like so:

tcpdump > tcpdump.out

tcpdump: listening on ex0

So, what precisely in the mish mosh are we looking for? In short, anything that does not seem to fit, for
example, messed up packet lengths (as in a lot of them) will show up as improper lens or malformed
packets (basically garbage). If, however, we are looking for something specific, tcpdump may be able to
help depending on the problem.

18.5.4.1 Specific tcpdump Usage

These are just examples of a few things one can do with tcpdump.

Look for duplicate IP addresses:

tcpdump -e host ip-address

For example:

tcpdump -e host 192.168.0.2

Routing Problems:

tcpdump icmp

187

Chapter 18 Tuning NetBSD

There are plenty of third party tools available, however, NetBSD comes shipped with a good tool set for
tracking down network level performance problems.

18.6 Accounting
The NetBSD system comes equipped with a great deal of performance monitors for active monitoring,
but what about long term monitoring? Well, of course the output of a variety of commands can be sent to
files and re-parsed later with a meaningful shell script or program. NetBSD does, by default, offer some
extraordinarily powerful low level monitoring tools for the programmer, administrator or really astute
hobbyist.

18.6.1 Accounting

While accounting gives system usage at an almost userland level, kernel profiling with gprof provides
explicit system call usage.

Using the accounting tools can help figure out what possible performance problems may be laying in
wait, such as increased usage of compilers or network services for example.

Starting accounting is actually fairly simple, as root, usethe accton(8) command. The syntax to start
accounting is:accton filename

Where accounting information is appended to filename, now, strangely enough, the lastcomm command
which reads from an accounting output file, by default, looksin /var/account/acct so I tend to just
use the default location, however, lastcomm can be told to look elsewhere.

To stop accounting, simply type accton with no arguments.

18.6.2 Reading Accounting Information

To read accounting information, there are two tools that canbe used:

• lastcomm(1)

• sa(8)

18.6.2.1 lastcomm

The lastcomm command shows the last commands executed in order, like all of them. It can, however,
select by user, here is some sample output:

$ lastcomm jrf

last - jrf ttyp3 0.00 secs Tue Sep 3 14:39 (0:00:00.02)
man - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:01:49.03)
sh - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:01:49.03)
less - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:01:49.03)
lastcomm - jrf ttyp3 0.02 secs Tue Sep 3 14:38 (0:00:00.02)
stty - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:00:00.02)
tset - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:00:01.05)

188

Chapter 18 Tuning NetBSD

hostname - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:00:00.02)
ls - jrf ttyp0 0.00 secs Tue Sep 3 14:36 (0:00:00.00)
...

Pretty nice, the lastcomm command gets its information fromthe default location of /var/account/acct,
however, using the -f option, another file may be specified.

As may seem obvious, the output of lastcomm could get a littleheavy on large multi user systems. That
is where sa comes into play.

18.6.2.2 sa

The sa command (meaning "print system accounting statistics") can be used to maintain information. It
can also be used interactively to create reports. Followingis the default output of sa:

$ sa

77 18.62re 0.02cp 8avio 0k
3 4.27re 0.01cp 45avio 0k ispell
2 0.68re 0.00cp 33avio 0k mutt
2 1.09re 0.00cp 23avio 0k vi

10 0.61re 0.00cp 7avio 0k *** other
2 0.01re 0.00cp 29avio 0k exim
4 0.00re 0.00cp 8avio 0k lastcomm
2 0.00re 0.00cp 3avio 0k atrun
3 0.03re 0.00cp 1avio 0k cron *
5 0.02re 0.00cp 10avio 0k exim *

10 3.98re 0.00cp 2avio 0k less
11 0.00re 0.00cp 0avio 0k ls

9 3.95re 0.00cp 12avio 0k man
2 0.00re 0.00cp 4avio 0k sa

12 3.97re 0.00cp 1avio 0k sh
...

From left to right, total times called, real time in minutes,sum of user and system time, in minutes,
Average number of I/O operations per execution, size, command name.

The sa command can also be used to create summary files or reports based on some options, for example,
here is the output when specifying a sort by CPU-time averagememory usage:

$ sa -k

86 30.81re 0.02cp 8avio 0k
10 0.61re 0.00cp 7avio 0k *** other

2 0.00re 0.00cp 3avio 0k atrun
3 0.03re 0.00cp 1avio 0k cron *
2 0.01re 0.00cp 29avio 0k exim
5 0.02re 0.00cp 10avio 0k exim *
3 4.27re 0.01cp 45avio 0k ispell
4 0.00re 0.00cp 8avio 0k lastcomm

12 8.04re 0.00cp 2avio 0k less
13 0.00re 0.00cp 0avio 0k ls
11 8.01re 0.00cp 12avio 0k man

2 0.68re 0.00cp 33avio 0k mutt
3 0.00re 0.00cp 4avio 0k sa

189

Chapter 18 Tuning NetBSD

14 8.03re 0.00cp 1avio 0k sh
2 1.09re 0.00cp 23avio 0k vi

The sa command is very helpful on larger systems.

18.6.3 How to Put Accounting to Use

Accounting reports, as was mentioned earlier, offer a way tohelp predict trends, for example, on a
system that has cc and make being used more and more may indicate that in a few months some changes
will need to be made to keep the system running at an optimum level. Another good example is web
server usage. If it begins to gradually increase, again, some sort of action may need to be taken before it
becomes a problem. Luckily, with accounting tools, said actions can be reasonably predicted and planned
for ahead of time.

18.7 Kernel Profiling
Profiling a kernel is normally employed when the goal is to compare the difference of new changes in the
kernel to a previous one or to track down some sort of low levelperformance problem. Two sets of data
about profiled code behavior are recorded independently: function call frequency and time spent in each
function.

18.7.1 Getting Started

First, take a look at bothSection 18.9andChapter 31. The only difference in procedure for setting up a
kernel with profiling enabled is when you run config add the -p option. The build area is
../compile/<KERNEL_NAME>.PROF , for example, a GENERIC kernel would be
../compile/GENERIC.PROF .

Following is a quick summary of how to compile a kernel with profiling enabled on the i386 port, the
assumptions are that the appropriate sources are availableunder/usr/src and the GENERIC
configuration is being used, of course, that may not always bethe situation:

1.cd /usr/src/sys/arch/i386/conf

2.config -p GENERIC

3.cd ../compile/GENERIC.PROF

4.make depend && make

5.cp /netbsd /netbsd.old

6.cp netbsd /

7.reboot

Once the new kernel is in place and the system has rebooted, itis time to turn on the monitoring and start
looking at results.

190

Chapter 18 Tuning NetBSD

18.7.1.1 Using kgmon

To start kgmon:

$ kgmon -b

kgmon: kernel profiling is running.

Next, send the data into the filegmon.out :

$ kgmon -p

Now, it is time to make the output readable:

$ gprof /netbsd > gprof.out

Since gmon is looking forgmon.out , it should find it in the current working directory.

By just running kgmon alone, you may not get the information you need, however, if you are comparing
the differences between two different kernels, then a knowngood baseline should be used. Note that it is
generally a good idea to stress the subsystem if you know whatit is both in the baseline and with the
newer (or different) kernel.

18.7.2 Interpretation of kgmon Output

Now that kgmon can run, collect and parse information, it is time to actually look at some of that
information. In this particular instance, a GENERIC kernelis running with profiling enabled for about an
hour with only system processes and no adverse load, in the fault insertion section, the example will be
large enough that even under a minimal load detection of the problem should be easy.

18.7.2.1 Flat Profile

The flat profile is a list of functions, the number of times theywere called and how long it took (in
seconds). Following is sample output from the quiet system:

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ns/call ns/call name
99.77 163.87 163.87 idle

0.03 163.92 0.05 219 228310.50 228354.34 _wdc_ata_bio_sta rt
0.02 163.96 0.04 219 182648.40 391184.96 wdc_ata_bio_intr
0.01 163.98 0.02 3412 5861.66 6463.02 pmap_enter
0.01 164.00 0.02 548 36496.35 36496.35 pmap_zero_page
0.01 164.02 0.02 Xspllower
0.01 164.03 0.01 481968 20.75 20.75 gettick
0.01 164.04 0.01 6695 1493.65 1493.65 VOP_LOCK
0.01 164.05 0.01 3251 3075.98 21013.45 syscall_plain

...

As expected, idle was the highest in percentage, however, there were still some things going on, for
example, a little further down there is thevn_lockfunction:

191

Chapter 18 Tuning NetBSD

...
0.00 164.14 0.00 6711 0.00 0.00 VOP_UNLOCK
0.00 164.14 0.00 6677 0.00 1493.65 vn_lock
0.00 164.14 0.00 6441 0.00 0.00 genfs_unlock

This is to be expected, since locking still has to take place,regardless.

18.7.2.2 Call Graph Profile

The call graph is an augmented version of the flat profile showing subsequent calls from the listed
functions. First, here is some sample output:

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.01% of 16 4.14 seconds

index % time self children called name
<spontaneous>

[1] 99.8 163.87 0.00 idle [1]

<spontaneous>
[2] 0.1 0.01 0.08 syscall1 [2]

0.01 0.06 3251/3251 syscall_plain [7]
0.00 0.01 414/1660 trap [9]

0.00 0.09 219/219 Xintr14 [6]

[3] 0.1 0.00 0.09 219 pciide_compat_intr [3]
0.00 0.09 219/219 wdcintr [5]

...

Now this can be a little confusing. The index number is mappedto from the trailing number on the end of
the line, for example,

...
0.00 0.01 85/85 dofilewrite [68]

[72] 0.0 0.00 0.01 85 soo_write [72]
0.00 0.01 85/89 sosend [71]

...

Here we see that dofilewrite was called first, now we can look atthe index number for 64 and see what
was happening there:

...
0.00 0.01 101/103 ffs_full_fsync <cycle 6> [58]

[64] 0.0 0.00 0.01 103 bawrite [64]
0.00 0.01 103/105 VOP_BWRITE [60]

...

And so on, in this way, a "visual trace" can be established.

192

Chapter 18 Tuning NetBSD

At the end of the call graph right after the terms section is anindex by function name which can help
map indexes as well.

18.7.3 Putting it to Use

In this example, I have modified an area of the kernel I know will create a problem that will be blatantly
obvious.

Here is the top portion of the flat profile after running the system for about an hour with little interaction
from users:

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
93.97 139.13 139.13 idle

5.87 147.82 8.69 23 377826.09 377842.52 check_exec
0.01 147.84 0.02 243 82.30 82.30 pmap_copy_page
0.01 147.86 0.02 131 152.67 152.67 _wdc_ata_bio_start
0.01 147.88 0.02 131 152.67 271.85 wdc_ata_bio_intr
0.01 147.89 0.01 4428 2.26 2.66 uvn_findpage
0.01 147.90 0.01 4145 2.41 2.41 uvm_pageactivate
0.01 147.91 0.01 2473 4.04 3532.40 syscall_plain
0.01 147.92 0.01 1717 5.82 5.82 i486_copyout
0.01 147.93 0.01 1430 6.99 56.52 uvm_fault
0.01 147.94 0.01 1309 7.64 7.64 pool_get
0.01 147.95 0.01 673 14.86 38.43 genfs_getpages
0.01 147.96 0.01 498 20.08 20.08 pmap_zero_page
0.01 147.97 0.01 219 45.66 46.28 uvm_unmap_remove
0.01 147.98 0.01 111 90.09 90.09 selscan

...

As is obvious, there is a large difference in performance. Right off the bat the idle time is noticeably less.
The main difference here is that one particular function hasa large time across the board with very few
calls. That function ischeck_exec. While at first, this may not seem strange if a lot of commands had
been executed, when compared to the flat profile of the first measurement, proportionally it does not
seem right:

...
0.00 164.14 0.00 37 0.00 62747.49 check_exec

...

The call in the first measurement is made 37 times and has a better performance. Obviously something in
or around that function is wrong. To eliminate other functions, a look at the call graph can help, here is
the first instance ofcheck_exec

...

0.00 8.69 23/23 syscall_plain [3]
[4] 5.9 0.00 8.69 23 sys_execve [4]

193

Chapter 18 Tuning NetBSD

8.69 0.00 23/23 check_exec [5]
0.00 0.00 20/20 elf32_copyargs [67]

...

Notice how the time of 8.69 seems to affect the two previous functions. It is possible that there is
something wrong with them, however, the next instance ofcheck_execseems to prove otherwise:

...

8.69 0.00 23/23 sys_execve [4]
[5] 5.9 8.69 0.00 23 check_exec [5]
...

Now we can see that the problem, most likely, resides incheck_exec. Of course, problems are not always
this simple and in fact, here is the simpleton code that was inserted right aftercheck_exec(the function is
in sys/kern/kern_exec.c):

...
/ * A Cheap fault insertion * /
for (x = 0; x < 100000000; x++) {

y = x;
}

..

Not exactly glamorous, but enough to register a large changewith profiling.

18.7.4 Summary

Kernel profiling can be enlightening for anyone and providesa much more refined method of hunting
down performance problems that are not as easy to find using conventional means, it is also not nearly as
hard as most people think, if you can compile a kernel, you canget profiling to work.

18.8 System Tuning
Now that monitoring and analysis tools have been addressed,it is time to look into some actual methods.
In this section, tools and methods that can affect how the system performs that are applied without
recompiling the kernel are addressed, the next section examines kernel tuning by recompiling.

18.8.1 Using sysctl

The sysctl utility can be used to look at and in some cases alter system parameters. There are so many
parameters that can be viewed and changed they cannot all be shown here, however, for the first example
here is a simple usage of sysctl to look at the system PATH environment variable:

$ sysctl user.cs_path

user.cs_path = /usr/bin:/bin:/usr/sbin:/sbin:/usr/pkg /bin:/usr/pkg/sbin:/usr/local/bin:/usr/lo

194

Chapter 18 Tuning NetBSD

Fairly simple. Now something that is actually related to performance. As an example, lets say a system
with many users is having file open issues, by examining and perhaps raising the kern.maxfiles parameter
the problem may be fixed, but first, a look:

$ sysctl kern.maxfiles

kern.maxfiles = 1772

Now, to change it, as root with the -w option specified:

sysctl -w kern.maxfiles=1972

kern.maxfiles: 1772 -> 1972

Note, when the system is rebooted, the old value will return,there are two cures for this, first, modify
that parameter in the kernel and recompile, second (and simpler) add this line to/etc/sysctl.conf :

kern.maxfiles=1972

18.8.2 memfs & softdeps

An operating system can often benefit from a few configurationchanges (along the same lines, it can also
be of great detriment). Two particular cases where system performance can be changed are by using
memory based filesystems and/or soft updates.

18.8.2.1 Using memfs

When to use and not to use the memory based filesystem can be hard on large multi user systems. In
some cases, however, it makes pretty good sense, for example, on a development machine used by only
one developer at a time, the obj directory might be a good place, or some of the tmp directories for
builds. In a case like that, it makes sense on machines that have a fair amount of RAM on them. On the
other side of the coin, if a system only has 16MB of RAM and/var/tmp is memfs based, there could be
severe applications issues that occur.

The GENERIC kernel has memfs enabled by default. To use it on aparticular directory first determine
where the swap space is that you wish to use, in the example case, a quick look in/etc/fstab indicates
that /dev/wd0b is the swap partition:

mail% cat /etc/fstab
/dev/wd0a / ffs rw 1 1
/dev/wd0b none swap sw 0 0
/kern /kern kernfs rw

This system is a mail server so I only want to use/tmp with memfs, also on this particular system I have
linked /tmp to /var/tmp to save space (they are on the same drive). All I need to do is add the
following entry:

/dev/wd0b /var/tmp mfs rw 0 0

Now, a word of warning, make sure said directories are empty and nothing is using them when you
mount the memory file system! At this point I can eithermount -a or reboot the system.

195

Chapter 18 Tuning NetBSD

18.8.2.2 Using softdeps

Soft-dependencies is a mechanism that does not write meta-data to disk immediately, but it is written in
an ordered fashion, which keeps the filesystem consistent.

Soft-dependencies can be enabled by adding softdep to the filesystem options in/etc/fstab . Let’s
look at an example of/etc/fstab :

/dev/wd0a / ffs rw 1 1
/dev/wd0b none swap sw 0 0
/dev/wd0e /var ffs rw 1 2
/dev/wd0f /tmp ffs rw 1 2
/dev/wd0g /usr ffs rw 1 2

Suppose we want to enable soft-dependencies for all file systems, except for the / partition. We would
change it to (changes are emphasized):

/dev/wd0a / ffs rw 1 1
/dev/wd0b none swap sw 0 0
/dev/wd0e /var ffs rw, softdep 1 2
/dev/wd0f /tmp ffs rw, softdep 1 2
/dev/wd0g /usr ffs rw, softdep 1 2

More information about softdep capabilities can be found onthe author’s page
(http://www.mckusick.com/softdep/index.html).

18.8.3 LFS

LFS writes data to disk in a way that is sometimes too aggressive and leads to congestion. Information
on how to throttle writing and finding the right parameters are available this
(http://mail-index.NetBSD.org/tech-perform/2007/04/01/0000.html) and this
(http://mail-index.NetBSD.org/tech-perform/2007/04/01/0001.html) mail.

18.9 Kernel Tuning
While many system parameters can be changed with sysctl, many improvements by using enhanced
system software, layout of the system and managing services(moving them in and out of inetd for
example) can be achieved as well. Tuning the kernel however will provide better performance, even if it
appears to be marginal.

18.9.1 Preparing to Recompile a Kernel

First, get the kernel sources for the release as described inChapter 29, readingChapter 31for more
information on building the kernel is recommended. Note, this document can be used for -current tuning,
however, a read of the Tracking -current (http://www.NetBSD.org/docs/current/) documentation should
be done first, much of the information there is repeated here.

196

Chapter 18 Tuning NetBSD

18.9.2 Configuring the Kernel

Configuring a kernel in NetBSD can be daunting. This is because of multiple line dependencies within
the configuration file itself, however, there is a benefit to this method and that is, all it really takes is an
ASCII editor to get a new kernel configured and some dmesg output. The kernel configuration file is
undersrc/sys/arch/ARCH/conf where ARCH is your architecture (for example, on a SPARC it
would be undersrc/sys/arch/sparc/conf).

After you have located your kernel config file, copy it and remove (comment out) all the entries you
don’t need. This is where dmesg(8) becomes your friend. A clean dmesg(8)-output will show all of the
devices detected by the kernel at boot time. Using dmesg(8) output, the device options really needed can
be determined. For some automation, check the "adjustkernel" package.

18.9.2.1 Some example Configuration Items

In this example, an ftp server’s kernel is being reconfiguredto run with the bare minimum drivers and
options and any other items that might make it run faster (again, not necessarily smaller, although it will
be). The first thing to do is take a look at some of the main configuration items. So, in
/usr/src/sys/arch/i386/conf the GENERIC file is copied to FTP, then the file FTP edited.

At the start of the file there are a bunch of options beginning with maxusers, which will be left alone,
however, on larger multi-user systems it might be help to crank that value up a bit. Next is CPU support,
looking at the dmesg output this is seen:

cpu0: Intel Pentium II/Celeron (Deschutes) (686-class), 4 00.93 MHz

Indicating that only the options I686_CPU options needs to be used. In the next section, all options are
left alone except the PIC_DELAY which is recommended unlessit is an older machine. In this case it is
enabled since the 686 is “relatively new.”

Between the last section all the way down to compat options there really was no need to change anything
on this particular system. In the compat section, however, there are several options that do not need to be
enabled, again this is because this machine is strictly a FTPserver, all compat options were turned off.

The next section is File systems, and again, for this server very few need to be on, the following were left
on:

File systems
file-system FFS # UFS
file-system LFS # log-structured file system
file-system MFS # memory file system
file-system CD9660 # ISO 9660 + Rock Ridge file system
file-system FDESC # /dev/fd
file-system KERNFS # /kern
file-system NULLFS # loopback file system
file-system PROCFS # /proc
file-system UMAPFS # NULLFS + uid and gid remapping
...
options SOFTDEP # FFS soft updates support.
...

Next comes the network options section. The only options left on were:

options INET # IP + ICMP + TCP + UDP

197

Chapter 18 Tuning NetBSD

options INET6 # IPV6
options IPFILTER_LOG # ipmon(8) log support

IPFILTER_LOG is a nice one to have around since the server will be running ipf.

The next section is verbose messages for various subsystems, since this machine is already running and
had no major problems, all of them are commented out.

18.9.2.2 Some Drivers

The configurable items in the config file are relatively few andeasy to cover, however, device drivers are
a different story. In the following examples, two drivers are examined and their associated “areas” in the
file trimmed down. First, a small example: the cdrom, in dmesg, is the following lines:

...
cd0 at atapibus0 drive 0: <CD-540E, , 1.0A> type 5 cdrom remov able
cd0: 32-bit data port
cd0: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 2
pciide0: secondary channel interrupting at irq 15
cd0(pciide0:1:0): using PIO mode 4, Ultra-DMA mode 2 (using DMA data transfer
...

Now, it is time to track that section down in the configurationfile. Notice that the "cd"-drive is on an
atapibus and requires pciide support. The section that is ofinterest in this case is the kernel config’s "IDE
and related devices" section. It is worth noting at this point, in and around the IDE section are also ISA,
PCMCIA etc., on this machine in the dmesg(8) output there areno PCMCIA devices, so it stands to
reason that all PCMCIA references can be removed. But first, the "cd" drive.

At the start of the IDE section is the following:

...
wd* at atabus? drive ? flags 0x0000
...
atapibus * at atapi?
...

Well, it is pretty obvious that those lines need to be kept. Next is this:

...
ATAPI devices
flags have the same meaning as for IDE drives.
cd * at atapibus? drive ? flags 0x0000 # ATAPI CD-ROM drives
sd * at atapibus? drive ? flags 0x0000 # ATAPI disk drives
st * at atapibus? drive ? flags 0x0000 # ATAPI tape drives
uk * at atapibus? drive ? flags 0x0000 # ATAPI unknown
...

The only device type that was in the dmesg(8) output was the cd, the rest can be commented out.

The next example is slightly more difficult, network interfaces. This machine has two of them:

...
ex0 at pci0 dev 17 function 0: 3Com 3c905B-TX 10/100 Ethernet (rev. 0x64)
ex0: interrupting at irq 10

198

Chapter 18 Tuning NetBSD

ex0: MAC address 00:50:04:83:ff:b7
UI 0x001018 model 0x0012 rev 0 at ex0 phy 24 not configured
ex1 at pci0 dev 19 function 0: 3Com 3c905B-TX 10/100 Ethernet (rev. 0x30)
ex1: interrupting at irq 11
ex1: MAC address 00:50:da:63:91:2e
exphy0 at ex1 phy 24: 3Com internal media interface
exphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto
...

At first glance it may appear that there are in fact three devices, however, a closer look at this line:

exphy0 at ex1 phy 24: 3Com internal media interface

Reveals that it is only two physical cards, not unlike the cdrom, simply removing names that are not in
dmesg will do the job. In the beginning of the network interfaces section is:

...
Network Interfaces

PCI network interfaces
an* at pci? dev ? function ? # Aironet PC4500/PC4800 (802.11)
bge* at pci? dev ? function ? # Broadcom 570x gigabit Ethernet
en* at pci? dev ? function ? # ENI/Adaptec ATM
ep* at pci? dev ? function ? # 3Com 3c59x
epic * at pci? dev ? function ? # SMC EPIC/100 Ethernet
esh * at pci? dev ? function ? # Essential HIPPI card
ex * at pci? dev ? function ? # 3Com 90x[BC]
...

There is the ex device. So all of the rest under the PCI sectioncan be removed. Additionally, every single
line all the way down to this one:

exphy * at mii? phy ? # 3Com internal PHYs

can be commented out as well as the remaining.

18.9.2.3 Multi Pass

When I tune a kernel, I like to do it remotely in an X windows session, in one window the dmesg output,
in the other the config file. It can sometimes take a few passes to rebuild a very trimmed kernel since it is
easy to accidentally remove dependencies.

18.9.3 Building the New Kernel

Now it is time to build the kernel and put it in place. In the conf directory on the ftp server, the following
command prepares the build:

$ config FTP

When it is done a message reminding me to make depend will display, next:

199

Chapter 18 Tuning NetBSD

$ cd ../compile/FTP

$ make depend && make

When it is done, I backup the old kernel and drop the new one in place:

cp /netbsd /netbsd.orig

cp netbsd /

Now reboot. If the kernel cannot boot, stop the boot process when prompted and typeboot
netbsd.orig to boot from the previous kernel.

18.9.4 Shrinking the NetBSD kernel

When building a kernel for embedded systems, it’s often necessary to modify the Kernel binary to reduce
space or memory footprint.

18.9.4.1 Removing ELF sections and debug information

We already know how to remove Kernel support for drivers and options that you don’t need, thus saving
memory and space, but you can save some KiloBytes of space by removing debugging symbols and two
ELF sections if you don’t need them:.comment and.ident . They are used for storing RCS strings
viewable with ident(1) and a gcc(1) version string. The following examples assume you have your
TOOLDIRunder/usr/src/tooldir.NetBSD-2.0-i386 and the target architecture isi386 .

$ /usr/src/tooldir.NetBSD-2.0-i386/bin/i386--netbsdelf-objdump -h /netbsd

/netbsd: file format elf32-i386

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 0057a374 c0100000 c0100000 00001000 2 ** 4
CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .rodata 00131433 c067a380 c067a380 0057b380 2 ** 5
CONTENTS, ALLOC, LOAD, READONLY, DATA

2 .rodata.str1.1 00035ea0 c07ab7b3 c07ab7b3 006ac7b3 2 ** 0
CONTENTS, ALLOC, LOAD, READONLY, DATA

3 .rodata.str1.32 00059d13 c07e1660 c07e1660 006e2660 2 ** 5
CONTENTS, ALLOC, LOAD, READONLY, DATA

4 link_set_malloc_types 00000198 c083b374 c083b374 0073c 374 2 ** 2
CONTENTS, ALLOC, LOAD, READONLY, DATA

5 link_set_domains 00000024 c083b50c c083b50c 0073c50c 2 ** 2
CONTENTS, ALLOC, LOAD, READONLY, DATA

6 link_set_pools 00000158 c083b530 c083b530 0073c530 2 ** 2
CONTENTS, ALLOC, LOAD, READONLY, DATA

7 link_set_sysctl_funcs 000000f0 c083b688 c083b688 0073c 688 2 ** 2
CONTENTS, ALLOC, LOAD, READONLY, DATA

8 link_set_vfsops 00000044 c083b778 c083b778 0073c778 2 ** 2
CONTENTS, ALLOC, LOAD, READONLY, DATA

9 link_set_dkwedge_methods 00000004 c083b7bc c083b7bc 00 73c7bc 2 ** 2
CONTENTS, ALLOC, LOAD, READONLY, DATA

10 link_set_bufq_strats 0000000c c083b7c0 c083b7c0 0073c 7c0 2 ** 2

200

Chapter 18 Tuning NetBSD

CONTENTS, ALLOC, LOAD, READONLY, DATA
11 link_set_evcnts 00000030 c083b7cc c083b7cc 0073c7cc 2 ** 2

CONTENTS, ALLOC, LOAD, READONLY, DATA
12 .data 00048ae4 c083c800 c083c800 0073c800 2 ** 5

CONTENTS, ALLOC, LOAD, DATA
13 .bss 00058974 c0885300 c0885300 00785300 2 ** 5

ALLOC
14 .comment 0000cda0 00000000 00000000 00785300 2 ** 0

CONTENTS, READONLY
15 .ident 000119e4 00000000 00000000 007920a0 2 ** 0

CONTENTS, READONLY

On the third column we can see the size of the sections in hexadecimal form. By summing.comment

and.ident sizes we know how much we’re going to save with their removal:around 120KB (= 52640
+ 72164 = 0xcda0 + 0x119e4). To remove the sections and debugging symbols that may be present,
we’re going to use strip(1):

cp /netbsd /netbsd.orig

/usr/src/tooldir.NetBSD-2.0-i386/bin/i386--netbsdelf-strip -S -R .ident -R .comment /netbsd

ls -l /netbsd /netbsd.orig

-rwxr-xr-x 1 root wheel 8590668 Apr 30 15:56 netbsd
-rwxr-xr-x 1 root wheel 8757547 Apr 30 15:56 netbsd.orig

Since we also removed debugging symbols, the total amount ofdisk space saved is around 160KB.

18.9.4.2 Compressing the Kernel

On some architectures, the bootloader can boot a compressedkernel. You can save several MegaBytes of
disk space by using this method, but the bootloader will takelonger to load the Kernel.

cp /netbsd /netbsd.plain

gzip -9 /netbsd

To see how much space we’ve saved:

$ ls -l /netbsd.plain /netbsd.gz

-rwxr-xr-x 1 root wheel 8757547 Apr 29 18:05 /netbsd.plain
-rwxr-xr-x 1 root wheel 3987769 Apr 29 18:05 /netbsd.gz

Note that you can only use gzip coding, by using gzip(1), bzip2 is not supported by the NetBSD
bootloaders!

201

Chapter 19

NetBSD Veriexec subsystem

Veriexec is NetBSD’s file integrity subsystem. It’s kernel based, hence can provide some protection even
in the case of a root compromise. This chapter applies only toNetBSD 3.0 and onwards.

19.1 How it works
Veriexec works by loading a specification file, also called thesignatures file, to the kernel. This file
contains information about files Veriexec should monitor, as well as their digital fingerprint (along with
the hashing algorithm used to produce this fingerprint), andvarious flags that will be discussed later.

At the moment, the following hashing algorithms are supported by Veriexec:MD5, SHA1, SHA256,
SHA384, SHA512, andRMD160.

19.2 Signatures file
An entry in the Veriexec signatures file looks like this:

/path/to/file algorithm fingerprint flags

Where the first element, the path, must always be an absolute path. The algorithm is one of the
algorithms listed above, and fingerprint is the ASCII fingerprint.

19.3 Generating fingerprints
You can generate ASCII fingerprints for each algorithm usingthe following tools:

Table 19-1. Veriexec fingerprints tools

Algorithm Tool

MD5 /usr/bin/cksum -a md5

SHA1 /usr/bin/cksum -a sha1

SHA256 /usr/bin/cksum -a sha256

SHA384 /usr/bin/cksum -a sha384

SHA512 /usr/bin/cksum -a sha512

RMD160 /usr/bin/cksum -a rmd160

For example, to generate a MD5 fingerprint for/bin/ls :

202

Chapter 19 NetBSD Veriexec subsystem

% cksum -a md5 < /bin/ls

a8b525da46e758778564308ed9b1e493

And to generate a SHA512 fingerprint for/bin/ps :

% cksum -a sha512 < /bin/ps

381d4ad64fd47800897446a2026eca42151e03adeae158db5a3 4d12c529559113d928a9fef9a7c4615d257688d1da

Each entry may be associated with zero or more flags. Currently, these flags indicate how the file the
entry is describing should be accessed. Note that this access type is enforced only in strict level 2 (IPS
mode) and above.

The access types you can use are “DIRECT”, “INDIRECT”, and “FILE”.

• DIRECT access means that the file is executed directly, and not invoked as an interpreter for some
script, or opened with an editor. Usually, most programs youuse will be accessed using this mode:

% ls /tmp

% cp ~/foo /tmp/bar

% rm ~/foo

• INDIRECT access means that the file is executed indirectly, and is invoked to interpret a script. This
happens usually when scripts have a #! magic as their first line. For example, if you have a script with
the following as its first line:

#!/bin/sh

And you run it as:

% ./script.sh

Then/bin/sh will be executed indirectly -- it will be invoked to interpret the script.

• FILE entries refer to everything which is not (or should not) be anexecutable. This includes shared
libraries, configuration files, etc.

Some examples for Veriexec signature file entries:

/bin/ls MD5 dc2e14dc84bdefff4bf9777958c1b20b DIRECT
/usr/bin/perl MD5 914aa8aa47ebd79ccd7909a09ed61f81 IND IRECT
/etc/pf.conf MD5 950e1dd6fcb3f27df1bf6accf7029f7d FILE

Veriexec allows you to specify more than one way to access a file in an entry. For example, even though
/usr/bin/perl is mostly used as an interpreter, it may be desired to be able to execute it directly, too:

/usr/bin/perl MD5 914aa8aa47ebd79ccd7909a09ed61f81 DIR ECT, INDIRECT

Shell scripts using #! magic to be “executable” also requiretwo access types: We need them to be
“DIRECT” so we can execute them, and we need them to be “FILE” so that the kernel can feed their
contents to the interpreter they define:

/usr/src/build.sh MD5 e80dbb4c047ecc1d84053174c1e9264 a DIRECT, FILE

To make it easier to create signature files, and to make the signature files themselves more readable,
Veriexec allows you to use the following aliases:

203

Chapter 19 NetBSD Veriexec subsystem

Table 19-2. Veriexec access type aliases

Alias Expansion

PROGRAM DIRECT

INTERPRETER INDIRECT

SCRIPT DIRECT, FILE

LIBRARY FILE

Sample scripts for generating fingerprints are available in/usr/share/examples/veriexecctl .
After you’ve generated a signatures file, you should save it as /etc/signatures , and enable Veriexec
in rc.conf :

veriexec=YES

19.4 Strict levels
Since different people might want to use Veriexec for different purposes, we also define four strict levels,
ranging 0-3, and named “learning”, “IDS”, “IPS”, and “lockdown” modes.

In strict level 0, learning mode, Veriexec will act passively and simply warnabout any anomalies.
Combined with verbose level 1, running the system in this mode can help you fine-tune the signatures
file. This is also the only strict level in which you can load new entries to the kernel.

Strict level 1, or IDS mode, will deny access to files with a fingerprint mismatch. This mode suits mostly
to users who simply want to prevent access to files which might’ve been maliciously modified by an
attacker.

Strict level 2, IPS mode, takes a step towards trying to protect the integrity of monitored files. In
addition to preventing access to files with a fingerprint mismatch, it will also deny write access and
prevent the removal of monitored files, and enforce the way monitored files are accessed. (as the
signatures file specifies).

Lockdown mode (strict level 3) can be used in highly critical situations such as custom made
special-purpose machines, or as a last line of defense afteran attacker compromised the system and we
want to prevent traces from being removed, so we can perform post-mortem analysis. It will prevent the
creation of new files, and deny access to files not monitored byVeriexec.

It’s recommended to first run Veriexec in strict level 0 and verbose level 1 to fine-tune your signatures
file, ensuring that desired applications run correctly, andonly then raise the strict level (and lower the
verbosity level). You can use/etc/sysctl.conf to auto raise the strict level to the desired level after a
reboot:

kern.veriexec.strict=1

19.5 Veriexec and layered file systems
Veriexec can be used on NFS file systems on the client side and on layered file systems such as the union

204

Chapter 19 NetBSD Veriexec subsystem

file system. The files residing on these file systems need only be specified in the/etc/signatures file
and that the file systems be mounted prior to the fingerprints being loaded.

If you are going to use layered file systems then you must ensure that you include the fingerprint for files
you want protected at every layer. If you fail to do this someone could overwrite a file protected by
Veriexec by using a different layer in a layered file system stack. This limitation may be removed in later
versions of NetBSD.

It’s recommended that if you are not going to use layered file systems nor NFS then these features should
be disabled in they kernel configuration. If you need to use layered file systems then you must follow the
instructions in the previous paragraph and ensure that the files you want protected have fingerprints at all
layers. Also you should raise securelevel to 2 after all mounts are done:

kern.securelevel=2

To prevent new layers being mounted which could compromise Veriexec’s protection.

19.6 Kernel configuration
To use Veriexec, aside from creating a signatures file, you should enable (uncomment) it in your kernel’s
config file: (e.g./usr/src/sys/arch/i386/conf/GENERIC):

pseudo-device veriexec

Then, you need to enable the hashing algorithms you wish to support:

options VERIFIED_EXEC_FP_MD5
options VERIFIED_EXEC_FP_SHA1
options VERIFIED_EXEC_FP_RMD160
options VERIFIED_EXEC_FP_SHA512
options VERIFIED_EXEC_FP_SHA384
options VERIFIED_EXEC_FP_SHA256

Depending on your operating system version and platform, these may already be enable. Once done,
rebuild and reinstall your kernel, seeChapter 31for further instructions.

If you do not have the Veriexec device/dev/veriexec , you can create it manually by running the
following command:

cd /dev
sh MAKEDEV veriexec

205

Chapter 20

Bluetooth on NetBSD

20.1 Introduction
Bluetooth is a digital radio protocol used for short range and low power communications. NetBSD 4.0
introduced support for the Bluetooth protocol stack, and some integration of service profiles into the
NetBSD device framework.

The lower layers of the Bluetooth protocol stack pertainingto actual radio links between devices are
handled inside the Bluetooth Controller, which communicates with the Host computer using the “Host
Controller Interface” (HCI) protocol which can be accessedvia a raw packet BTPROTO_HCI socket
interface.

Most of the Bluetooth protocols or services layer atop the “Link Layer Control and Adaptation Protocol”
(L2CAP), which can be accessed via a BTPROTO_L2CAP socket interface. This provides sequential
packet connections to remote devices, with up to 64k channels. When an L2CAP channel is opened, the
protocol or service that is required is identified by a “Protocol/Service Multiplexer” (PSM) value.

Service Discovery in the Bluetooth environment is providedfor by the sdp(3) library and the sdpd(8)
daemon (both ported from FreeBSD), which allow programs to register services and makes the
information available to remote devices performing queries. Limited queries can be made with the
sdpquery(1) program.

Security on Bluetooth links can be enabled by encryption andauthentication options to btconfig(8)
which apply to all baseband links that a controller makes, orencryption and authentication can be
enabled for individual RFCOMM and L2CAP links as required. When authentication is requested, a PIN
is presented by each side (generally entered by the operator, some limited input devices have a fixed
PIN). The controller uses this PIN to generate a Link Key and reports this to the Host which may be
asked to produce it to authenticate subsequent connections. On NetBSD, the bthcid(8) daemon is
responsible for storing link keys and responding to Link KeyRequests, and also provides an interface to
allow unprivileged users to specify a PIN with a PIN client, such as btpin(1).

20.2 Supported Hardware
Because Bluetooth controllers normally use the standard HCI protocol as specified in the “Bluetooth 2.0
Core” documentation to communicate with the host, the NetBSD Bluetooth stack is compatible with
most controllers, only requiring an interface driver, withthe following drivers available in NetBSD 4.0:

• bt3c(4) provides an interface to the 3Com Bluetooth PC Card,model 3CRWB6096-A.

• ubt(4) interfaces to all USB Bluetooth controllers conforming to the “HCI USB Transport Layer”
specification.

206

Chapter 20 Bluetooth on NetBSD

If support for the NetBSD Bluetooth stack is enabled in the kernel, autoconfiguration messages will
show up in thedmesgoutput, for example:

bt3c0 at pcmcia0 function 0: <3COM, 3CRWB60-A, Bluetooth PC Card>

ubt0 at uhub1 port 4 configuration 1 interface 0
ubt0: Cambridge Silicon Radio Bluetooth USB Adapter, rev 2. 00/19.58, addr 4

ubt1 at uhub1 port 2 configuration 1 interface 0
ubt1: Broadcom Belkin Bluetooth Device, rev 1.10/0.01, add r 5

When support is not already compiled in, it can be added to thekernel configuration file for any platform
that supports USB and/or PCMCIA (seeSection 18.9), using the following declarations, as required:

Bluetooth Controller and Device support

Bluetooth PCMCIA Controllers
bt3c * at pcmcia? function ? # 3Com 3CRWB6096-A

Bluetooth USB Controllers
ubt * at uhub? port ?

Bluetooth Device Hub
bthub * at bt3c?
bthub * at ubt?

Bluetooth HID support
bthidev * at bthub?

Bluetooth Mouse
btms * at bthidev? reportid ?
wsmouse* at btms? mux 0

Bluetooth Keyboard
btkbd * at bthidev? reportid ?
wskbd * at btkbd? console ? mux 1

Bluetooth Audio support
btsco * at bthub?
audio * at btsco?

Some older USB Bluetooth dongles based on the Broadcom BCM2033 chip require firmware to be
loaded before they can function, and these devices will be attached to ugen(4). Use the “sysutils/bcmfw”
package from the NetBSD Package Collection, to load firmwareand enable these.

207

Chapter 20 Bluetooth on NetBSD

20.3 System Configuration
To fully enable Bluetooth services on NetBSD, the followinglines should be added to the
/etc/rc.conf file.

btconfig=YES

btconfig_args="up pscan switch class 0x02010c"

btdevctl=YES

bthcid=YES

sdpd=YES

and either reboot, or execute the following commands:

/etc/rc.d/btconfig start

/etc/rc.d/bthcid start

/etc/rc.d/btdevctl start

/etc/rc.d/sdpd start

Note: Configuration of Bluetooth controllers is done with the btconfig(8) program, and the above
argument provides only basic functionality, see the manual page for other useful options.

Important: bthcid(8) must be running in order to make authenticated connections with remote
devices, and authentication may be requested by either device.

20.4 Human Interface Devices
Support for “Human Interface Devices” (HIDs), which operate using the USB HID protocol over a pair
of L2CAP channels is provided by the bthidev(4) driver. Currently, keyboards and mice are catered for,
and attach to wscons(4) as normal.

20.4.1 Mice

Bluetooth Mice can be attached to the system with the btms(4)driver, using btdevctl(8).

First, you must discover the BDADDR of the device. This may beprinted on the box, but the easiest way
is to place the device into discoverable mode and perform a device inquiry with the appropriate
controller:

% btconfig ubt0 inquiry

Device Discovery on ubt0 1 response
1: bdaddr 00:14:51:c1:b9:2d (unknown)

: name "Mighty Mouse"
: class: [0x002580] Peripheral Mouse <Limited Discoverabl e>
: page scan rep mode 0x01
: page scan period mode 0x02

208

Chapter 20 Bluetooth on NetBSD

: page scan mode 0x00
: clock offset 6944

For ease of use, you may want to add the address to the/etc/bluetooth/hosts file, so that you can
refer to the mouse by alias:

echo "00:14:51:c1:b9:2d mouse" >>/etc/bluetooth/hosts

Now, you can query the mouse, which will likely request authentication before it accepts connections.
The fixed PIN should be listed in the documentation, though “0000” is often used. Set the PIN first using
the btpin(1) program:

% btpin -d ubt0 -a mouse -p 0000

btdevctl -d ubt0 -a mouse -s HID

local bdaddr: 00:08:1b:8d:ba:6d
remote bdaddr: 00:14:51:c1:b9:2d
link mode: auth
device type: bthidev
control psm: 0x0011
interrupt psm: 0x0013
Collection page=Generic_Desktop usage=Mouse

Input id=2 size=1 count=1 page=Button usage=Button_1 Vari able, logical range 0..1
Input id=2 size=1 count=1 page=Button usage=Button_2 Vari able, logical range 0..1
Input id=2 size=1 count=1 page=Button usage=Button_3 Vari able, logical range 0..1
Input id=2 size=1 count=1 page=Button usage=Button_4 Vari able, logical range 0..1
Input id=2 size=4 count=1 page=0x0000 usage=0x0000 Const V ariable, logical range 0..1

Collection page=Generic_Desktop usage=Pointer
Input id=2 size=8 count=1 page=Generic_Desktop usage=X Va riable Relative, logical range
Input id=2 size=8 count=1 page=Generic_Desktop usage=Y Va riable Relative, logical range
Input id=2 size=8 count=1 page=Consumer usage=AC_Pan Vari able Relative, logical range -127..127
Input id=2 size=8 count=1 page=Generic_Desktop usage=Whe el Variable Relative, logical range

End collection
Input id=2 size=8 count=1 page=0x00ff usage=0x00c0 Variab le, logical range -127..127

Feature id=71 size=8 count=1 page=0x0006 usage=0x0020 Var iable NoPref Volatile, logical range
End collection

This tells you that the mouse has responded to an SDP query, and the device capabilities are shown. Note
that authentication is enabled by default for Bluetooth mice. You may now attach to the system:

btdevctl -d ubt0 -a mouse -s HID -A

which should generate some messages on the system console:

bthidev0 at bthub0 remote-bdaddr 00:14:51:c1:b9:2d link- mode auth
btms0 at bthidev1 reportid 2: 4 buttons, W and Z dirs.
wsmouse1 at btms0 mux 0
bthidev1: reportid 71 not configured
bthidev1: connected

209

Chapter 20 Bluetooth on NetBSD

and the mouse should work.

The device capabilities are cached by btdevctl(8), and to reattach the mouse at system startup, place an
entry in /etc/bluetooth/btdevctl.conf and ensure that/etc/rc.conf containsbtdevctl=YES .
The bthidev(4) driver will attempt to connect once, though mice will usually be sleeping and may require
a tap on the shoulder to awake, in which case they should initiate the connection to the host computer.

20.4.2 Keyboards

Bluetooth Keyboards can be attached to the system with the btkbd(4) driver, using btdevctl(8).

First, you must discover the BDADDR of the device. This may beprinted on the box, but the easiest way
is to place the device into discoverable mode and perform a device inquiry with the appropriate
controller:

% btconfig ubt0 inquiry

Device Discovery on ubt0 1 response
1: bdaddr 00:0a:95:45:a4:a0 (unknown)

: name "Apple Wireless Keyboard"
: class: [0x002540] Peripheral Keyboard <Limited Discover able>
: page scan rep mode 0x01
: page scan period mode 0x00
: page scan mode 0x00
: clock offset 18604

For ease of use, you may want to add the address to the/etc/bluetooth/hosts file, so that you can
refer to the keyboard by alias:

echo "00:0a:95:45:a4:a0 keyboard" >>/etc/bluetooth/hosts

Now, you can query the keyboard, which will likely request authentication before it accepts connections.
The PIN will need to be entered on the keyboard, and we can generate a random PIN, using the btpin(1)
program.

% btpin -d ubt0 -a keyboard -r -l 8

PIN: 18799632
btdevctl -d ubt0 -a keyboard -s HID

< ENTER PIN ON BLUETOOTH KEYBOARD NOW >

local bdaddr: 00:08:1b:8d:ba:6d
remote bdaddr: 00:0a:95:45:a4:a0
link mode: encrypt
device type: bthidev
control psm: 0x0011
interrupt psm: 0x0013
Collection page=Generic_Desktop usage=Keyboard

Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_L eftControl Variable, logical range
Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_L eftShift Variable, logical range
Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_L eftAlt Variable, logical range

210

Chapter 20 Bluetooth on NetBSD

Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_L eft_GUI Variable, logical range
Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_R ightControl Variable, logical range
Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_R ightShift Variable, logical range
Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_R ightAlt Variable, logical range
Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_R ight_GUI Variable, logical range
Input id=1 size=8 count=1 page=0x0000 usage=0x0000 Const, logical range 0..1

Output id=1 size=1 count=1 page=LEDs usage=Num_Lock Varia ble, logical range 0..1
Output id=1 size=1 count=1 page=LEDs usage=Caps_Lock Vari able, logical range 0..1
Output id=1 size=1 count=1 page=LEDs usage=Scroll_Lock Va riable, logical range 0..1
Output id=1 size=1 count=1 page=LEDs usage=Compose Variab le, logical range 0..1
Output id=1 size=1 count=1 page=LEDs usage=Kana Variable, logical range 0..1
Output id=1 size=3 count=1 page=0x0000 usage=0x0000 Const , logical range 0..1

Input id=1 size=8 count=6 page=Keyboard usage=No_Event, l ogical range 0..255
Input id=1 size=1 count=1 page=Consumer usage=Eject Varia ble Relative, logical range 0..1
Input id=1 size=1 count=1 page=Consumer usage=Mute Variab le Relative, logical range 0..1
Input id=1 size=1 count=1 page=Consumer usage=Volume_Up V ariable, logical range 0..1
Input id=1 size=1 count=1 page=Consumer usage=Volume_Dow n Variable, logical range 0..1
Input id=1 size=1 count=4 page=0x0000 usage=0x0000 Const, logical range 0..1

End collection

This tells you that the keyboard has responded to an SDP query, and the device capabilities are shown.
Note that encryption is enabled by default, since encryptedconnection support is mandatory for
Bluetooth keyboards. You may now attach to the system:

btdevctl -d ubt0 -a keyboard -s HID -A

which should generate some messages on the system console:

bthidev1 at bthub0 remote-bdaddr 00:0a:95:45:a4:a0 link- mode encrypt
btkbd0 at bthidev0 reportid 1
wskbd1 at btkbd0 mux 1
wskbd1: connecting to wsdisplay0
bthidev1: connected

and the keyboard should work.

The device capabilities are cached by btdevctl(8), and to reattach the keyboard at system startup, place an
entry in /etc/bluetooth/btdevctl.conf and ensure that/etc/rc.conf containsbtdevctl=YES .
The bthidev(4) driver will attempt to connect once when attached, but if the keyboard is not available at
that time, you may find that pressing a key will cause it to wakeup and initiate a connection to the last
paired host.

20.5 Personal Area Networking
Personal Area Networking services over Bluetooth are provided by the btpand(8) daemon which can
assume all roles from the PAN profile and connects remote devices to the system through a tap(4) virtual
Ethernet interface.

211

Chapter 20 Bluetooth on NetBSD

20.5.1 Personal Area Networking User

The "Personal Area Networking User" role is the client that accesses Network services on another
device. For instance, in order to connect to the Internet viaa smart phone with the NAP profile, make
sure that the the phone is discoverable, then:

% btconfig ubt0 inquiry

Device Discovery from device: ubt0 1 response
1: bdaddr 00:17:83:30:bd:5e (unknown)

: name "HTC Touch"
: class: [0x5a020c] Smart Phone <Networking> <Capturing> < Object Transfer>

<Telephony>
: page scan rep mode 0x01
: clock offset 9769
: rssi -42

echo "00:17:83:30:bd:5e phone" >>/etc/bluetooth/hosts

You will see that the phone should have the <Networking> flag set in the Class of Device. Checking for
the NAP service:

% sdpquery -a phone search NAP

Record Handle: 0x00010000
Service Class ID List:

0x00001116-0000-1000-8000-00805f9b34fb
Protocol Descriptor List:

L2CAP (0x0100)
Protocol specific parameter #1: u/int/uuid16 15

BNEP (0x000f)
Protocol specific parameter #1: u/int/uuid16 256
Protocol specific parameter #2: 0x09 0x08 00 0x09 0x08 0x06 0 x09 0x86 0xdd

Bluetooth Profile Descriptor List:
0x00001116-0000-1000-8000-00805f9b34fb ver. 1.0

reveals to the experienced eye that the NAP service is available on PSM 15 and that it provides the
protocol types 0x0800 (IPv4), 0x0806 (ARP) and 0x86dd (IPv6).

Most likely, the phone will request authentication before it allows connections to the NAP service, so
before you make the first connection you may need to provide a PIN, which can be randomly generated.
Then start btpand(8):

% btpin -d ubt0 -a phone -r -l 6

PIN: 862048
btpand -d ubt0 -a phone -s NAP

< ENTER PIN ON PHONE NOW >

Searching for NAP service at 00:17:83:30:bd:5e
Found PSM 15 for service NAP
Opening connection to service 0x1116 at 00:17:83:30:bd:5e
Using interface tap0 with addr 00:10:60:e1:50:3d

212

Chapter 20 Bluetooth on NetBSD

Finally, you will need to configure the tap(4) interface, butthe phone should have a DHCP server so
dhclient(8) will do that for you.

dhclient -q -o -w -nw tap0

Now you can surf the World Wide Web, but watch your data usage unless you have a comprehensive data
plan.

20.6 Serial Connections
Serial connections over Bluetooth are provided for by the RFCOMM protocol, which provides up to 30
channels multiplexed over a single L2CAP channel. This streamed data protocol can be accessed using
the BTPROTO_RFCOMM socket interface, or via the rfcomm_sppd(1) program.

For instance, you can make a serial connection to the “Dial UpNetworking” (DUN) service of a mobile
phone in order to connect to the Internet with PPP. First you should discover the BDADDR of the phone,
and add this to your/etc/bluetooth/hosts for ease of use. Place the phone into Discoverable mode,
and perform an inquiry from the appropriate controller:

% btconfig ubt0 inquiry

Device Discovery from device: ubt0 1 response
1: bdaddr 00:16:bc:00:e8:48 (unknown)

: name "Nokia 6103"
: class: [0x520204] Cellular Phone <Networking> <Object Tr ansfer> <Telephony>
: page scan rep mode 0x01
: page scan period mode 0x02
: page scan mode 0x00
: clock offset 30269

echo "00:16:bc:00:e8:48 phone" >>/etc/bluetooth/hosts

Now, you can query the phone to confirm that it supports the DUNprofile:

% sdpquery -d ubt0 -a phone search DUN

Record Handle: 0x00010000
Service Class ID List:

Dial-Up Networking (0x1103)
Generic Networking (0x1201)

Protocol Descriptor List:
L2CAP (0x0100)
RFCOMM (0x0003)

Protocol specific parameter #1: u/int8/bool 1
Bluetooth Profile Descriptor List:

Dial-Up Networking (0x1103) ver. 1.0

213

Chapter 20 Bluetooth on NetBSD

Most likely, the phone will request authentication before it allows connections to the DUN service, so
before you make the first connection you may need to provide a PIN, which can be randomly generated.
You can userfcomm_sppd in stdio mode to check that the connection is working ok, press^C to
disconnect and return to the shell, for example:

% btpin -d ubt0 -a phone -r -l 6

PIN: 904046
% rfcomm_sppd -d ubt0 -a phone -s DUN

< ENTER PIN ON PHONE NOW >

rfcomm_sppd[24635]: Starting on stdio...
at

OK
ati

Nokia

OK
ati3

Nokia 6103

OK
at&v

ACTIVE PROFILE:
E1 Q0 V1 X5 &C1 &D2 &S0 &Y0
+CMEE=0 +CSTA=129 +CBST=0,0,1 +CRLP=61,61,48,6 +CR=0 +CR C=0 +CLIP=0,2
+CLIR=0,2 +CSNS=0 +CVHU=1 +DS=0,0,2048,32 +DR=0 +ILRR=0
+CHSN=0,0,0,0 +CHSR=0 +CPBS="SM"
S00:000 S01:000 S02:043 S03:013 S04:010 S05:008 S07:060 S0 8:002
S10:100 S12:050 S25:000

OK
^C

rfcomm_sppd[24635]: Completed on stdio

To have pppd(8) connect to the DUN service of your phone automatically when making outbound
connections, add the following line to the/etc/ppp/options file in place of the normal tty declaration:

pty "rfcomm_sppd -d ubt0 -a phone -s DUN -m encrypt"

20.7 Audio
Isochronous (SCO) Audio connections may be created on a baseband radio link using either the
BTPROTO_SCO socket interface, or the btsco(4) audio devicedriver. While the specification says that
up to three such links can be made between devices, the current Bluetooth stack can only handle one
with any dignity.

214

Chapter 20 Bluetooth on NetBSD

Important: When using SCO Audio with USB Bluetooth controllers, you will need to enable
isochronous data, and calculate the MTU that the device will use, see ubt(4) and btconfig(8).

Note: SCO Audio does not work properly with the bt3c(4) driver, use a USB controller for best results.

Note: SCO Audio will not work with ehci(4) USB controllers, since support for Isochronous data over
EHCI is missing in NetBSD.

20.7.1 SCO Audio Headsets

Audio connections to Bluetooth Headsets are possible usingthe btsco(4) audio driver, and the bthset(1)
program. First, you need to discover the BDADDR of the headset, and will probably wish to make an
alias in your/etc/bluetooth/hosts file for ease of use. Place the headset into discoverable mode
and perform an inquiry with the appropriate controller:

% btconfig ubt0 inquiry

Device Discovery from device: ubt0 1 response
1: bdaddr 00:07:a4:23:10:83 (unknown)

: name "JABRA 250"
: class: [0x200404] Wearable Headset <Audio>
: page scan rep mode 0x01
: page scan period mode 0x00
: page scan mode 0x00
: clock offset 147

echo "00:07:a4:23:10:83 headset" >>/etc/bluetooth/hosts

You will need to pair with the headset the first time you connect, the fixed PIN should be listed in the
manual (often, “0000” is used). btdevctl(8) will query the device and attach the btsco(4) audio driver.

% btpin -d ubt0 -a headset -p 0000

btdevctl -d ubt0 -a headset -s HSET -A

local bdaddr: 00:08:1b:8d:ba:6d
remote bdaddr: 00:07:a4:23:10:83
link mode: none
device type: btsco
mode: connect
channel: 1

which should generate some messages on the system console:

btsco0 at bthub0 remote-bdaddr 00:07:a4:23:10:83 channel 1
audio1 at btsco0: full duplex

215

Chapter 20 Bluetooth on NetBSD

In order to use the audio device, you will need to open a control connection with bthset(1) which conveys
volume information to the mixer device.

% bthset -d /dev/mixer1 -v

Headset Info:
mixer: /dev/mixer1
laddr: 00:08:1b:8d:ba:6d
raddr: 00:07:a4:23:10:83
channel: 1
vgs.dev: 0, vgm.dev: 1

and you should now be able to transfer 8khz samples to and from/dev/audio1 using any program that
supports audio, such as audioplay(1) or audiorecord(1). Adjusting the mixer values should work when
playing though you may find that when opening a connection, the headset will reset the volume to the
last known settings.

% audiorecord -d /dev/audio1 voice.au

< TALK NONSENSE NOW >

^C

% audioplay -d /dev/audio voice.au

< THATS REALLY WHAT YOU SOUND LIKE >

% audioplay -d /dev/audio1 voice.au

< IN THE HEADSET >

The device capabilities are cached by btdevctl(8), and to reattach the btsco(4) driver at system startup,
add an entry to/etc/bluetooth/btdevctl.conf and ensure that/etc/rc.conf contains
btdevctl=YES .

20.7.2 SCO Audio Handsfree

Audio connections to Bluetooth mobile phones using the Handsfree profile are possible with the
“comms/bthfp” program from the NetBSD Package Collection.

First, you need to discover the BDADDR of the phone, and will probably wish to make an alias in your
/etc/bluetooth/hosts file for ease of use. Place the phone into discoverable mode and perform an
inquiry with the appropriate controller:

% btconfig ubt0 inquiry

Device Discovery from device: ubt0 1 response
1: bdaddr 00:16:bc:00:e8:48 (unknown)

: name "Nokia 6103"
: class: [0x520204] Cellular Phone <Networking;gt; <Objec t Transfer;gt; <Telephony;gt;
: page scan rep mode 0x01
: page scan period mode 0x02
: page scan mode 0x00

216

Chapter 20 Bluetooth on NetBSD

: clock offset 10131

echo "00:16:bc:00:e8:48 phone" >>/etc/bluetooth/hosts

Now, you should be able to query the phone to confirm that it supports the Handsfree profile:

% sdpquery -d ubt0 -a phone search HF

Record Handle: 0x00010003
Service Class ID List:

Handsfree Audio Gateway (0x111f)
Generic Audio (0x1203)

Protocol Descriptor List:
L2CAP (0x0100)
RFCOMM (0x0003)

Protocol specific parameter #1: u/int8/bool 13
Bluetooth Profile Descriptor List:

Handsfree (0x111e) ver. 1.1

and you will be able to use the bthfp program to access the Handsfree profile. The first time you connect,
you may need to use a PIN to pair with the phone, which can be generated randomly by btpin(1):

% btpin -d ubt0 -a phone -r -l 6

PIN: 349163
% bthfp -d ubt0 -a phone -v

< ENTER PIN ON PHONE NOW >
Handsfree channel: 13
Press ? for commands
Connecting.. ok
< AT+BRSF=20
> +BRSF: 47
Features: [0x002f] <3 way calling> <EC/NR> <Voice Recognit ion> <In-band ringtone> <reject
> OK
< AT+CIND=?
> +CIND: ("call",(0,1)),("service",(0,1)),("call_setu p",(0-3)),("callsetup",(0-3))
> OK
< AT+CIND?
> +CIND: 0,1,0,0
> OK
< AT+CMER=3,0,0,1
> OK
< AT+CLIP=1
> OK
Service Level established

When the phone rings, just pressa to answer, and audio should be routed through the/dev/audio

device. Note that you will need a microphone connected in order to speak to the remote party.

217

Chapter 20 Bluetooth on NetBSD

20.8 Object Exchange
NetBSD does not currently have any native OBEX capability, see the “comms/obexapp” or
“comms/obexftp” packages from the NetBSD Package Collection.

20.9 Troubleshooting
When nothing seems to be happening, it may be useful to try thehcidump program from the
“sysutils/hcidump” package in the NetBSD Package Collection. This has the capability to dump packets
entering and leaving Bluetooth controllers on NetBSD, which is greatly helpful in pinpointing problems.

218

Chapter 21

Miscellaneous operations

This chapter collects various topics, in sparse order

21.1 Installing the boot manager
Sysinst, the NetBSD installation program usually installsthe NetBSD boot manager on the hard disk.
The boot manager can also be installed or reconfigured at a later time, if needed, with thefdisk
command. For example:

fdisk -B wd0

If NetBSD doesn’t boot from the hard disk, you can boot it fromthe installation floppy and start the
kernel on the hard disk. Insert the installation disk and, atthe boot prompt, give the following command:

> boot wd0a:netbsd

This boots the kernel on the hard disk (use the correct device, for example sd0a for a SCSI disk).

Note: Sometimes fdisk -B doesn’t give the expected result (at least it happened to me), probably if
you install/remove other operating systems like Windows 95 or Linux with LILO. In this case, try
running fdisk -i (which is known as fdisk /mbr from DOS) and then run again fdisk from NetBSD.

21.2 Deleting the disklabel
Though this is not an operation that you need to perform frequently, it can be useful to know how to do it
in case of need. Please be sure to know exactly what you are doing before performing this kind of
operation. For example:

dd if=/dev/zero of=/dev/rwd0c bs=8k count=1

The previous command deletes the disklabel (not the MBR partition table). To completely delete the
disk, the whole devicerwd0d must be used. For example:

dd if=/dev/zero of=/dev/rwd0d bs=8k

The commands above will only work as expected on the i386 and amd64 ports of NetBSD. On other
ports, the whole device will end in c, not d (e.g.rwd0c).

219

Chapter 21 Miscellaneous operations

21.3 Speaker
I found this tip on a mailing list (I don’t remember the author). To output a sound from the speaker (for
example at the end of a long script) thespkrdriver can be used in the kernel config, which is mapped on
/dev/speaker . For example:

echo ’BPBPBPBPBP’ > /dev/speaker

Note: The spkr device is not enabled in the generic kernel; a customized kernel is needed.

21.4 Forgot root password?
If you forget root’s password, not all is lost and you can still recover the system with the following steps:
boot single user, mount / and change root’s password. In detail:

1. Boot single user: when the boot prompt appears and the five seconds countdown starts, give the
following command:

> boot -s

2. At the following prompt

Enter pathname of shell or RETURN for sh:

press Enter.

3. Write the following commands:

fsck -y /

mount -u /

fsck -y /usr

mount /usr

4. Change root’s password:

passwd root

Changing local password for root.
New password: (not echoed)

Retype new password: (not echoed)

#

5. Exit the shell to go to multiuser mode.

exit

If you get the error “Password file is busy”, please see the section below.

21.5 Password file is busy?
If you try to modify a password and you get the mysterious message “Password file is busy”, it probably
means that the file/etc/ptmp has not been deleted from the system. This file is a temporary copy of the
/etc/master.passwd file; check that you are not losing important information andthen delete it:

220

Chapter 21 Miscellaneous operations

rm /etc/ptmp

Note: If the file /etc/ptmp exists you can also receive a warning message at system startup. For
example:

root: password file may be incorrect - /etc/ptmp exists

21.6 Adding a new hard disk
This section describes how to add a new hard disk to an alreadyworking NetBSD system. In the
following example a new SCSI controller and a new hard disk, connected to the controller, will be added.
If you don’t need to add a new controller, skip the relevant part and go to the hard disk configuration. The
installation of an IDE hard disk is identical; only the device name will be different (wd# instead ofsd#).

As always, before buying new hardware, consult the hardwarecompatibility list of NetBSD and make
sure that the new device is supported by the system.

When the SCSI controller has been physically installed in the system and the new hard disk has been
connected, it’s time to restart the computer and check that the device is correctly detected, using the
dmesgcommand. This is the sample output for an NCR-875 controller:

ncr0 at pci0 dev 15 function 0: ncr 53c875 fast20 wide scsi
ncr0: interrupting at irq 10
ncr0: minsync=12, maxsync=137, maxoffs=16, 128 dwords bur st, large dma fifo
ncr0: single-ended, open drain IRQ driver, using on-chip SR AM
ncr0: restart (scsi reset).
scsibus0 at ncr0: 16 targets, 8 luns per target
sd0(ncr0:2:0): 20.0 MB/s (50 ns, offset 15)
sd0: 2063MB, 8188 cyl, 3 head, 172 sec, 512 bytes/sect x 42267 25 sectors

If the device doesn’t appear in the output, check that it is supported by the kernel that you are using; if
necessary, compile a customized kernel (seeChapter 31).

Now the partitions can be created using thefdisk command. First, check the current status of the disk:

fdisk sd0

NetBSD disklabel disk geometry:
cylinders: 8188 heads: 3 sectors/track: 172 (516 sectors/c ylinder)

BIOS disk geometry:
cylinders: 524 heads: 128 sectors/track: 63 (8064 sectors/ cylinder)

Partition table:
0: sysid 6 (Primary ’big’ DOS, 16-bit FAT (> 32MB))

start 63, size 4225473 (2063 MB), flag 0x0
beg: cylinder 0, head 1, sector 1
end: cylinder 523, head 127, sector 63

1: <UNUSED>
2: <UNUSED>
3: <UNUSED>

221

Chapter 21 Miscellaneous operations

In this example the hard disk already contains a DOS partition, which will be deleted and replaced with a
native NetBSD partition. The commandfdisk -u sd0 allows to modify interactively the partitions. The
modified data will be written on the disk only before exiting and fdisk will request a confirmation before
writing, so you can work relaxedly.

Disk geometries

The geometry of the disk reported by fdisk can appear confusing. Dmesg reports 4226725
sectors with 8188/3/172 for C/H/S, but 8188*3*172 gives 4225008 and not 4226725. What
happens is that most modern disks don’t have a fixed geometry and the number of sectors
per track changes depending on the cylinder: the only interesting parameter is the number of
sectors. The disk reports the C/H/S values but it’s a fictitious geometry: the value 172 is the
result of the total number of sectors (4226725) divided by 8188 and then by 3.

To make things more confusing, the BIOS uses yet another “fake” geometry (C/H/S
524/128/63) which gives a total of 4225536, a value which is abetter approximation to the
real one than 425008. To partition the disk we will use the BIOS geometry, to maintain
compatibility with other operating systems, although we will loose some sectors (4226725 -
4225536 = 1189 sectors = 594 KB).

To create the BIOS partitions the commandfdisk -u must be used; the result is the following:

Partition table:
0: sysid 169 (NetBSD)

start 63, size 4225473 (2063 MB), flag 0x0
beg: cylinder 0, head 1, sector 1
end: cylinder 523, head 127, sector 63

1: <UNUSED>
2: <UNUSED>
3: <UNUSED>

Now it’s time to create the disklabel for the NetBSD partition. The correct steps to do this are:

disklabel sd0 > tempfile

vi tempfile

disklabel -R -r sd0 tempfile

If you try to create the disklabel directly with

disklabel -e sd0

you get the following message

disklabel: ioctl DIOCWDINFO: No disk label on disk;
use "disklabel -I" to install initial label

because the disklabel does not yet exist on the disk.

Now we create some disklabel partitions, editing thetempfile as already explained. The result is:

222

Chapter 21 Miscellaneous operations

size offset fstype [fsize bsize cpg]
a: 2048004 63 4.2BSD 1024 8192 16 # (Cyl. 0 * - 3969 *)
c: 4226662 63 unused 0 0 # (Cyl. 0 * - 8191 *)
d: 4226725 0 unused 0 0 # (Cyl. 0 - 8191 *)
e: 2178658 2048067 4.2BSD 1024 8192 16 # (Cyl. 3969 * - 8191 *)

Note: When the disklabel has been created it is possible to optimize it studying the output of the
command newfs -N /dev/rsd0a , which warns about the existence of unallocated sectors at the end
of a disklabel partition. The values reported by newfs can be used to adjust the sizes of the partitions
with an iterative process.

The final operation is the creation of the file systems for the newly defined partitions (a ande).

newfs /dev/rsd0a

newfs /dev/rsd0e

The disk is now ready for usage, and the two partitions can be mounted. For example:

mount /dev/sd0a /mnt

If this succeeds, you may want to put an entry for the partition into /etc/fstab .

21.7 How to rebuild the devices in /dev
First shutdown to single user, partitions still mounted “rw” (read-write); You can do that by just typing
shutdown nowwhile you are in multi user mode, or reboot with the-s option and make/ and/dev

read-writable by doing.

mount -u /

mount -u /dev

Then:

mkdir /newdev

cd /newdev

cp /dev/MAKEDEV* .

sh ./MAKEDEV all

cd /

mv dev olddev

mv newdev dev

rm -r olddev

Or if you fetched all the sources in/usr/src :

mkdir /newdev

cd /newdev

cp /usr/src/etc/MAKEDEV.local .

(cd /usr/src/etc ; make MAKEDEV)

cp /usr/src/etc/obj*/MAKEDEV .

sh ./MAKEDEV all

223

Chapter 21 Miscellaneous operations

cd /

mv dev olddev; mv newdev dev

rm -r olddev

You can determine $arch by

uname -m

or

sysctl hw.machine_arch

224

IV. Networking and related issues

Chapter 22

Introduction to TCP/IP
Networking

22.1 Audience
This section explains various aspects of networking. It is intended to help people with little knowledge
about networks to get started. It is divided into three big parts. We start by giving a general overview of
how networking works and introduce the basic concepts. Thenwe go into details for setting up various
types of networking in the second parts, and the third part ofthe networking section covers a number of
“advanced” topics that go beyond the basic operation as introduced in the first two sections.

The reader is assumed to know about basic system administration tasks: how to become root, edit files,
change permissions, stop processes, etc. See the other chapters of this NetBSD guide and e.g.
AeleenFrischfor further information on this topic. Besides that, you should know how to handle the
utilities we’re going to set up here, i.e. you should know howto use telnet, FTP, ... I will not explain the
basic features of those utilities, please refer to the appropriate man-pages, the references listed or of
course the other parts of this document instead.

This introduction to TCP/IP Networking was written with theintention in mind to give starters a basic
knowledge. If you really want to know what it’s all about, read CraigHunt. This book does not only cover
the basics, but goes on and explains all the concepts, services and how to set them up in detail. It’s great,
I love it! :-)

22.2 Supported Networking Protocols
There are several protocol suites supported by NetBSD, mostof which were inherited from NetBSD’s
predecessor, 4.4BSD, and subsequently enhanced and improved. The first and most important one today
is DARPA’s Transmission Control Protocol/Internet Protocol (TCP/IP). Other protocol suites available in
NetBSD include the Xerox Network System (XNS) which was onlyimplemented at UCB to connect
isolated machines to the net, Apple’s AppleTalk protocol suite and the ISO protocol suite, CCITT X.25
and ARGO TP. They are only used in some special applications these days.

Today, TCP/IP is the most widespread protocol of the ones mentioned above. It is implemented on
almost every hardware and operating system, and it is also the most-used protocol in heterogenous
environments. So, if you just want to connect your computer running NetBSD to some other machine at
home or you want to integrate it into your company’s or university’s network, TCP/IP is the right choice.
Besides the "old" IP version 4, NetBSD also supports the "new" IP version 6 (IPv6) since NetBSD 1.5,
thanks to code contributed by the KAME project.

226

Chapter 22 Introduction to TCP/IP Networking

There are other protocol suites such as DECNET, Novell’s IPX/SPX or Microsoft’s NetBIOS, but these
are not currently supported by NetBSD. These protocols differ from TCP/IP in that they are proprietary,
in contrast to the others, which are well-defined in several RFCs and other open standards.

22.3 Supported Media
The TCP/IP protocol stack behaves the same regardless of theunderlying media used, and NetBSD
supports a wide range of these, among them are Ethernet (10/100/1000MBd), Arcnet, serial line, ATM,
FDDI, Fiber Channel, USB, HIPPI, FireWire (IEEE 1394), Token Ring, and serial lines.

22.3.1 Serial Line

There are a couple of reasons for using TCP/IP over a serial line.

• If your remote host is only reachable via telephone, you can use a modem to access it.

• Many computers have a serial port, and the cable needed is rather cheap.

The disadvantage of a serial connection is that it’s slower than other methods. NetBSD can use at most
115200 bit/s, making it a lot slower than e.g. Ethernet’s minimum 10 Mbit/s and Arcnet’s 4 Mbit/s.

There are two possible protocols to connect a host running NetBSD to another host using a serial line
(possibly over a phone-line):

• Serial Line IP (SLIP)

• Point to Point Protocol (PPP)

The choice here depends on whether you use a dial-up connection through a modem or if you use a static
connection (null-modem or leased line). If you dial up for your IP connection, it’s wise to use PPP as it
offers some possibilities to auto-negotiate IP-addressesand routes, which can be quite painful to do by
hand. If you want to connect to another machine which is directly connected, use SLIP, as this is
supported by about every operating system and more easy to set up with fixed addresses and routes.

PPP on a direct connection is a bit difficult to setup, as it’s easy to timeout the initial handshake; with
SLIP, there’s no such initial handshake, i.e. you start up one side, and when the other site has its first
packet, it will send it over the line.

RFC1331andRFC1332describe PPP and TCP/IP over PPP. SLIP is defined inRFC1055.

22.3.2 Ethernet

Ethernet is the medium commonly used to build local area networks (LANs) of interconnected machines
within a limited area such as an office, company or universitycampus. Ethernet is based on a bus
structure to which many machines can connect to, and communication always happens between two
nodes at a time. When two or more nodes want to talk at the same time, both will restart communication
after some timeout. The technical term for this is CSMA/CD (Carrier Sense w/ Multiple Access and
Collision Detection).

Initially, Ethernet hardware consisted of a thick (yellow)cable that machines tapped into using special
connectors that poked through the cable’s outer shielding.The successor of this was called 10base5,

227

Chapter 22 Introduction to TCP/IP Networking

which used BNC-type connectors for tapping in special T-connectors and terminators on both ends of the
bus. Today, ethernet is mostly used with twisted pair lines which are used in a collapsed bus system that
are contained in switches or hubs. The twisted pair lines give this type of media its name - 10baseT for
10 Mbit/s networks, and 100baseT for 100 MBit/s ones. In switched environments there’s also the
distinction if communication between the node and the switch can happen in half- or in full duplex mode.

22.4 TCP/IP Address Format
TCP/IP uses 4-byte (32-bit) addresses in the current implementations (IPv4), also called IP-numbers
(Internet-Protocol numbers), to address hosts.

TCP/IP allows any two machines to communicate directly. To permit this all hosts on a given network
must have a unique IP address. To assure this, IP addresses are administrated by one central organisation,
the InterNIC. They give certain ranges of addresses (network-addresses) directly to sites which want to
participate in the internet or to internet-providers, which give the addresses to their customers.

If your university or company is connected to the Internet, it has (at least) one such network-address for
its own use, usually not assigned by the InterNIC directly, but rather through an Internet Service Provider
(ISP).

If you just want to run your private network at home, see belowon how to “build” your own IP
addresses. However, if you want to connect your machine to the (real :-) Internet, you should get an IP
addresses from your local network-administrator or -provider.

IP addresses are usually written in “dotted quad”-notation- the four bytes are written down in decimal
(most significant byte first), separated by dots. For example, 132.199.15.99 would be a valid address.
Another way to write down IP-addresses would be as one 32-bithex-word, e.g. 0x84c70f63. This is not
as convenient as the dotted-quad, but quite useful at times,too. (See below!)

Being assigned a network means nothing else but setting someof the above-mentioned 32 address-bits to
certain values. These bits that are used for identifying thenetwork are called network-bits. The
remaining bits can be used to address hosts on that network, therefore they are called host-bits.
Figure 22-1illustrates the separation.

Figure 22-1. IPv4-addresses are divided into more significant network- and less significant hostbits

32−n hostbitsn netbits

In the above example, the network-address is 132.199.0.0 (host-bits are set to 0 in network-addresses)
and the host’s address is 15.99 on that network.

How do you know that the host’s address is 16 bit wide? Well, this is assigned by the provider from
which you get your network-addresses. In the classless inter-domain routing (CIDR) used today, host
fields are usually between as little as 2 to 16 bits wide, and the number of network-bits is written after the
network address, separated by a “/”, e.g. 132.199.0.0/16 tells that the network in question has 16
network-bits. When talking about the “size” of a network, it’s usual to only talk about it as “/16”, “/24”,
etc.

Before CIDR was used, there used to be four classes of networks. Each one starts with a certain
bit-pattern identifying it. Here are the four classes:

228

Chapter 22 Introduction to TCP/IP Networking

• Class A starts with “0” as most significant bit. The next sevenbits of a class A address identify the
network, the remaining 24 bit can be used to address hosts. So, within one class A network there can
be 224 hosts. It’s not very likely that you (or your university, or company, or whatever) will get a whole
class A address.

The CIDR notation for a class A network with its eight networkbits is an “/8”.

• Class B starts with “10” as most significant bits. The next 14 bits are used for the networks address
and the remaining 16 bits can be used to address more than 65000 hosts. Class B addresses are very
rarely given out today, they used to be common for companies and universities before IPv4 address
space went scarce.

The CIDR notation for a class B network with its 16 network bits is an “/16”.

Returning to our above example, you can see that 132.199.15.99 (or 0x84c70f63, which is more
appropriate here!) is on a class B network, as 0x84... =1000... (base 2).

Therefore, the address 132.199.15.99 can be split into an network-address of 132.199.0.0 and a
host-address of 15.99.

• Class C is identified by the MSBs being “110”, allowing only 256 (actually: only 254, see below) hosts
on each of the 221 possible class C networks. Class C addresses are usually found at (small) companies.

The CIDR notation for a class C network with its 24 network bits is an “/24”.

• There are also other addresses, starting with “111”. Those are used for special purposes (e. g.
multicast-addresses) and are not of interest here.

Please note that the bits which are used for identifying the network-class are part of the network-address.

When separating host-addresses from network-addresses, the “netmask” comes in handy. In this mask,
all the network-bits are set to “1”, the host-bits are “0”. Thus, putting together IP-address and netmask
with a logical AND-function, the network-address remains.

To continue our example, 255.255.0.0 is a possible netmask for 132.199.15.99. When applying this
mask, the network-address 132.199.0.0 remains.

For addresses in CIDR notation, the number of network-bits given also says how many of the most
significant bits of the address must be set to “1” to get the netmask for the corresponding network. For
classful addressing, every network-class has a fixed default netmask assigned:

• Class A (/8): default-netmask: 255.0.0.0, first byte of address: 1-127

• Class B (/16): default-netmask: 255.255.0.0, first byte of address: 128-191

• Class C (/24): default-netmask: 255.255.255.0, first byte of address: 192-223

Another thing to mention here is the “broadcast-address”. When sending to this address,all hosts on the
corresponding network will receive the message sent. The broadcast address is characterized by having
all host-bits set to “1”.

Taking 132.199.15.99 with its netmask 255.255.0.0 again, the broadcast-address would result in
132.199.255.255.

You’ll ask now: But what if I want a host’s address to be all bits “0” or “1”? Well, this doesn’t work, as
network- and broadcast-address must be present! Because ofthis, a class B (/16) network can contain at
most 216-2 hosts, a class C (/24) network can hold no more than 28-2 = 254 hosts.

229

Chapter 22 Introduction to TCP/IP Networking

Besides all those categories of addresses, there’s the special IP-address 127.0.0.1 which always refers to
the “local” host, i.e. if you talk to 127.0.0.1 you’ll talk toyourself without starting any network-activity.
This is sometimes useful to use services installed on your own machine or to play around if you don’t
have other hosts to put on your network.

Let’s put together the things we’ve introduced in this section:

IP-address

32 bit-address, with network- and host-bits.

Network-address

IP-address with all host bits set to “0”.

Netmask

32-bit mask with “1” for network- and “0” for host-bits.

Broadcast

IP-address with all host bits set “1”.

localhost’s address

The local host’s IP address is always 127.0.0.1.

22.5 Subnetting and Routing
After talking so much about netmasks, network-, host- and other addresses, I have to admit that this is
not the whole truth.

Imagine the situation at your university, which usually hasa class B (/16) address, allowing it to have up
to 216 ~= 65534 hosts on that net. Maybe it would be a nice thing to have all those hosts on one single
network, but it’s simply not possible due to limitations in the transport media commonly used today.

For example, when using thinwire ethernet, the maximum length of the cable is 185 meters. Even with
repeaters in between, which refresh the signals, this is notenough to cover all the locations where
machines are located. Besides that, there is a maximum number of 1024 hosts on one ethernet wire, and
you’ll loose quite a bit of performance if you go to this limit.

So, are you hosed now? Having an address which allows more than 60000 hosts, but being bound to
media which allows far less than that limit?

Well, of course not! :-)

The idea is to divide the “big” class B net into several smaller networks, commonly called sub-networks
or simply subnets. Those subnets are only allowed to have, say, 254 hosts on them (i.e. you divide one
big class B network into several class C networks!).

To do this, you adjust your netmask to have more network- and less host-bits on it. This is usually done
on a byte-boundary, but you’re not forced to do it there. So, commonly your netmask will not be
255.255.0.0 as supposed by a class B network, but it will be set to 255.255.255.0.

In CIDR notation, you now write a “/24” instead of the “/16” toshow that 24 bits of the address are used
for identifying the network and subnet, instead of the 16 that were used before.

230

Chapter 22 Introduction to TCP/IP Networking

This gives you one additional network-byte to assign to each(physical!) network. All the 254 hosts on
that subnet can now talk directly to each other, and you can build 256 such class C nets. This should fit
your needs.

To explain this better, let’s continue our above example. Say our host 132.199.15.99 (I’ll call him dusk
from now; we’ll talk about assigning hostnames later) has a netmask of 255.255.255.0 and thus is on the
subnet 132.199.15.0/24. Let’s furthermore introduce somemore hosts so we have something to play
around with, seeFigure 22-2.

Figure 22-2. Our demo-network

132.199.15.100

dawn
132.199.15.99

132.199.15.98

dusk

132.199.15.97

noon

132.199.1.33

132.199.15.1

rzi

132.199.1.202

ftp
132.199.1.8

cisco

Subnet 132.199.1.0

S
 L

 I
 P

Broadcast 132.199.1.255

Netmask 255.255.255.0

Subnet 132.199.15.0

Broadcast 132.199.15.255

Netmask 255.255.255.0

In the above network, dusk can talk directly to dawn, as they are both on the same subnet. (There are
other hosts attached to the 132.199.15.0/24-subnet but they are not of importance for us now)

But what if dusk wants to talk to a host on another subnet?

Well, the traffic will then go through one or more gateways (routers), which are attached to two subnets.
Because of this, a router always has two different addresses, one for each of the subnets it is on. The
router is functionally transparent, i.e. you don’t have to address it to reach hosts on the “other” side.
Instead, you address that host directly and the packets willbe routed to it correctly.

Example. Let’s say dusk wants to get some files from the local ftp-server. As dusk can’t reach ftp directly
(because it’s on a different subnet), all its packets will beforwarded to its "defaultrouter" rzi
(132.199.15.1), which knows where to forward the packets.

Dusk knows the address of its defaultrouter in its network (rzi, 132.199.15.1), and it will forward any
packets to it which are not on the same subnet, i.e. it will forward all IP-packets in which the third
address-byte isn’t 15.

The (default)router then gives the packets to the appropriate host, as it’s also on the FTP-server’s
network.

In this example,all packets are forwarded to the 132.199.1.0/24-network, simply because it’s the
network’s backbone, the most important part of the network,which carries all the traffic that passes

231

Chapter 22 Introduction to TCP/IP Networking

between several subnets. Almost all other networks besides132.199.15.0/24 are attached to the
backbone in a similar manner.

But what if we had hooked up another subnet to 132.199.15.0/24 instead of 132.199.1.0/24? Maybe
something the situation displayed inFigure 22-3.

Figure 22-3. Attaching one subnet to another one

132.199.1.33

132.199.15.1

rzi

132.199.15.99

dusk

Subnet 132.199.1.0

Subnet 132.199.16.0

(Backbone)

route2

132.199.15.2

132.199.16.1

Subnet 132.199.15.0

When we now want to reach a host which is located in the 132.199.16.0/24-subnet from dusk, it won’t
work routing it to rzi, but you’ll have to send it directly to route2 (132.199.15.2). Dusk will have to know
to forward those packets to route2 and send all the others to rzi.

When configuring dusk, you tell it to forward all packets for the 132.199.16.0/24-subnet to route2, and
all others to rzi. Instead of specifying this default as 132.199.1.0/24, 132.199.2.0/24, etc., 0.0.0.0 can be
used to set the default-route.

Returning toFigure 22-2, there’s a similar problem when dawn wants to send to noon, which is
connected to dusk via a serial line running. When looking at the IP-addresses, noon seems to be attached
to the 132.199.15.0-network, but it isn’t really. Instead,dusk is used as gateway, and dawn will have to
send its packets to dusk, which will forward them to noon then. The way dusk is forced into accepting
packets that aren’t destined at it but for a different host (noon) instead is called “proxy arp”.

The same goes when hosts from other subnets want to send to noon. They have to send their packets to
dusk (possibly routed via rzi),

22.6 Name Service Concepts
In the previous sections, when we talked about hosts, we referred to them by their IP-addresses. This was
necessary to introduce the different kinds of addresses. When talking about hosts in general, it’s more
convenient to give them “names”, as we did when talking aboutrouting.

Most applications don’t care whether you give them an IP address or a hostname. However, they’ll use IP
addresses internally, and there are several methods for them to map hostnames to IP addresses, each one
with its own way of configuration. In this section we’ll introduce the idea behind each method, in the
next chapter, we’ll talk about the configuration-part.

The mapping from hostnames (and domainnames) to IP-addresses is done by a piece of software called
the “resolver”. This is not an extra service, but some library routines which are linked to every

232

Chapter 22 Introduction to TCP/IP Networking

application using networking-calls. The resolver will then try to resolve (hence the name ;-) the
hostnames you give into IP addresses. SeeRFC1034andRFC1035for details on the resolver.

Hostnames are usually up to 256 characters long, and containletters, numbers and dashes (“-”); case is
ignored.

Just as with networks and subnets, it’s possible (and desirable) to group hosts into domains and
subdomains. When getting your network-address, you usually also obtain a domainname by your
provider. As with subnets, it’s up to you to introduce subdomains. Other as with IP-addresses,
(sub)domains are not directly related to (sub)nets; for example, one domain can contain hosts from
several subnets.

Figure 22-2shows this: Both subnets 132.199.1.0/24 and 132.199.15.0/24 (and others) are part of the
subdomain “rz.uni-regensburg.de”. The domain the University of Regensburg got from its IP-provider is
“uni-regensburg.de” (“.de” is for Deutschland, Germany),the subdomain “rz” is for Rechenzentrum,
computing center.

Hostnames, subdomain- and domainnames are separated by dots (“.”). It’s also possible to use more than
one stage of subdomains, although this is not very common. Anexample would be
fox_in.socs.uts.edu.au.

A hostname which includes the (sub)domain is also called a fully qualified domain name (FQDN). For
example, the IP-address 132.199.15.99 belongs to the host with the FQDN dusk.rz.uni-regensburg.de.

Further above I told you that the IP-address 127.0.0.1 always belongs to the local host, regardless what’s
the “real” IP-address of the host. Therefore, 127.0.0.1 is always mapped to the name “localhost”.

The three different ways to translate hostnames into IP addresses are:/etc/hosts , the Domain Name
Service (DNS) and the Network Information Service (NIS).

22.6.1 /etc/hosts

The first and simplest way to translate hostnames into IP-addresses is by using a table telling which IP
address belongs to which hostname(s). This table is stored in the file/etc/hosts and has the following
format:

IP-address hostname [nickname [...]]

Lines starting with a hash mark (“#”) are treated as comments. The other lines contain one IP-address
and the corresponding hostname(s).

It’s not possible for a hostname to belong to several IP addresses, even if I made you think so when
talking about routing. rzi for example has really two distinct names for each of its two addresses: rzi and
rzia (but please don’t ask me which name belongs to which address!).

Giving a host several nicknames can be convenient if you wantto specify your favorite host providing a
special service with that name, as is commonly done with FTP-servers. The first (leftmost) name is
usually the real (canonical) name of the host.

Besides giving nicknames, it’s also convenient to give a host’s full name (including domain) as its
canonical name, and using only its hostname (without domain) as a nickname.

Important:Theremustbe an entry mapping localhost to 127.0.0.1 in/etc/hosts !

233

Chapter 22 Introduction to TCP/IP Networking

22.6.2 Domain Name Service (DNS)

/etc/hosts bears an inherent problem, especially in big networks: whenone host is added or one
host’s address changes, all the/etc/hosts files on all machines have to be changed! This is not only
time-consuming, it’s also very likely that there will be some errors and inconsistencies, leading to
problems.

Another approach is to hold only one hostnames-table (-database) for a network, and make all the clients
query that “nameserver”. Updates will be made only on the nameserver.

This is the basic idea behind the Domain Name Service (DNS).

Usually, there’s one nameserver for each domain (hence DNS), and every host (client) in that domain
knows which domain it is in and which nameserver to query for its domain.

When the DNS gets a query about a host which is not in its domain, it will forward the query to a DNS
which is either the DNS of the domain in question or knows which DNS to ask for the specified domain.
If the DNS forwarded the query doesn’t know how to handle it, it will forward that query again to a DNS
one step higher. This is not ad infinitum, there are several “root”-servers, which know about any domain.

SeeChapter 25for details on DNS.

22.6.3 Network Information Service (NIS/YP)

Yellow Pages (YP) was invented by Sun Microsystems. The namehas been changed into Network
Information Service (NIS) because YP was already a trademark of the British telecom. So, when I’m
talking about NIS you’ll know what I mean. ;-)

There are quite some configuration files on a Unix-system, andoften it’s desired to maintain only one set
of those files for a couple of hosts. Those hosts are grouped together in a NIS-domain (which hasnothing
to do with the domains built by using DNS!) and are usually contained in one workstation cluster.

Examples for the config-files shared among those hosts are/etc/passwd , /etc/group and - last but
not least -/etc/hosts .

So, you can “abuse” NIS for getting a unique name-to-address-translation on all hosts throughout one
(NIS-)domain.

There’s only one drawback, which prevents NIS from actuallybeing used for that translation: In contrast
to the DNS, NIS provides no way to resolve hostnames which arenot in the hosts-table. There’s no hosts
“one level up” which the NIS-server can query, and so the translation will fail! Suns NIS+ takes measures
against that problem, but as NIS+ is only available on Solaris-systems, this is of little use for us now.

Don’t get me wrong: NIS is a fine thing for managing e.g. user-information (/etc/passwd , ...) in
workstation-clusters, it’s simply not too useful for resolving hostnames.

22.6.4 Other

The name resolving methods described above are what’s used commonly today to resolve hostnames into
IP addresses, but they aren’t the only ones. Basically, every database mechanism would do, but none is
implemented in NetBSD. Let’s have a quick look what you may encounter.

With NIS lacking hierarchy in data structures, NIS+ is intended to help out in that field. Tables can be
setup in a way so that if a query cannot be answered by a domain’s server, there can be another domain

234

Chapter 22 Introduction to TCP/IP Networking

“above” that might be able to do so. E.g. you could choose to have a domain that lists all the hosts (users,
groups, ...) that are valid in the whole company, one that defines the same for each division, etc. NIS+ is
not used a lot today, even Sun went back to ship back NIS by default.

Last century, the X.500 standard was designed to accommodate both simple databases like/etc/hosts

as well as complex, hierarchical systems as can be found e.g.in DNS today. X.500 wasn’t really a
success, mostly due to the fact that it tried to do too much at the same time. A cut-down version is
available today as the Lightweight Directory Access Protocol (LDAP), which is becoming popular in the
last years to manage data like users but also hosts and othersin small to medium sized organisations.

22.7 Next generation Internet protocol - IPv6

22.7.1 The Future of the Internet

According to experts, the Internet as we know it will face a serious problem in a few years. Due to its
rapid growth and the limitations in its design, there will bea point at which no more free addresses are
available for connecting new hosts. At that point, no more new web servers can be set up, no more users
can sign up for accounts at ISPs, no more new machines can be setup to access the web or participate in
online games - some people may call this a serious problem.

Several approaches have been made to solve the problem. A very popular one is to not assign a
worldwide unique address to every user’s machine, but rather to assign them “private” addresses, and
hide several machines behind one official, globally unique address. This approach is called “Network
Address Translation” (NAT, also known as IP Masquerading).It has problems, as the machines hidden
behind the global address can’t be addressed, and as a resultof this, opening connections to them - which
is used in online gaming, peer to peer networking, etc. - is not possible. For a more in-depth discussion
of the drawbacks of NAT, seeRFC3027.

A different approach to the problem of internet addresses getting scarce is to abandon the old Internet
protocol with its limited addressing capabilities, and usea new protocol that does not have these
limitations. The protocol - or actually, a set of protocols -used by machines connected to form today’s
Internet is know as the TCP/IP (Transmission Control Protocol, Internet Protocol) suite, and version 4
currently in use has all the problems described above. Switching to a different protocol version that does
not have these problems of course requires for a ’better’ version to be available, which actually is.
Version 6 of the Internet Protocol (IPv6) does fulfill any possible future demands on address space, and
also addresses further features such as privacy, encryption, and better support of mobile computing.

Assuming a basic understanding of how today’s IPv4 works, this text is intended as an introduction to the
IPv6 protocol. The changes in address formats and name resolution are covered. With the background
given here,Section 23.9will show how to use IPv6 even if your ISP doesn’t offer it by using a simple yet
efficient transition mechanism called 6to4. The goal is to get online with IPv6, giving example
configuration for NetBSD.

22.7.2 What good is IPv6?

When telling people to migrate from IPv4 to IPv6, the question you usually hear is “why?”. There are
actually a few good reasons to move to the new version:

235

Chapter 22 Introduction to TCP/IP Networking

• Bigger address space

• Support for mobile devices

• Built-in security

22.7.2.1 Bigger Address Space

The bigger address space that IPv6 offers is the most obviousenhancement it has over IPv4. While
today’s internet architecture is based on 32-bit wide addresses, the new version has 128 bit available for
addressing. Thanks to the enlarged address space, work-arounds like NAT don’t have to be used any
more. This allows full, unconstrained IP connectivity for today’s IP based machines as well as upcoming
mobile devices like PDAs and cell phones will benefit from full IP access through GPRS and UMTS.

22.7.2.2 Mobility

When mentioning mobile devices and IP, another important point to note is that some special protocol is
needed to support mobility, and implementing this protocol- called “Mobile IP” - is one of the
requirements for every IPv6 stack. Thus, if you have IPv6 going, you have support for roaming between
different networks, with everyone being updated when you leave one network and enter the other one.
Support for roaming is possible with IPv4 too, but there are anumber of hoops that need to be jumped in
order to get things working. With IPv6, there’s no need for this, as support for mobility was one of the
design requirements for IPv6. SeeRFC3024for some more information on the issues that need to be
addressed with Mobile IP on IPv4.

22.7.2.3 Security

Besides support for mobility, security was another requirement for the successor to today’s Internet
Protocol version. As a result, IPv6 protocol stacks are required to include IPsec. IPsec allows
authentication, encryption and compression of any IP traffic. Unlike application level protocols like SSL
or SSH, all IP traffic between two nodes can be handled, without adjusting any applications. The benefit
of this is that all applications on a machine can benefit from encryption and authentication, and that
policies can be set on a per-host (or even per-network) base,not per application/service. An introduction
to IPsec with a roadmap to the documentation can be found inRFC2411, the core protocol is described
in RFC2401.

22.7.3 Changes to IPv4

After giving a brief overview of all the important features of IPv6, we’ll go into the details of the basics
of IPv6 here. A brief understanding of how IPv4 works is assumed, and the changes in IPv6 will be
highlighted. Starting with IPv6 addresses and how they’re split up we’ll go into the various types of
addresses there are, what became of broadcasts, then after discussing the IP layer go into changes for
name resolving and what’s new in DNS for IPv6.

22.7.3.1 Addressing

An IPv4 address is a 32 bit value, that’s usually written in “dotted quad” representation, where each
“quad” represents a byte value between 0 and 255, for example:

236

Chapter 22 Introduction to TCP/IP Networking

127.0.0.1

This allows a theoretical number of 232 or ~4 billion hosts to be connected on the internet today. Dueto
grouping, not all addresses are available today.

IPv6 addresses use 128 bit, which results in 2128 theoretically addressable hosts. This allows for a Really
Big number of machines to addressed, and it sure fits all of today’s requirements plus all those nifty
PDAs and cell phones with IP phones in the near future withoutany sweat. When writing IPv6
addresses, they are usually divided into groups of 16 bits written as four hex digits, and the groups are
separated by colons. An example is:

fe80::2a0:d2ff:fea5:e9f5

This shows a special thing - a number of consecutive zeros canbe abbreviated by a single “::” once in the
IPv6 address. The above address is thus equivalent to fe80:0:00:000:2a0:d2ff:fea5:e9f5 - leading zeros
within groups can be omitted, and only one “::” can be used in an IPv6 address.

To make addresses manageable, they are split in two parts, which are the bits identifying the network a
machine is on, and the bits that identify a machine on a (sub)network. The bits are known as netbits and
hostbits, and in both IPv4 and IPv6, the netbits are the “left”, most significant bits of an IP address, and
the host bits are the “right”, least significant bits, as shown in Figure 22-4.

Figure 22-4. IPv6-addresses are divided into more significant network- and less significant hostbits,
too

128−n hostbitsn netbits

In IPv4, the border is drawn with the aid of the netmask, whichcan be used to mask all net/host bits.
Typical examples are 255.255.0.0 that uses 16 bit for addressing the network, and 16 bit for the machine,
or 255.255.255.0 which takes another 8 bit to allow addressing 256 subnets on e.g. a class B net.

When addressing switched from classful addressing to CIDR routing, the borders between net and host
bits stopped being on 8 bit boundaries, and as a result the netmasks started looking ugly and not really
manageable. As a replacement, the number of network bits is used for a given address, to denote the
border, e.g.

10.0.0.0/24

is the same as a netmask of 255.255.255.0 (24 1-bits). The same scheme is used in IPv6:

2001:638:a01:2::/64

tells us that the address used here has the first (leftmost) 64bits used as the network address, and the last
(rightmost) 64 bits are used to identify the machine on the network. The network bits are commonly
referred to as (network) “prefix”, and the “prefixlen” here would be 64 bits.

Common addressing schemes found in IPv4 are the (old) class Band class C nets. With a class C
network (/24), you get 24 bits assigned by your provider, andit leaves 8 bits to be assigned by you. If
you want to add any subnetting to that, you end up with “uneven” netmasks that are a bit nifty to deal
with. Easier for such cases are class B networks (/16), whichonly have 16 bits assigned by the provider,
and that allow subnetting, i.e. splitting of the rightmost bits into two parts. One to address the on-site

237

Chapter 22 Introduction to TCP/IP Networking

subnet, and one to address the hosts on that subnet. Usually,this is done on byte (8 bit) boundaries.
Using a netmask of 255.255.255.0 (or a /24 prefix) allows flexible management even of bigger networks
here. Of course there is the upper limit of 254 machines per subnet, and 256 subnets.

With 128 bits available for addressing in IPv6, the scheme commonly used is the same, only the fields
are wider. Providers usually assign /48 networks, which leaves 16 bits for a subnetting and 64 hostbits.

Figure 22-5. IPv6-addresses have a similar structure to class B addresses

16bit 64bitIPv6:

Host−bits

16bit 8bit 8bitIPv4:

Self−assigned subnet−bits

48bit

Provider−assigned network−bits

Now while the space for network and subnets here is pretty much ok, using 64 bits for addressing hosts
seems like a waste. It’s unlikely that you will want to have several billion hosts on a single subnet, so
what is the idea behind this?

The idea behind fixed width 64 bit wide host identifiers is thatthey aren’t assigned manually as it’s
usually done for IPv4 nowadays. Instead, IPv6 host addresses are recommended (not mandatory!) to be
built from so-called EUI64 addresses. EUI64 addresses are -as the name says - 64 bit wide, and derived
from MAC addresses of the underlying network interface. E.g. for ethernet, the 6 byte (48 bit) MAC
address is usually filled with the hex bits “fffe” in the middle and a bit is set to mark the address as
unique (which is true for Ethernet), e.g. the MAC address

01:23:45:67:89:ab

results in the EUI64 address

03:23:45:ff:fe:67:89:ab

which again gives the host bits for the IPv6 address as

::0323:45ff:fe67:89ab

These host bits can now be used to automatically assign IPv6 addresses to hosts, which supports
autoconfiguration of IPv6 hosts - all that’s needed to get a complete IPv6 address is the first (net/subnet)
bits, and IPv6 also offers a solution to assign them automatically.

When on a network of machines speaking IP, there’s usually one router which acts as the gateway to
outside networks. In IPv6 land, this router will send “router advertisement” information, which clients
are expected to either receive during operation or to solicit upon system startup. The router advertisement
information includes data on the router’s address, and which address prefix it routes. With this
information and the host-generated EUI64 address, an IPv6-host can calculate its IP address, and there is
no need for manual address assignment. Of course routers still need some configuration.

238

Chapter 22 Introduction to TCP/IP Networking

The router advertisement information they create are part of the Neighbor Discovery Protocol (NDP, see
RFC2461), which is the successor to IPv4’s ARP protocol. In contrastto ARP, NDP does not only do
lookup of IPv6 addresses for MAC addresses (the neighbor solicitation/advertisement part), but also does
a similar service for routers and the prefixes they serve, which is used for autoconfiguration of IPv6 hosts
as described in the previous paragraph.

22.7.3.2 Multiple Addresses

In IPv4, a host usually has one IP address per network interface or even per machine if the IP stack
supports it. Only very rare applications like web servers result in machines having more than one IP
address. In IPv6, this is different. For each interface, there is not only a globally unique IP address, but
there are two other addresses that are of interest: The link local address, and the site local address. The
link local address has a prefix of fe80::/64, and the host bitsare built from the interface’s EUI64 address.
The link local address is used for contacting hosts and routers on the same network only, the addresses
are not visible or reachable from different subnets. If wanted, there’s the choice of either using global
addresses (as assigned by a provider), or using site local addresses. Site local addresses are assigned the
network address fec0::/10, and subnets and hosts can be addressed just as for provider-assigned
networks. The only difference is, that the addresses will not be visible to outside machines, as these are
on a different network, and their “site local” addresses arein a different physical net (if assigned at all).
As with the 10/8 network in IPv4, site local addresses can be used, but don’t have to. For IPv6 it’s most
common to have hosts assigned a link-local and a global IP address. Site local addresses are rather
uncommon today, and are no substitute for globally unique addresses if global connectivity is required.

22.7.3.3 Multicasting

In IP land, there are three ways to talk to a host: unicast, broadcast and multicast. The most common one
is by talking to it directly, using its unicast address. In IPv4, the unicast address is the “normal” IP
address assigned to a single host, with all address bits assigned. The broadcast address used to address all
hosts in the same IP subnet has the network bits set to the network address, and all host bits set to “1”
(which can be easily done using the netmask and some bit operations). Multicast addresses are used to
reach a number of hosts in the same multicast group, which canbe machines spread over the whole
internet. Machines must join multicast groups explicitly to participate, and there are special IPv4
addresses used for multicast addresses, allocated from the224/8 subnet. Multicast isn’t used very much
in IPv4, and only few applications like the MBone audio and video broadcast utilities use it.

In IPv6, unicast addresses are used the same as in IPv4, no surprise there - all the network and host bits
are assigned to identify the target network and machine. Broadcasts are no longer available in IPv6 in the
way they were in IPv4, this is where multicasting comes into play. Addresses in the ff::/8 network are
reserved for multicast applications, and there are two special multicast addresses that supersede the
broadcast addresses from IPv4. One is the “all routers” multicast address, the others is for “all hosts”.
The addresses are specific to the subnet, i.e. a router connected to two different subnets can address all
hosts/routers on any of the subnets it’s connected to. Addresses here are:

• ff0X::1 for all hosts and

• ff0X::2 for all routers,

239

Chapter 22 Introduction to TCP/IP Networking

where “X” is the scope ID of the link here, identifying the network. Usually this starts from “1” for the
“node local” scope, “2” for the first link, etc. Note that it’sperfectly ok for two network interfaces to be
attached to one link, thus resulting in double bandwidth:

Figure 22-6. Several interfaces attached to a link result inonly one scope ID for the link

200MBps

node

One use of the “all hosts” multicast is in the neighbor solicitation code of NDP, where any machine that
wants to communicate with another machine sends out a request to the “all hosts” group, and the
machine in question is expected to respond.

22.7.3.4 Name Resolving in IPv6

After talking a lot about addressing in IPv6, anyone still here will hope that there’s a proper way to
abstract all these long & ugly IPv6 addresses with some nice hostnames as one can do in IPv4, and of
course there is.

Hostname to IP address resolving in IPv4 is usually done in one of three ways: using a simple table in
/etc/hosts , by using the Network Information Service (NIS, formerly YP) or via the Domain Name
System (DNS).

As of this writing, NIS/NIS+ over IPv6 is currently only available on Solaris 8, for both database
contents and transport, using a RPC extension.

Having a simple address<->name map like/etc/hosts is supported in all IPv6 stacks. With the KAME
implementation used in NetBSD,/etc/hosts contains IPv6 addresses as well as IPv4 addresses. A
simple example is the “localhost” entry in the default NetBSD installation:

127.0.0.1 localhost
::1 localhost

For DNS, there are no fundamentally new concepts. IPv6 name resolving is done with AAAA records
that - as the name implies - point to an entity that’s four times the size of an A record. The AAAA record
takes a hostname on the left side, just as A does, and on the right side there’s an IPv6 address, e.g.

noon IN AAAA 3ffe:400:430:2:240:95ff:fe40:4385

For reverse resolving, IPv4 uses the in-addr.arpa zone, andbelow that it writes the bytes (in decimal) in
reversed order, i.e. more significant bytes are more right. For IPv6 this is similar, only that hex digits
representing 4 bits are used instead of decimal numbers, andthe resource records are also under a
different domain, ip6.int.

So to have the reverse resolving for the above host, you wouldput into your/etc/named.conf

something like:

zone "0.3.4.0.0.0.4.0.e.f.f.3.IP6.INT" {
type master;

240

Chapter 22 Introduction to TCP/IP Networking

file "db.reverse";
};

and in the zone file db.reverse you put (besides the usual records like SOA and NS):

5.8.3.4.0.4.e.f.f.f.5.9.0.4.2.0.2.0.0.0 IN PTR noon.ip v6.example.com.

The address is reversed here, and written down one hex digit after the other, starting with the least
significant (rightmost) one, separating the hex digits withdots, as usual in zone files.

One thing to note when setting up DNS for IPv6 is to take care ofthe DNS software version in use.
BIND 8.x does understand AAAA records, but it does not offer name resolving via IPv6. You need
BIND 9.x for that. Beyond that, BIND 9.x supports a number of resource records that are currently being
discussed but not officially introduced yet. The most noticeable one here is the A6 record which allows
easier provider/prefix changing.

To sum up, this section talked about the technical differences between IPv4 and IPv6 for addressing and
name resolving. Some details like IP header options, QoS andflows were deliberately left out to not
make this document more complex than necessary.

241

Chapter 23

Setting up TCP/IP on NetBSD in
practice

23.1 A walk through the kernel configuration
Before we dive into configuring various aspects of network setup, we want to walk through the necessary
bits that have to or can be present in the kernel. SeeChapter 31for more details on compiling the kernel,
we will concentrate on the configuration of the kernel here. We will take the i386/GENERIC config file
as an example here. Config files for other platforms should contain similar information, the comments in
the config files give additional hints. Besides the information given here, each kernel option is also
documented in the options(4) manpage, and there is usually amanpage for each driver too, e.g. tlp(4).

The first line of each config file shows the version. It can be used to compare against other versions via
CVS, or when reporting bugs.

options NTP # NTP phase/frequency locked loop

If you want to run the Network Time Protocol (NTP), this option can be enabled for maximum precision.
If the option is not present, NTP will still work. See ntpd(8)for more information.

file-system NFS # Network File System client

If you want to use another machine’s hard disk via the NetworkFile System (NFS), this option is needed.
Section 28.1gives more information on NFS.

options NFSSERVER # Network File System server

This option includes the server side of the NFS remote file sharing protocol. Enable if you want to allow
other machines to use your hard disk.Section 28.1contains more information on NFS.

#options GATEWAY # packet forwarding

If you want to setup a router that forwards packets between networks or network interfaces, setting this
option is needed. If doesn’t only switch on packet forwarding, but also increases some buffers. See
options(4) for details.

options INET # IP + ICMP + TCP + UDP

This enables the TCP/IP code in the kernel. Even if you don’t want/use networking, you will still need
this for machine-internal communication of subsystems like the X Window System. See inet(4) for more
details.

242

Chapter 23 Setting up TCP/IP on NetBSD in practice

options INET6 # IPV6

If you want to use IPv6, this is your option. If you don’t want IPv6, which is part of NetBSD since the
1.5 release, you can remove/comment out that option. See theinet6(4) manpage andSection 22.7for
more information on the next generation Internet protocol.

#options IPSEC # IP security

Includes support for the IPsec protocol, including key and policy management, authentication and
compression. This option can be used without the previous option INET6, if you just want to use IPsec
with IPv4, which is possible. See ipsec(4) for more information.

#options IPSEC_ESP # IP security (encryption part; define w /IPSEC)

This option is needed in addition to IPSEC if encryption is wanted in IPsec.

#options MROUTING # IP multicast routing

If multicast services like the MBone services should be routed, this option needs to be included. Note
that the routing itself is controlled by the mrouted(8) daemon.

options NS # XNS
#options NSIP # XNS tunneling over IP

These options enable the Xerox Network Systems(TM) protocol family. It’s not related to the TCP/IP
protocol stack, and in rare use today. The ns(4) manpage has some details.

options ISO,TPIP # OSI
#options EON # OSI tunneling over IP

These options include the OSI protocol stack, which was saidfor a long time to be the future of
networking. It’s mostly history these days. :-) See the iso(4) manpage for more information.

options CCITT,LLC,HDLC # X.25

These options enable the X.25 protocol set for transmissionof data over serial lines. It is/was used
mostly in conjunction with the OSI protocols and in WAN networking.

options NETATALK # AppleTalk networking protocols

Include support for the AppleTalk protocol stack. Userlandserver programs are needed to make use of
that. See pkgsrc/net/netatalk and pkgsrc/net/netatalk-asun for such packages. More information on the
AppleTalk protocol and protocol stack are available in the atalk(4) manpage.

options PPP_BSDCOMP # BSD-Compress compression support fo r PPP
options PPP_DEFLATE # Deflate compression support for PPP
options PPP_FILTER # Active filter support for PPP (require s bpf)

These options tune various aspects of the Point-to-Point protocol. The first two determine the
compression algorithms used and available, while the thirdone enables code to filter some packets.

options PFIL_HOOKS # pfil(9) packet filter hooks
options IPFILTER_LOG # ipmon(8) log support

243

Chapter 23 Setting up TCP/IP on NetBSD in practice

These options enable firewalling in NetBSD, using IPFilter.See the ipf(4) and ipf(8) manpages for more
information on operation of IPFilter, andSection 23.5.1for a configuration example.

Compatibility with 4.2BSD implementation of TCP/IP. Not r ecommended.
#options TCP_COMPAT_42

This option is only needed if you have machines on the networkthat still run 4.2BSD or a network stack
derived from it. If you’ve got one or more 4.2BSD-systems on your network, you’ve to pay attention to
set the right broadcast-address, as 4.2BSD has a bug in its networking code, concerning the broadcast
address. This bug forces you to set all host-bits in the broadcast-address to “0”. The TCP_COMPAT_42
option helps you ensuring this.

options NFS_BOOT_DHCP,NFS_BOOT_BOOTPARAM

These options enable lookup of data via DHCP or the BOOTPARAMprotocol if the kernel is told to use
a NFS root file system. See the diskless(8) manpage for more information.

Kernel root file system and dump configuration.
config netbsd root on ? type ?
#config netbsd root on sd0a type ffs
#config netbsd root on ? type nfs

These lines tell where the kernel looks for its root file system, and which filesystem type it is expected to
have. If you want to make a kernel that uses a NFS root filesystem via the tlp0 interface, you can do this
with “ root on tlp0 type nfs ”. If a ? is used instead of a device/type, the kernel tries to figure one
out on its own.

ISA serial interfaces
com0 at isa? port 0x3f8 irq 4 # Standard PC serial ports
com1 at isa? port 0x2f8 irq 3
com2 at isa? port 0x3e8 irq 5

If you want to use PPP or SLIP, you will need some serial (com) interfaces. Others with attachment on
USB, PCMCIA or PUC will do as well.

Network Interfaces

This rather long list contains all sorts of network drivers.Please pick the one that matches your hardware,
according to the comments. For most drivers, there’s also a manual page available, e.g. tlp(4), ne(4), etc.

MII/PHY support

This section lists media independent interfaces for network cards. Pick one that matches your hardware.
If in doubt, enable them all and see what the kernel picks. Seethe mii(4) manpage for more information.

USB Ethernet adapters
aue* at uhub? port ? # ADMtek AN986 Pegasus based adapters
cue * at uhub? port ? # CATC USB-EL1201A based adapters
kue * at uhub? port ? # Kawasaki LSI KL5KUSB101B based adapters

USB-ethernet adapters only have about 2MBit/s bandwidth, but they are very convenient to use. Of
course this needs other USB related options which we won’t cover here, as well as the necessary
hardware. See the corresponding manpages for more information.

244

Chapter 23 Setting up TCP/IP on NetBSD in practice

network pseudo-devices
pseudo-device bpfilter 8 # Berkeley packet filter

This pseudo-device allows sniffing packets of all sorts. It’s needed for tcpdump, but also rarpd and some
other applications that need to know about network traffic. See bpf(4) for more information.

pseudo-device ipfilter # IP filter (firewall) and NAT

This one enables the IPFilter’s packet filtering kernel interface used for firewalling, NAT (IP
Masquerading) etc. See ipf(4) andSection 23.5.1for more information.

pseudo-device loop # network loopback

This is the “lo0” software loopback network device which is used by some programs these days, as well
as for routing things. It should not be omitted. See lo(4) formore details.

pseudo-device ppp 2 # Point-to-Point Protocol

If you want to use PPP either over a serial interface or ethernet (PPPoE), you will need this option. See
ppp(4) for details on this interface.

pseudo-device sl 2 # Serial Line IP

Serial Line IP is a simple encapsulation for IP over (well :) serial lines. It does not include negotiation of
IP addresses and other options, which is the reason that it’snot in widespread use today any more. See
sl(4).

pseudo-device strip 2 # Starmode Radio IP (Metricom)

If you happen to have one of the old Metricom Ricochet packet radio wireless network devices, use this
pseudo-device to use it. See the strip(4) manpage for detailed information.

pseudo-device tun 2 # network tunneling over tty

This network device can be used to tunnel network packets to adevice file,/dev/tun * . Packets routed
to the tun0 interface can be read from/dev/tun0 , and data written to/dev/tun0 will be sent out the
tun0 network interface. This can be used to implement e.g. QoS routing in userland. See tun(4) for
details.

pseudo-device gre 2 # generic L3 over IP tunnel

The GRE encapsulation can be used to tunnel arbitrary layer 3packets over IP, e.g. to implement VPNs.
See gre(4) for more.

pseudo-device ipip 2 # IP Encapsulation within IP (RFC 2003)

Another IP-in-IP encapsulation device, with a different encapsulation format. See the ipip(4) manpage
for details.

pseudo-device gif 4 # IPv[46] over IPv[46] tunnel (RFC 1933)

245

Chapter 23 Setting up TCP/IP on NetBSD in practice

Using the GIF interface allows to tunnel e.g. IPv6 over IPv4,which can be used to get IPv6 connectivity
if no IPv6-capable uplink (ISP) is available. Other mixes ofoperations are possible, too. See the gif(4)
manpage for some examples.

#pseudo-device faith 1 # IPv[46] tcp relay translation i/f

The faith interface captures IPv6 TCP traffic, for implementing userland IPv6-to-IPv4 TCP relays e.g.
for protocol transitions. See the faith(4) manpage for moredetails on this device.

#pseudo-device stf 1 # 6to4 IPv6 over IPv4 encapsulation

This adds a network device that can be used to tunnel IPv6 overIPv4 without setting up a configured
tunnel before. The source address of outgoing packets contains the IPv4 address, which allows routing
replies back via IPv4. See the stf(4) manpage andSection 23.9for more details.

pseudo-device vlan # IEEE 802.1q encapsulation

This interface provides support for IEEE 802.1Q Virtual LANs, which allows tagging Ethernet frames
with a “vlan” ID. Using properly configured switches (that also have to support VLAN, of course), this
can be used to build virtual LANs where one set of machines doesn’t see traffic from the other (broadcast
and other). The vlan(4) manpage tells more about this.

23.2 Overview of the network configuration files
The following is a list of the files used to configure the network. The usage of these files, some of which
have already been met the first chapters, will be described inthe following sections.

/etc/hosts

Local hosts database file. Each line contains information regarding a known host and contains the
internet address, the host’s name and the aliases. Small networks can be configured using only the
hosts file, without aname server.

/etc/resolv.conf

This file specifies how the routines which provide access to the Internet Domain Name System
should operate. Generally it contains the addresses of the name servers.

/etc/ifconfig.xxx

This file is used for the automatic configuration of the network card at boot.

/etc/mygate

Contains the IP address of the gateway.

/etc/nsswitch.conf

Name service switch configuration file. It controls how a process looks up various databases
containing information regarding hosts, users, groups, etc. Specifically, this file defines the order to
look up the databases. For example, the line:

hosts: files dns

246

Chapter 23 Setting up TCP/IP on NetBSD in practice

specifies that the hosts database comes from two sources,files(the local/etc/hosts file) and
DNS, (the Internet Domain Name System) and that the local files are searched before the DNS.

It is usually not necessary to modify this file.

23.3 Connecting to the Internet with a modem
There are many types of Internet connections: this section explains how to connect to a provider using a
modem over a telephone line using the PPP protocol, a very common setup. In order to have a working
connection, the following steps must be done:

1. Get the necessary information from the provider.

2. Edit the file/etc/resolv.conf and check/etc/nsswitch.conf .

3. Create the directories/etc/ppp and/etc/ppp/peers if they don’t exist.

4. Create the connection script, the chat file and the pppd options file.

5. Created the user-password authentication file.

Judging from the previous list it looks like a complicated procedure that requires a lot of work. Actually,
the single steps are very easy: it’s just a matter of modifying, creating or simply checking some small
text files. In the following example it will be assumed that the modem is connected to the second serial
port /dev/tty01 (COM2 in DOS).

A few words on the difference betweencom, COM andtty. For NetBSD, “com” is the name of the serial
port driver (the one that is displayed bydmesg) and “tty” is the name of the port. Since numbering starts
at 0, com0 is the driver for the first serial port, named tty00.In the DOS world, instead, COM1 refers to
the first serial port (usually located at 0x3f8), COM2 to the second, and so on. Therefore COM1 (DOS)
corresponds to/dev/tty00 (NetBSD).

Besides external modems connected to COM ports (using/dev/tty0[012] on i386,/dev/tty[ab]

on sparc, ...) modems on USB (/dev/ttyU *) and pcmcia/cardbus (/dev/tty0[012]) can be used.

23.3.1 Getting the connection information

The first thing to do is ask the provider the necessary information for the connection, which means:

• The phone number of the nearest POP.

• The authentication method to be used.

• The username and password for the connection.

• The IP addresses of the name servers.

23.3.2 resolv.conf and nsswitch.conf

The/etc/resolv.conf file must be configured using the information supplied by the provider,
especially the addresses of the DNS. In this example the two DNS will be “194.109.123.2” and
“191.200.4.52”.

247

Chapter 23 Setting up TCP/IP on NetBSD in practice

Example 23-1.resolv.conf

nameserver 194.109.123.2
nameserver 191.200.4.52

And now an example of the/etc/nsswitch.conf file.

Example 23-2.nsswitch.conf

/etc/nsswitch.conf
group: compat
group_compat: nis
hosts: files dns
netgroup: files [notfound=return] nis
networks: files
passwd: compat
passwd_compat: nis
shells: files

The defaults of doing hostname lookups via/etc/hosts followed by the DNS works fine and there’s
usually no need to modify this.

23.3.3 Creating the directories for pppd

The directories/etc/ppp and/etc/ppp/peers will contain the configuration files for the PPP
connection. After a fresh install of NetBSD they don’t existand must be created (chmod 700).

mkdir /etc/ppp

mkdir /etc/ppp/peers

23.3.4 Connection script and chat file

The connection script will be used as a parameter on the pppd command line; it is located in
/etc/ppp/peers and has usually the name of the provider. For example, if the provider’s name is
BigNet and your user name for the connection to the provider is alan, an example connection script could
be:

Example 23-3. Connection script

/etc/ppp/peers/bignet
connect ’/usr/sbin/chat -v -f /etc/ppp/peers/bignet.cha t’
noauth
user alan
remotename bignet.it

In the previous example, the script specifies achat fileto be used for the connection. The options in the
script are detailed in the pppd(8) man page.

248

Chapter 23 Setting up TCP/IP on NetBSD in practice

Note: If you are experiencing connection problems, add the following two lines to the connection
script

debug
kdebug 4

You will get a log of the operations performed when the system tries to connect. See pppd(8),
syslog.conf(5).

The connection script calls the chat application to deal with the physical connection (modem
initialization, dialing, ...) The parameters to chat can bespecified inline in the connection script, but it is
better to put them in a separate file. If, for example, the telephone number of the POP to call is 02
99999999, an example chat script could be:

Example 23-4. Chat file

/etc/ppp/peers/bignet.chat
ABORT BUSY
ABORT "NO CARRIER"
ABORT "NO DIALTONE"
” ATDT0299999999
CONNECT ”

Note: If you have problems with the chat file, you can try connecting manually to the POP with the
cu(1) program and verify the exact strings that you are receiving.

23.3.5 Authentication

During authentication each of the two systems verifies the identity of the other system, although in
practice you are not supposed to authenticate the provider,but only to be verified by him, using one of
the following methods:

• PAP/CHAP

• login

Most providers use a PAP/CHAP authentication.

23.3.5.1 PAP/CHAP authentication

The authentication information (speak: password) is stored in the/etc/ppp/pap-secrets for PAP
and in/etc/ppp/chap-secrets for CHAP. The lines have the following format:

user * password

For example:

alan * pZY9o

249

Chapter 23 Setting up TCP/IP on NetBSD in practice

For security reasons thepap-secrets andchap-secrets files should be owned byroot and have
permissions “600”.

chown root /etc/ppp/pap-secrets

chown root /etc/ppp/chap-secrets

chmod 600 /etc/ppp/pap-secrets

chmod 600 /etc/ppp/chap-secrets

23.3.5.2 Login authentication

This type of authentication is not widely used today; if the provider uses login authentication, user name
and password must be supplied in the chat file instead of the PAP/CHAP files, because the chat file
simulates an interactive login. In this case, set up appropriate permissions for the chat file.

The following is an example chat file with login authentication:

Example 23-5. Chat file with login

/etc/ppp/peers/bignet.chat
ABORT BUSY
ABORT "NO CARRIER"
ABORT "NO DIALTONE"
” ATDT0299999999
CONNECT ”
TIMEOUT 50
ogin: alan
ssword: pZY9o

23.3.6 pppd options

The only thing left to do is the creation of thepppd options file, which is/etc/ppp/options (chmod
644).

Example 23-6./etc/ppp/options

/dev/tty01
lock
crtscts
57600
modem
defaultroute
noipdefault

Check the pppd(8) man page for the meaning of the options.

250

Chapter 23 Setting up TCP/IP on NetBSD in practice

23.3.7 Testing the modem

Before activating the link it is a good idea to make a quick modem test, in order to verify that the
physical connection and the communication with the modem works. For the test the cu(1) program can
be used, as in the following example.

1. Create the file/etc/uucp/port with the following lines:

type modem
port modem
device /dev/tty01
speed 115200

(substitute the correct device in place of/dev/tty01).

2. Write the commandcu -p modemto start sending commands to the modem. For example:

cu -p modem

Connected.
ATZ

OK
~.

Disconnected.
#

In the previous example the reset command (ATZ) was sent to the modem, which replied with OK:
the communication works. To exit cu(1), write~ (tilde) followed by. (dot), as in the example.

If the modem doesn’t work, check that it is connected to the correct port (i.e. you are using the right port
with cu(1). Cables are a frequent cause of trouble, too.

When you start cu(1) and a message saying “Permission denied” appears, check who is the owner of the
/dev/tty ## device, it must be "uucp". For example:

$ ls -l /dev/tty00

crw------- 1 uucp wheel 8, 0 Mar 22 20:39 /dev/tty00

If the owner is root, the following happens:

$ ls -l /dev/tty00

crw------- 1 root wheel 8, 0 Mar 22 20:39 /dev/tty00
$ cu -p modem

cu: open (/dev/tty00): Permission denied
cu: All matching ports in use

23.3.8 Activating the link

At last everything is ready to connect to the provider with the following command:

pppd call bignet

wherebignet is the name of the already described connection script. To see the connection messages of
pppd, give the following command:

251

Chapter 23 Setting up TCP/IP on NetBSD in practice

tail -f /var/log/messages

To disconnect, do akill -HUP of pppd.

pkill -HUP pppd

23.3.9 Using a script for connection and disconnection

When the connection works correctly, it’s time to write a couple of scripts to avoid repeating the
commands every time. These two scripts can be named, for example,ppp-start andppp-stop .

ppp-start is used to connect to the provider:

Example 23-7.ppp-start

#!/bin/sh
MODEM=tty01
POP=bignet
if [-f /var/spool/lock/LCK..$MODEM]; then
echo ppp is already running...
else
pppd call $POP
tail -f /var/log/messages
fi

ppp-stop is used to close the connection:

Example 23-8.ppp-stop

#!/bin/sh
MODEM=tty01
if [-f /var/spool/lock/LCK..$MODEM]; then
echo -f killing pppd...
kill -HUP ‘cat /var/spool/lock/LCK..$MODEM‘
echo done
else
echo ppp is not active
fi

The two scripts take advantage of the fact that whenpppd is active, it creates the fileLCK..tty01 in the
/var/spool/lock directory. This file contains the process ID (pid) of thepppd process.

The two scripts must be executable:

chmod u+x ppp-start ppp-stop

252

Chapter 23 Setting up TCP/IP on NetBSD in practice

23.3.10 Running commands after dialin

If you find yourself to always run the same set of commands eachtime you dial in, you can put them in a
script/etc/ppp/ip-up which will be called by pppd(8) after successful dial-in. Likewise, before the
connection is closed down,/etc/ppp/ip-down is executed. Both scripts are expected to be executable.
See pppd(8) for more details.

23.4 Creating a small home network
Networking is one of the main strengths of Unix and NetBSD is no exception: networking is both
powerful and easy to set up and inexpensive too, because there is no need to buy additional software to
communicate or to build a server.Section 23.5explains how to configure a NetBSD machine to act as a
gateway for a network: with IPNAT all the hosts of the networkcan reach the Internet with a single
connection to a provider made by the gateway machine. The only thing to be checked before creating the
network is to buy network cards supported by NetBSD (check the INSTALL. * files for a list of
supported devices).

First, the network cards must be installed and connected to ahub, switch or directly (seeFigure 23-1).

Next, check that the network cards are recognized by the kernel, studying the output of thedmesg
command. In the following example the kernel recognized correctly an NE2000 clone:

...
ne0 at isa0 port 0x280-0x29f irq 9
ne0: NE2000 Ethernet
ne0: Ethernet address 00:c2:dd:c1:d1:21
...

If the card is not recognized by the kernel, check that it is enabled in the kernel configuration file and
then that the card’s IRQ matches the one that the kernel expects. For example, this is the isa NE2000 line
in the configuration file; the kernel expects the card to be at IRQ 9.

...
ne0 at isa? port 0x280 irq 9 # NE[12]000 ethernet cards
...

If the card’s configuration is different, it will probably not be found at boot. In this case, either change
the line in the kernel configuration file and compile a new kernel or change the card’s setup (usually
through a setup disk or, for old cards, a jumper on the card).

The following command shows the network card’s current configuration:

ifconfig ne0

ne0: flags=8822<BROADCAST,NOTRAILERS,SIMPLEX,MULTICA ST> mtu 1500
address: 00:50:ba:aa:a7:7f
media: Ethernet autoselect (10baseT)
inet6 fe80::250:baff:feaa:a77f%ne0 prefixlen 64 scopeid 0x1

The software configuration of the network card is very easy. The IP address “192.168.1.1” is assigned to
the card.

253

Chapter 23 Setting up TCP/IP on NetBSD in practice

ifconfig ne0 inet 192.168.1.1 netmask 0xffffff00

Note that the networks 10.0.0.0/8 and 192.168.0.0/16 are reserved for private networks, which is what
we’re setting up here.

Repeating the previous command now gives a different result:

ifconfig ne0

ne0: flags=8863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMP LEX,MULTICAST> mtu 1500
address: 00:50:ba:aa:a7:7f
media: Ethernet autoselect (10baseT)
inet 192.168.1.1 netmask 0xffffff00 broadcast 192.168.1. 255
inet6 fe80::250:baff:feaa:a77f%ne0 prefixlen 64 scopeid 0x1

The output ofifconfig has now changed: the IP address is now printed and there are two new flags, “UP”
and “RUNNING” If the interface isn’t “UP”, it will not be usedby the system to send packets.

The host was given the IP address 192.168.1.1, which belongsto the set of addresses reserved for
internal networks which are not reachable from the Internet. The configuration is finished and must now
be tested; if there is another active host on the network, apingcan be tried. For example, if 192.168.1.2
is the address of the active host:

ping 192.168.1.2

PING ape (192.168.1.2): 56 data bytes
64 bytes from 192.168.1.2: icmp_seq=0 ttl=255 time=1.286 m s
64 bytes from 192.168.1.2: icmp_seq=1 ttl=255 time=0.649 m s
64 bytes from 192.168.1.2: icmp_seq=2 ttl=255 time=0.681 m s
64 bytes from 192.168.1.2: icmp_seq=3 ttl=255 time=0.656 m s
^C
----ape PING Statistics----
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.649/0.818/1.286/0.31 2 ms

With the current setup, at the next boot it will be necessary to repeat the configuration of the network
card. In order to avoid repeating the card’s configuration ateach boot, add the following lines to
/etc/rc.conf :

auto_ifconfig=yes
ifconfig_ne0="inet 192.168.1.1 netmask 0xffffff00"

In this example the variableifconfig_ne0 was set because the network card was recognized asne0by
the kernel; if you are using a different adapter, substitutethe appropriate name in place of ne0.

At the next boot the network card will be configured automatically.

If you have a router that is connected to the internet, you canuse it as default router, which will handle
all your packets. To do so, setdefaultroute to the router’s IP address in/etc/rc.conf :

defaultroute=192.168.0.254

Be sure to use the default router’s IP address instead of name, in case your DNS server is beyond the
default router. In that case, the DNS server couldn’t be reached to resolve the default router’s hostname
and vice versa, creating a chicken-and-egg problem.

254

Chapter 23 Setting up TCP/IP on NetBSD in practice

To reach hosts on your local network, and assuming you reallyhave very few hosts, adjust/etc/hosts

to contain the addresses of all the hosts belonging to the internal network. For example:

Example 23-9./etc/hosts

#
Host Database
This file should contain the addresses and aliases
for local hosts that share this file.
It is used only for "ifconfig" and other operations
before the nameserver is started.
#
#
127.0.0.1 localhost
::1 localhost
#
RFC 1918 specifies that these networks are "internal".
10.0.0.0 10.255.255.255
172.16.0.0 172.31.255.255
192.168.0.0 192.168.255.255

192.168.1.1 ape.insetti.net ape
192.168.1.2 vespa.insetti.net vespa
192.168.1.0 insetti.net

If you are dialed in via an Internet Service Provider, or if you have a local Domain Name Server (DNS)
running, you may want to use it to resolve hostnames to IP addresses, possibly in addition to
/etc/hosts , which would only know your own hosts. To configure a machine as DNS client, you need
to edit/etc/resolv.conf , and enter the DNS server’s address, in addition to an optional domain name
that will be appended to hosts with no domain, in order to create a FQDN for resolving. Assuming your
DNS server’s IP address is 192.168.1.2 and it is setup to serve for "home.net", put the following into
/etc/resolv.conf :

/etc/resolv.conf
domain home.net
nameserver 192.168.1.2

The/etc/nsswitch.conf file should be checked as explained inExample 23-2.

Summing up, to configure the network the following must be done: the network adapters must be
installed and physically connected. Next they must be configured (withifconfig) and, finally, the file
/etc/rc.conf must be modified to configure the interface and possibly default router, and
/etc/resolv.conf and/etc/nsswitch.conf should be adjusted if DNS should be used. This type
of network management is sufficient for small networks without sophisticated needs.

23.5 Setting up an Internet gateway with IPNAT
The mysterious acronym IPNAT hides the Internet Protocol Network Address Translation, which enables
the routing of an internal network (e.g. your home network asdescribed inSection 23.4) on a real
network (Internet). This means that with only one “real” IP,static or dynamic, belonging to a gateway

255

Chapter 23 Setting up TCP/IP on NetBSD in practice

running IPNAT, it is possible to create simultaneous connections to the Internet for all the hosts of the
internal network.

Some usage examples of IPNAT can be found in the subdirectory/usr/share/examples/ipf : look at
the filesBASIC.NAT andnat-setup .

The setup for the example described in this section is detailed inFigure 23-1: host 1can connect to the
Internet calling a provider with a modem and getting a dynamic IP address.host 2andhost 3can’t
communicate with the Internet with a normal setup: IPNAT allows them to do it: host 1 will act as a
Internet gateway for hosts 2 and 3. Using host 1 as default router, hosts 2 and 3 will be able to access the
Internet.

Figure 23-1. Network with gateway

192.168.1.3 192.168.1.2 192.168.1.1

host 3 host 2 host 1

modem

local net 192.168.1.0

ISPppp0

ne0

......

Gateway

ne0ne0

static/dynamic IP

I
N
T
E
R
N
E
T

23.5.1 Configuring the gateway/firewall

To use IPNAT, the “pseudo-device ipfilter” must be compiled into the kernel, and IP packet forwarding
must be enabled in the kernel. To check, run:

sysctl net.inet.ip.forwarding

net.inet.ip.forwarding = 1

If the result is “1” as in the previous example, the option is enabled, otherwise, if the result is “0” the
option is disabled. You can do two things:

1. Compile a new kernel, with the GATEWAY option enabled.

2. Enable the option in the current kernel with the followingcommand:

sysctl -w net.inet.ip.forwarding=1

You can add sysctl settings to/etc/sysctl.conf to have them set automatically at boot. In this
case you would want to add

net.inet.ip.forwarding=1

The rest of this section explains how to create an IPNAT configuration that is automatically started every
time that a connection to the provider is activated with the PPP link. With this configuration all the host
of a home network (for example) will be able to connect to the Internet through the gateway machine,
even if they don’t use NetBSD.

For the setup, first, create the/etc/ipnat.conf file containing the following rules:

256

Chapter 23 Setting up TCP/IP on NetBSD in practice

map ppp0 192.168.1.0/24 -> 0/32 proxy port ftp ftp/tcp
map ppp0 192.168.1.0/24 -> 0/32 portmap tcp/udp 40000:6000 0
map ppp0 192.168.1.0/24 -> 0/32

192.168.1.0/24 are the network addresses that should be mapped. The first line of the configuration file is
optional: it enables active FTP to work through the gateway.The second line is used to handle correctly
tcp and udp packets; the portmapping is necessary because ofthe many to one relationship). The third
line is used to enable ICMP, ping, etc.

Next, create the/etc/ppp/ip-up file; it will be called automatically every time that the PPP link is
activated:

#!/bin/sh
/etc/ppp/ip-up
/etc/rc.d/ipnat forcestart

Create the file/etc/ppp/ip-down ; it will be called automatically when the PPP link is closed:

#!/bin/sh
/etc/ppp/ip-down
/etc/rc.d/ipnat forcestop

Both ip-up andip-down must be executable:

chmod u+x ip-up ip-down

The gateway machine is now ready.

23.5.2 Configuring the clients

Create a/etc/resolv.conf file like the one on the gateway machine, to make the clients access the
same DNS server as the gateway.

Next, make all clients use the gateway as their default router. Use the following command:

route add default 192.168.1.1

192.168.1.1 is the address of the gateway machine configuredin the previous section.

Of course you don’t want to give this command every time, so it’s better to define the “defaultroute”
entry in the/etc/rc.conf file: the default route will be set automatically during system initialization,
using the defaultroute option as an argument to theroute add default command.

If the client machine is not using NetBSD, the configuration will be different. On Windows PC’s you
need to set the gateway property of the TCP/IP protocol to theIP address of the NetBSD gateway.

That’s all that needs to be done on the client machines.

23.5.3 Some useful commands

The following commands can be useful for diagnosing problems:

257

Chapter 23 Setting up TCP/IP on NetBSD in practice

ping

netstat -r

Displays the routing tables (similar toroute show).

traceroute

On the client it shows the route followed by the packets to their destination.

tcpdump

Use on the gateway to monitor TCP/IP traffic.

23.6 Setting up a network bridge device
A bridge can be used to combine different physical networks into one logical network, i.e. connect them
at layer 2 of the ISO-OSI model, not at layer 3, which is what a router would do. The NetBSD “bridge”
driver provides bridge functionality on NetBSD systems.

23.6.1 Bridge example

In this example two physical networks are going to be combined in one logical network, 192.168.1.0,
using a NetBSD bridge. The NetBSD machine which is going to act as bridge has two interfaces, ne0
and ne1, which are each connected to one physical network.

The first step is to make sure support for the “bridge” is compiled in the running kernel. Support is
included in the GENERIC kernel.

When the system is ready the bridge can be created, this can bedone using thebrconfig(8) command.
First of a bridge interface has to be created. With the following ifconfig command the “bridge0” interface
will be created:

$ ifconfig bridge0 create

Please make sure that at this point both the ne0 and ne1 interfaces are up. The next step is to add the ne0
and ne1 interfaces to the bridge.

$ brconfig bridge0 add ne0 add ne1 up

This configuration can be automatically set up by creating an/etc/ifconfig.interface file, in this
case/etc/ifconfig.bridge0 , with the following contents:

create
!brconfig $int add ne0 add ne1 up

After setting up the bridge the bridge configuration can be displayed using thebrconfig -a command.
Remember that if you want to give the bridge machine an IP address you can only allocate an IP address
to one of the interfaces which are part of the bridge.

258

Chapter 23 Setting up TCP/IP on NetBSD in practice

23.7 A common LAN setup
The small home network discussed in the previous section contained many items that were configured
manually. In bigger LANs that are centrally managed, one canexpect Internet connectivity being
available via some router, a DNS server being available, andmost important, a DHCP server which
hands out IP addresses to clients on request. To make a NetBSDclient run in such an environment, it’s
usually enough to set

dhclient=yes

in /etc/rc.conf , and the IP address will be set automatically,/etc/resolv.conf will be created
and routing setup to the default router.

23.8 Connecting two PCs through a serial line
If you need to transfer files between two PCs which are not networked there is a simple solution which is
particularly handy when copying the files to a floppy is not practical: the two machines can be networked
with a serial cable (anull modemcable). The following sections describe some configurations.

23.8.1 Connecting NetBSD with BSD or Linux

The easiest case is when both machines run NetBSD: making a connection with the SLIP protocol is
very easy. On the first machine write the following commands:

slattach /dev/tty00

ifconfig sl0 inet 192.168.1.1 192.168.1.2

On the second machine write the following commands:

slattach /dev/tty00

ifconfig sl0 inet 192.168.1.2 192.168.1.1

Now you can test the connection withping; for example, on the second PC write:

ping 192.168.1.1

If everything worked there is now an active network connection between the two machines and ftp, telnet
and other similar commands can be executed. The textual aliases of the machines can be written in the
/etc/hosts file.

• In the previous example both PC’s used the first serial port (/dev/tty0). Substitute the appropriate
device if you are using another port.

• IP addresses like 192.168.x.x are reserved for “internal” networks. The first PC has address
192.168.1.1 and the second 192.168.1.2.

• To achieve a faster connection the-s speed option toslattachcan be specified.

• ftp can be used to transfer files only if inetd is active and the ftpd server is enabled.

259

Chapter 23 Setting up TCP/IP on NetBSD in practice

Linux: If one of the two PC’s runs Linux, the commands are slightly different (on the Linux machine
only). If the Linux machine gets the 192.168.1.2 address, the following commands are needed:

slattach -p slip -s 115200 /dev/ttyS0 &

ifconfig sl0 192.168.1.2 pointopoint 192.168.1.1 up

route add 192.168.1.1 dev sl0

Don’t forget the “&” in the first command.

23.8.2 Connecting NetBSD and Windows NT

NetBSD and Windows NT can be (almost) easily networked with aserialnull modemcable. Basically
what needs to be done is to create a “Remote Access” connection under Windows NT and to start pppd
on NetBSD.

Start pppd as root after having created a.ppprc in /root . Use the following example as a template.

connect ’/usr/sbin/chat -v CLIENT CLIENTSERVER’
local
tty00
115200
crtscts
lock
noauth
nodefaultroute
:192.168.1.2

The meaning of the first line will be explained later in this section; 192.168.1.2 is the IP address that will
be assigned by NetBSD to the Windows NT host;tty00 is the serial port used for the connection (first
serial port).

On the NT side anull modemdevice must be installed from the Control Panel (Modem icon)and a
Remote Access connection using this modem must be created. The null modem driver is standard under
Windows NT 4 but it’s not a 100% null modem: when the link is activated, NT sends the string CLIENT
and expects to receive the answer CLIENTSERVER. This is the meaning of the first line of the.ppprc

file: chat must answer to NT when the connection is activated or the connection will fail.

In the configuration of the Remote Access connection the following must be specified: use the null
modem, telephone number “1” (it’s not used, anyway), PPP server, enable only TCP/IP protocol, use IP
address and nameservers from the server (NetBSD in this case). Select the hardware control flow and set
the port to 115200 8N1.

Now everything is ready to activate the connection.

• Connect the serial ports of the two machines with the null modem cable.

• Launchpppd on NetBSD. To see the messages of pppd:tail -f /var/log/messages).

• Activate the Remote Access connection on Windows NT.

260

Chapter 23 Setting up TCP/IP on NetBSD in practice

23.8.3 Connecting NetBSD and Windows 95

The setup for Windows 95 is similar to the one for Windows NT: Remote Access on Windows 95 and the
PPP server on NetBSD will be used. Most (if not all) Windows 95releases don’t have thenull modem
driver, which makes things a little more complicated. The easiest solution is to find one of the available
null modem drivers on the Internet (it’s a small.INF file) and repeat the same steps as for Windows NT.
The only difference is that the first line of the.ppprc file (the one that callschat) can be removed.

If you can’t find a real null modem driver for Windows 95 it’s still possible to use a little trick:

• Create a Remote Access connection like the one described inSection 23.8.2but using the “Standard
Modem”.

• In .ppprc substitute the line that callschat with the following line

connect ’/usr/sbin/chat -v ATH OK AT OK ATE0V1 OK AT OK ATDT CO NNECT’

• Activate the connection as described inSection 23.8.2.

In this way thechat program, called when the connection is activated, emulateswhat Windows 95 thinks
is a standard modem, returning to Windows 95 the same answersthat a standard modem would return.
Whenever Windows 95 sends a modem command string,chat returns OK.

23.9 IPv6 Connectivity & Transition via 6to4
This section will concentrate on how to get network connectivity for IPv6 and - as that is rarely available
directly - talk at length about the alternatives to native IPv6 connectivity as a transitional method until
native IPv6 peers are available.

Finding an ISP that offers IPv6 natively needs quite some luck. What you need next is a router that will
be able to handle the traffic. To date, not all router manufacturers offer IPv6 or hardware accelerated
IPv6 features, and gateway NAT boxes only rarely support IPv6 and also block IPv6 tunnels. An
alternative approach involves configuring a standard PC running NetBSD to act as a router. The base
NetBSD system contains a complete IPv6 routing solution, and for special routing needs software like
Zebra can provide additional routing protocols. This solution is rather common for sites that want IPv6
connectivity today. The drawbacks are that you need an ISP that supports IPv6 and that you may need a
dedicated uplink only for IPv6.

IPv6 to-the-door may be rare, but you can still get IPv6 connectivity by using tunnels. Instead of talking
IPv6 on the wire, the IPv6 packets are encapsulated in IPv4 packets, as shown inFigure 23-2. Using the
existing IPv4 infrastructure, the encapsulated packets are sent to a IPv6-capable uplink that will then
remove the encapsulation, and forward the IPv6 packets.

Figure 23-2. A frequently used method for transition is tunneling IPv6 in IPv4 packets

v6 v6

v6

local v4 gate v4

gate v6local v6

de−encapsulation

v4

encapsulation

261

Chapter 23 Setting up TCP/IP on NetBSD in practice

When using tunnels, there are two possibilities. One is to use a so-called “configured” tunnel, the other is
called an “automatic” tunnel. A “configured” tunnel is one that required preparation from both ends of
the tunnel, usually connected with some kind of registration to exchange setup information. An example
for such a configured tunnel is the IPv6-over-IPv4 encapsulation described inRFC1933, and that’s
implemented e.g. by the gif(4) device found in NetBSD.

An “automatic” tunnel consists of a public server that has some kind of IPv6 connectivity, e.g. via
6Bone. That server has made its connectivity data public, and also runs a tunneling protocol that does not
require an explicit registration of the sites using it as uplink. A well-used example of such a protocol is
the 6to4 mechanism described inRFC3056, and that is implemented in the stf(4) device found in
NetBSD’s. Another mechanism that does not require registration of IPv6-information is the 6over4
mechanism, which implements transporting of IPv6 over a multicast-enabled IPv4 network, instead of
e.g. ethernet or FDDI. 6over4 is documented inRFC2529. It’s main drawback is that you do need
existing multicast infrastructure. If you don’t have that,setting it up is about as much effort as setting up
a configured IPv6 tunnel directly, so it’s usually not worth bothering in that case.

23.9.1 Getting 6to4 IPv6 up & running

6to4 is an easy way to get IPv6 connectivity for hosts that only have an IPv4 uplink, especially if you
have the background given inSection 22.7. It can be used with static as well as dynamically assigned
IPv4 addresses, e.g. as found in modem dialup scenarios today. When using dynamic IPv4 addresses, a
change of IP addresses will be a problem for incoming traffic,i.e. you can’t run persistent servers.

Example configurations given in this section is for NetBSD 1.5.2.

23.9.2 Obtaining IPv6 Address Space for 6to4

The 6to4 IPv6 setup on your side doesn’t consist of a single IPv6 address; Instead, you get a whole /48
network! The IPv6 addresses are derived from your (single) IPv4 address. The address prefix “2002:” is
reserved for 6to4 based addresses (i.e. IPv6 addresses derived from IPv4 addresses). The next 32 bits are
your IPv4 address. This results in a /48 network that you can use for your very own purpose. It leaves 16
bits space for 216 IPv6 subnets, which can take up to 264 nodes each.Figure 23-3illustrates the building
of your IPv6 address (range) from your IPv4 address.

Thanks to the 6to4 prefix and your worldwide unique IPv4 address, this address block is unique, and it’s
mapped to your machine carrying the IPv4 address in question.

Figure 23-3. 6to4 derives an IPv6 from an IPv4 address

2002:

prefix
6to4

:

address space
80 bit

:0001::1

Your IPv4 address:

0962

62.157.9.98

62 157 9 98

3e 09 629dHex:

Decimal:

Your IPv6 address: 3e9d

262

Chapter 23 Setting up TCP/IP on NetBSD in practice

23.9.3 How to get connected

In contrast to the configured “IPv6-over-IPv4 tunnel” setup, you do not have to register at a
6bone-gateway, which would only then forward your IPv6 traffic encapsulated in IPv4. Instead, as your
IPv6 address is derived from your IPv4 address, inbound traffic can be sent through the nearest 6to4
relay router. De-encapsulation of the packet is done via a 6to4-capable network interface, which then
forwards the resulting IPv6 packet according to your routing setup (in case you have more than one
machine connected on your 6to4 assigned network).

To transmit IPv6 packets, the 6to4 router will encapsulate them inside IPv4 packets; a system performing
these functions is called a 6to4 border router. These packets have a default route to the6to4 relay anycast
prefix. This anycast prefix will route the tunnel to a6to4 relay router. Figure 23-4illustrates this.

Figure 23-4. Request and reply can be routed via different gateways in 6to4

upstream

downstream

IPv6−Enabled
Internet

(6Bone, ...)myhost my6to4gate

yetanother6to4gate

other6to4gate

23.9.4 Security Considerations

In contrast to the “configured tunnel” setup, you usually can’t setup packet filters to block 6to4-packets
from unauthorized sources, as this is exactly how (and why) 6to4 works at all. As such, malicious users
can send packets with invalid/hazardous IPv6 payload. If you don’t already filter on your border
gateways anyways, packets with the following characteristics should not be allowed as valid 6to4
packets, and some firewalling seems to be justified for them:

• unspecified IPv4 source/destination address: 0.0.0.0/8

• loopback address in outer (v4) source/destination: 127.0.0.0/8

• IPv4 multicast in source/destination: 224.0.0.0/4

• limited broadcasts: 255.0.0.0/8

• subnet broadcast address as source/destination: depends on your IPv4 setup

The NetBSD stf(4) manual page documents some common configuration mistakes intercepted by default
by the KAME stack as well as some further advice on filtering, but keep in mind that because of the
requirement of these filters, 6to4 is not perfectly secure. Still, if forged 6to4 packets become a problem,
you can use IPsec authentication to ensure the IPv6 packets are not modified.

263

Chapter 23 Setting up TCP/IP on NetBSD in practice

23.9.5 Data Needed for 6to4 Setup

In order to setup and configure IPv6 over 6to4, a few bits of configuration data must be known in
advance. These are:

• Your local IPv4 address. It can be determined using either the ’ifconfig -a’ or ’ netstat -i’ commands
on most Unix systems. If you use a NATing gateway or something, be sure to use the official,
outside-visible address, not your private (10/8 or 192.168/16) one.

We will use 62.224.57.114 as the local IPv4 address in our example.

• Your local IPv6 address, as derived from the IPv4 address. See Figure 23-3on how to do that.

For our example, this is 2002:3ee0:3972:0001::1 (62.224.57.114 == 0x3ee03972, 0001::1 arbitrarily
chosen).

• The6to4 IPv6 relay anycast address. which is 2002:c058:6301::, or the IPv6 address of a specific6to4
relay router you want to use. The IPv6 address will do, as it also contains the IPv4 address in the usual
6to4 translation.

23.9.6 Kernel Preparation

To process 6to4 packets, the operating system kernel needs to know about them. For that a driver has to
be compiled in that knows about 6to4, and how to handle it. In NetBSD 4.0 and newer, the driver is
already present in GENERIC kernel configurations, so the procedure below is usually unnecessary.

For a NetBSD kernel, put the following into your kernel configfile to prepare it for using IPv6 and 6to4,
e.g. on NetBSD use:

options INET6 # IPv6
pseudo-device stf # 6to4 IPv6 over IPv4 encapsulation

Note that the stf(4) device is not enabled by default on NetBSD releases older than 4.0. Rebuild your
kernel, then reboot your system to use the new kernel. PleaseconsultChapter 31for further information
on configuring, building and installing a new kernel!

23.9.7 6to4 Setup

This section describes the commands to setup 6to4. In short,the steps performed here are:

1. Configure interface

2. Set default route

3. Setup Router Advertisement, if wanted

The first step in setting up 6to4 is creating the 6to4 interface and assigning an IPv6 address to it. This is
achieved with the ifconfig(8) command. Assuming the exampleconfiguration above, the commands for
NetBSD are:

ifconfig stf0 create

ifconfig stf0 inet6 2002:3ee0:3972:1::1 prefixlen 16 alias

264

Chapter 23 Setting up TCP/IP on NetBSD in practice

After configuring the 6to4 device with these commands, routing needs to be setup, to forward all
tunneled IPv6 traffic to the 6to4 relay router. The best way todo this is by setting a default route, the
command to do so is, for NetBSD:

route add -inet6 default 2002:c058:6301::

Note that NetBSD’s stf(4) device determines the IPv4 address of the 6to4 uplink from the routing table.
Using this feature, it is easy to setup your own 6to4 (uplink)gateway if you have an IPv6 uplink, e.g. via
6Bone.

After these commands, you are connected to the IPv6-enabledworld - Congratulations! Assuming name
resolution is still done via IPv4, you can now ping an IPv6-site like www.kame.net or
www6.NetBSD.org:

/sbin/ping6 www.kame.net

As a final step in setting up IPv6 via 6to4, you will want to setup Router Advertisement if you have
several hosts on your network. While it is possible to setup 6to4 on each node, doing so will result in
very expensive routing from one node to the other - packets will be sent to the remote 6to4 gateway,
which will then route the packets back to the neighbor node. Instead, setting up 6to4 on one machine and
talking native IPv6 on-wire is the preferred method of handling things.

The first step to do so is to assign an IPv6-address to your ethernet. In the following example we will
assume subnet “2” of the IPv6-net is used for the local ethernet and the MAC address of the ethernet
interface is 12:34:56:78:9a:bc, i.e. your local gateway’sethernet interface’s IP address will be
2002:3ee0:3972:2:1234:56ff:fe78:9abc. Assign this address to your ethernet interface, e.g.

ifconfig ne0 inet6 alias 2002:3ee0:3972:2:1234:56ff:fe78:9abc

Here, “ne0” is an example for your ethernet card interface. This will most likely be different for your
setup, depending on what kind of card is used.

Next thing that needs to be ensured for setting up the router is that it will actually forward packets from
the local 6to4 device to the ethernet device and back. To enable IPv6 packet forwarding, set
“ip6mode=router” in NetBSD’s/etc/rc.conf , which will result in the “net.inet6.ip6.forwarding”
sysctl being set to “1”:

sysctl -w net.inet6.ip6.forwarding=1

Figure 23-5. Enabling packet forwarding is needed for a 6to4router

ethernet interface

node node

forwarding
IPv66to4 interface

router

To setup router advertisement on BSD, the file/etc/rtadvd.conf needs to be checked. It allows
configuration of many things, but usually the default config of not containing any data is ok. With that

265

Chapter 23 Setting up TCP/IP on NetBSD in practice

default, IPv6 addresses found on all of the router’s networkinterfaces will be advertised.

After checking the router advertisement configuration is correct and IPv6 forwarding is turned on, the
daemon handling it can be started. Under NetBSD, it is called’ rtadvd ’. Start it up either manually (for
testing it the first time) or via the system’s startup scripts, and see all your local nodes automagically
configure the advertised subnet address in addition to theiralready-existing link local address.

rtadvd

23.9.8 Quickstart using pkgsrc/net/hf6to4

So far, we have described how 6to4 works and how to set it up manually. For an automated way to make
everything happen e.g. when going online, the ’hf6to4’ package is convenient. It will determine your
IPv6 address from the IPv4 address you got assigned by your provider, then set things up that you are
connected.

Steps to setup the pkgsrc/net/hf6to4 package are:

1. Install the package either by compiling it from pkgsrc, orby pkg_add’ing the 6to4-1.2 package.

cd /usr/pkgsrc/net/hf6to4

make install

2. Make sure you have the stf(4) pseudo-device in your kernel, see above.

3. Configure the ’hf6to4’ package. First, copy/usr/pkg/share/examples/hf6to4/hf6to4.conf

to /usr/pkg/etc/hf6to4.conf , then adjust the variables. Note that the file is in /bin/sh syntax.

cd /usr/pkg/etc

cp ../share/examples/hf6to4/hf6to4.conf hf6to4.conf

vi hf6to4.conf

Please see the hf6to4(8) manpage for an explanation of all the variables you can set in
hf6to4.conf . If you have dialup IP via PPP, and don’t want to run Router Advertizing for other
IPv6 machines on your home or office network, you don’t need toconfigure anything. If you want to
setup Router Advertising, you need to set thein_if to the internal (ethernet) interface, e.g.

$in_if="rtk0"; # Inside (ethernet) interface

4. Now dial up, then start the 6to4 command manually:

/usr/pkg/sbin/hf6to4 start

5. After that, you should be connected, use ping6(8): to see if everything works:

ping6 www.NetBSD.org

PING6(56=40+8+8 bytes) 2002:d954:110b:1::1 --> 2001:4f8 :4:7:2e0:81ff:fe52:9a6b
16 bytes from 2001:4f8:4:7:2e0:81ff:fe52:9a6b, icmp_seq =0 hlim=60 time=250.234 ms
16 bytes from 2001:4f8:4:7:2e0:81ff:fe52:9a6b, icmp_seq =1 hlim=60 time=255.652 ms
16 bytes from 2001:4f8:4:7:2e0:81ff:fe52:9a6b, icmp_seq =2 hlim=60 time=251.237 ms
^C
--- www.NetBSD.org ping6 statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/std-dev = 250.234/252.374/255.6 52/2.354 ms

traceroute6 www.NetBSD.org

266

Chapter 23 Setting up TCP/IP on NetBSD in practice

traceroute6 to www.NetBSD.org (2001:4f8:4:7:2e0:81ff:f e52:9a6b)
from 2002:d954:110b:1::1, 64 hops max, 12 byte packets
1 2002:c25f:6cbf:1::1 66.31 ms 66.382 ms 69.062 ms
2 nr-erl1.6win.dfn.de 76.134 ms * 76.87 ms
3 nr-fra1.6win.dfn.de 76.371 ms 80.709 ms 79.482 ms
4 dfn.de6.de.6net.org 92.763 ms 90.863 ms 94.322 ms
5 de.nl6.nl.6net.org 116.115 ms 93.463 ms 96.331 ms
6 nl.uk6.uk.6net.org 103.347 ms 99.334 ms 100.803 ms
7 uk1.uk61.uk.6net.org 99.481 ms 100.421 ms 100.119 ms
8 2001:798:28:300::2 89.711 ms 90.435 ms 90.035 ms
9 ge-1-0-0-2.r20.londen03.uk.bb.verio.net 179.671 ms 18 5.141 ms 185.86 ms
10 p16-0-0-0.r81.nycmny01.us.bb.verio.net 177.067 ms 17 9.086 ms 178.05 ms
11 p16-1-1-3.r20.nycmny01.us.bb.verio.net 178.04 ms 179 .727 ms 184.165 ms
12 p16-0-1-1.r20.mlpsca01.us.bb.verio.net 249.856 ms 24 7.476 ms 249.012 ms
13 p64-0-0-0.r21.snjsca04.us.bb.verio.net 239.691 ms 24 1.404 ms 240.998 ms
14 p64-0-0-0.r21.plalca01.us.bb.verio.net 247.541 ms 24 6.661 ms 246.359 ms
15 xe-0-2-0.r20.plalca01.us.bb.verio.net 240.987 ms 239 .056 ms 241.251 ms
16 ge-6-1.a01.snfcca05.us.ra.verio.net 240.868 ms 241.2 9 ms 242.337 ms
17 fa-5-2.a01.snfcca05.us.ce.verio.net 249.477 ms 250.4 ms 256.035 ms
18 2001:4f8:4:7:2e0:81ff:fe52:9a6b 268.164 ms 252.97 ms 2 52.366 ms

Please note thattraceroute6shows the v6 hops only, any underlying tunnels are invisibleand thus
not displayed.

6. If this works, you can put the following lines into your/etc/ppp/ip-up script to run the
command each time you go online:

logger -p user.info -t ip-up Configuring 6to4 IPv6
/usr/pkg/sbin/hf6to4 stop
/usr/pkg/sbin/hf6to4 start

7. If you want to route IPv6 for your LAN, you can instruct6to4.pl to setup Router Advertising for
you too:

/usr/pkg/sbin/hf6to4 rtadvd-start

You can put that command into/etc/ppp/ip-up as well to make it permanent.

8. If you have changed/etc/ppp/ip-up to setup 6to4 automatically, you will most likely want to
change/etc/ppp/ip-down too, to shut it down when you go offline. Here’s what to put into
/etc/ppp/ip-down :

logger -p user.info -t ip-down Shutting down 6to4 IPv6
/usr/pkg/sbin/hf6to4 rtadvd-stop
/usr/pkg/sbin/hf6to4 stop

23.9.9 Known 6to4 Relay Routers

It is normally not necessary to pick a specific 6to4 relay router, but if necessary, you may find a list of
known working routers at http://www.kfu.com/~nsayer/6to4/. In tests, only 6to4.kfu.com and
6to4.ipv6.microsoft.com were found working. Cisco has onethat requires registration, see
http://www.cisco.com/ipv6/.

267

Chapter 23 Setting up TCP/IP on NetBSD in practice

There’s also an experimental 6to4 server located in Germany, 6to4.ipv6.fh-regensburg.de. This server
runs under NetBSD 1.6 and was setup using the configuration steps described above. The whole
configuration of the machine can be seen at http://www.feyrer.de/IPv6/netstart.local.

23.9.10 Tunneling 6to4 through an IPFilter firewall

The 6to4 protocol encapsulates IPv6 packets in IPv4, and gives them their own IP type, which most
firewalls block as unknown, as their payload type is directly"TCP", "UDP" or "ICMP". Usually, you
want to setup your 6to4 gateway on the same machine that is directly connected to the (IPv4) internet,
and which usually runs the firewall. For the case that you wantto run your 6to4 gateway behind a
firewall, you need to drill a hole into the firewall, to let 6to4packets through. Here is how to do this!

The example assumes that you use the "ppp0" interface on yourfirewall to connect to the Internet.

Put the following lines into/etc/ipf.conf to allow your IPFilter firewall let all 6to4 packets pass
(lines broken with \ due to space restrictions; please put them lines continued that way all in one line):

Handle traffic by different rulesets
block in quick on ppp0 all head 1
block out quick on ppp0 all head 2

Incoming packets:
allow some IPv4:
pass in log quick on ppp0 proto tcp from any to any \
port = www flags S keep state keep frags group 1
pass in quick on ppp0 proto tcp from any to any \
port = ssh keep state group 1
pass in quick on ppp0 proto tcp from any to any \
port = mail keep state group 1
pass in log quick on ppp0 proto tcp from any to any \
port = ftp keep state group 1
pass in log quick on ppp0 proto tcp from any to any \
port = ftp-data keep state group 1
pass in log quick on ppp0 proto icmp from any to any group 1
allow all IPv6:
pass in quick on ppp0 proto ipv6 from any to any group 1
pass in log quick on ppp0 proto ipv6-route from any to any grou p 1
pass in log quick on ppp0 proto ipv6-frag from any to any group 1
pass in log quick on ppp0 proto ipv6-icmp from any to any group 1
pass in log quick on ppp0 proto ipv6-nonxt from any to any grou p 1
pass in log quick on ppp0 proto ipv6-opts from any to any group 1
block rest:
blockin log quick on ppp0 all group 1

Outgoing packets:
allow usual stuff:
pass out quick on ppp0 proto tcp from any to any flags S \
keep state keep frags group 2
pass out quick on ppp0 proto udp from any to any \
keep state keep frags group 2
pass out quick on ppp0 proto icmp from any to any \
keep state group 2

268

Chapter 23 Setting up TCP/IP on NetBSD in practice

allow all IPv6:
pass out quick on ppp0 proto ipv6 from any to any group 2
pass out log quick on ppp0 proto ipv6-route from any to any gro up 2
pass out log quick on ppp0 proto ipv6-frag from any to any grou p 2
pass out log quick on ppp0 proto ipv6-icmp from any to any grou p 2
pass out log quick on ppp0 proto ipv6-nonxt from any to any gro up 2
pass out log quick on ppp0 proto ipv6-opts from any to any grou p 2
block rest:
block out log quick on ppp0 all group 2

Now any host on your network can send (the "out" rules) and receive (the "in" rules) v4-encapsulated
IPv6 packets, allowing setup of any of them as a 6to4 gateway.Of course you only want to do this on one
host and use native IPv6 between your hosts, and you may also want to enforce this with more restrictive
rulesets, please see ipf.conf(5) for more information on IPFilter rules.

After your firewall lets pass encapsulated IPv6 packets, youmay want to set up your 6to4 gateway to
monitor the IPv6 traffic, or even restrict it. To do so, you need to setup IPFilter on your 6to4 gateway as
well. For basic monitoring, enable "ipfilter=yes" in/etc/rc.conf and put the following into
/etc/ipf6.conf :

pass in log quick on stf0 from any to any
pass out log quick on stf0 from any to any

This logs all (IPv6) traffic going in and out of your "stf0" tunneling interface. You can add filter rules as
well if needed.

If you are more interested in traffic stats than a general overview of your network traffic, using MRTG in
conjunction with the "net-snmp" package is recommended instead of analyzing IPFilter log files.

23.9.11 Conclusion & Further Reading

Compared to where IPv4 is today, IPv6 is still in its early steps. It is working, there are all sort of
services and clients available, only the userbase is missing. It is hoped the information provided here
helps people better understand what IPv6 is, and to start playing with it.

A few links should be mentioned here for interested parties:

• An example script to setup 6to4 on BSD based machines is available at
http://www.NetBSD.org/packages/net/hf6to4/. The script determines your IPv6 address and sets up
6to4 and (if wanted) router advertising. It was designed to work in dialup setups with changing IPv4
addresses.

• Given that there isn’t a standard for IPv6 in Linux land today, there are different setup instructions for
most distributions. The setup of IPv6 on Debian GNU/Linux can be found at
http://people.debian.org/~csmall/ipv6/setup.html.

• The BSD Unix implementations have their own IPv6 documentation each, interesting URLs are
http://www.NetBSD.org/docs/network/ipv6/ for NetBSD,
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-ipv6.html for FreeBSD.

• Projects working on implementing IPv6 protocol stacks for free Unix like operating systems are
KAME for BSD and USAGI for Linux. Their web sites can be found at http://www.kame.net/ and

269

Chapter 23 Setting up TCP/IP on NetBSD in practice

http://www.linux-ipv6.org/. A list of host and router implementations can be found at
http://playground.sun.com/pub/ipng/html/ipng-implementations.html.

• Besides the official RFC archive at ftp://ftp.isi.edu/in-notes, information on IPv6 can be found at
several web sites. First and foremost, the 6Bone’s web page at http://www.6bone.net/ must be
mentioned. 6Bone was started as the testbed for IPv6, and is now an important part of the
IPv6-connected world. Other web pages that contain IPv6-related contents include
http://www.ipv6.org/, http://playground.sun.com/pub/ipng/html/ and http://www.ipv6forum.com/.
Most of these sites carry further links - be sure to have a look!

270

Chapter 24

The Internet Super Server inetd

The "internet super server", or inetd(8), is available on all Unix(like) systems, providing many of the
basic network services available. This chapter describes the relationship between the daemon and several
of the config files in the/etc/ directory.

24.1 Overview
In this document we will look at a simple definition of inetd(8), how several files that relate to inetd(8)
work (not that these files are not related to other software),how to add a service to inetd(8) and some
considerations both to use inetd(8) for a particular service and times when a service might be better off
running outside of inetd(8).

24.2 What is inetd?
In traditional Unix scenarios, one server (daemon) processwatches for connections on a particular port,
and handles incoming requests. Now if a machine offers many services, many daemon processes would
be needed, mostly running idle but still wasting resources like memory. The internet super server, inetd,
is an approach to this problem. It listens on a number of ports, and when it receives a request it then
determines which program to run to handle the request and starts an instance of that program.

Following is a very simple diagram to illustrate inetd(8):

pop3 ------ |
|

ftpd ------- | INETD | ---- Internet / DMZ / Switch / Whatever .. .
|

cvsupserver - |

In the above diagram you can see the general idea. The inetd(8) process receives a request and then starts
the appropriate server process. What inetd(8) is doing is software multiplexing. An important note here,
regarding security: On many other UNIX-like systems, a package called tcpwrappers is used as a security
enhancement for inetd(8). On NetBSD the tcpwrapper functionality is built into inetd(8) using libwrap.

24.3 Configuring inetd - /etc/inetd.conf

The operation of inetd(8) is controlled by its own config file,surprisingly named/etc/inetd.conf ,
see inetd.conf(5). Theinetd.conf file basically provides enabling and mapping of services thesystems
administrator would like to have multiplexed through inetd(8), indicating which program should be
started for incoming requests on which port.

271

Chapter 24 The Internet Super Server inetd

inetd.conf(5) is an ascii file containing one service per line, and several fields per line. The basic field
layout is:

service-name socket-type protocol wait/nowait user:grou p server-program arguments

service-name:

The service name indicates the port inetd(8) should listen on. It is either a decimal number, or a
name matching a service name given in/etc/services .

socket-type:

The communications socket type, the different types are "stream" for a TCP stream, "dgram" for an
UDP service, "raw" for a raw socket, "rdm" for reliably delivered message and "seqpacket" for a
sequenced packet socket. The most common socket types are "stream" and "dgram".

protocol

The protocol used, mostly "tcp", "tcp6", "udp" and "udp6" for stream-oriented services via the
Transmission Control Protocol, or datagram-oriented services via the User Datagram Protocol. It is
worth noting that "tcp" and "udp" mean they use the default (currently IPv4), "tcp4" specifically
means communication via IPv4 only, and "tcp6" and "udp6" areIPv6-only. In addition to those,
protocols based on Remote Procedure Calls (RPC) can be specified as either "rpc/tcp" or "rpc/udp".

wait/nowait

This field tells inetd(8) if it should wait for a server program to return or to continue processing new
connections immediately. Many connections to server processes require answers after data transfers
are complete, where other types can keep transmitting on a connection continuously, the latter is a
"nowait" and the former "wait". In most cases, this entry corresponds to the socket-type, for
example a streaming connection would (most of the time) havea "nowait" value in this field.

user[:group]

This field gives the user name and optionally a group name thatthe server process which inetd(8)
starts up runs as.

server-program

This field is the full path of the program that gets started.

program-arguments

This field contains the argument vector argv[] of the programstarted, including the program name
and additional arguments the systems administrator may need to specify for the server program that
is started.

That is all a lot to digest and there are other things the systems administrator can do with some of the
fields. Here is a sample line from aninetd.conf file:

ftp stream tcp nowait root /usr/libexec/ftpd ftpd -ll

From the left, the service-name is "ftp", socket-type is "stream", protocol is "tcp", inetd(8) won’t wait for
the server process to terminate ("nowait"), the process runs as user "root", path is/usr/libexec/ftpd

272

Chapter 24 The Internet Super Server inetd

and program name and arguments are "ftpd -ll". Notice in the last field, the program name is different
from the service-name.

24.4 Services - /etc/services

The next file to consider is the service name data base that canbe found in/etc/services . This file
basically contains information mapping a service name to a port number. The format of the
/etc/services file is:

service-name port-number/protocol-name [aliases]

"service-name" is the name of the service, "port-number" isthe port number assigned to the service,
"protocol-name" is either "tcp" or "udp", and if alias namesfor a port are needed, they can be added as
"aliases", separated by white spaces. Comments may be addedafter a hash mark (#).

Let’s take a look at the "ssh" entries as an example:

ssh 22/tcp # Secure Shell
ssh 22/udp

As we can see, from the left, the service name is "ssh", the port number is "22", the protocols are both
"tcp" and "udp". Notice that there is a separate entry for every protocol a service can use (even on the
same port).

24.5 Protocols - /etc/protocols

Another file read by inetd(8) is/etc/protocols . This file has the information pertaining to DARPA
Internet protocols. The format of the protocols name data base is:

protocol-name number [aliases]

where "protocol-name" describes the payload of an IP packet, e.g. "tcp" or "udp". "number" is the official
protocol number assigned by IANA, and optional alias names can be added after that.

Let’s look at the seventh entry in the/etc/protocols db as an example:

tcp 6 TCP # transmission control protocol

Starting from the left, we see that the protocol name is "tcp", the number is "6" and the only aliases listed
is "TCP", belonging to the Transmission Control Protocol asindicated by the comment in that line.

24.6 Remote Procedure Calls (RPC) - /etc/rpc

The rpc program number data base used by services with the "rpc" protocol type in inetd.conf(5) is kept
in /etc/rpc and contains name mappings to rpc program numbers. The format of the file is:

server-name program-number aliases

For example, here is the nfs entry:

273

Chapter 24 The Internet Super Server inetd

nfs 100003 nfsprog

24.7 Allowing and denying hosts - /etc/hosts.{allow,deny}

As mentioned above, NetBSD’s inetd(8) has the tcpwrapper package built in via the libwrap library. As
such, inetd(8) can allow or deny access to each service on a more fine-grained base than just allowing a
service to everyone, or not enabling it at all. The access control is defined in the files
/etc/hosts.allow and/etc/hosts.deny , see the hosts_access(5) manpage.

Each of the two files contains several lines that describe access restrictions for a certain server. Access is
allowed if permission is given in/etc/hosts.allow . If the service is not listened in
/etc/hosts.allow but in /etc/hosts.deny , it is denied. If a service is listed in neither file, it is
allowed, giving standard inetd(8) behaviour.

Each line in/etc/hosts.allow and/etc/hosts.deny contains a service either by name (as given in
the field for argv[0] in/etc/inetd.conf , e.g. "ftpd" instead of "ftp"), or the special service "ALL"
which obviously applies to all services. Following the service name is - separated by a colon - a number
of access restrictions, which can be hostnames, domains, single IP addresses, whole IP subnets or some
other restrictions, please check hosts_access(5) for all the details.

An example configuration that is mostly open but denies access to services to a certain host and all
machines from a certain domain would look like this:

/etc/hostname.deny:
ALL: some.host.name, .some.domain

Another example that would be mostly closed, denying accessto all but very few machines would need
entries in both/etc/hosts.allow and/etc/hosts.deny . The entry for/etc/hosts.deny would
be:

/etc/hosts.deny
ALL: ALL

The entry to allow a few hosts would be put into/etc/hosts.allow :

/etc/hosts.allow
ALL: friend.host.domain otherfriend.otherhost.otherdo main

24.8 Adding a Service
Many times a systems administrator will find that they need toadd a service to their system that is not
already in inetd(8) or they may wish to move a service to it because it does not get very much traffic. This
is usually pretty simple, so as an example we will look at adding a version of POP3 on a NetBSD system.

In this case we have retrieved and installed the "cucipop" package, which can be found in
pkgsrc/mail/cucipop . This server is pretty simple to use, the only oddities are different path
locations. Since it is POP3 we know it is a stream oriented connection with "nowait". Running as "root"
will be fine, the only item that is different is the location ofthe program and the name of the program
itself.

274

Chapter 24 The Internet Super Server inetd

So the first half of the new entry in/etc/inetd.conf looks like this:

pop3 stream tcp nowait root

After installation, pkgsrc deposited cucipop in/usr/pkg/sbin/cucipop . So with the next field we
have:

pop3 stream tcp nowait root /usr/pkg/sbin/cucipop

Last, we want to use the Berkeley mailbox format, so our server program must be called with the-Y
option. This leaves the entire entry looking like so:

pop3 stream tcp nowait root /usr/pkg/sbin/cucipop cucipop -Y

We have added the service named "pop3" to/etc/inetd.conf . Next item to check is that the system
can map the service name to a port number in/etc/services :

grep ^pop3 /etc/services

pop3 110/tcp # POP version 3
pop3 110/udp
pop3s 995/tcp # pop3 protocol over TLS/SSL (was spop3)
pop3s 995/udp # pop3 protocol over TLS/SSL (was spop3)

The "pop3" entries here are of interest, i.e. they are already contained in the/etc/services file
shipped with NetBSD.

Now, to have inetd(8) use the new entry, we simply restart it using the rc script:

sh /etc/rc.d/inetd restart

All done, in most cases, the software you are using has documentation that will specify the entry, in the
off case it does not, sometimes it helps to try and find something similar to the server program you will
be adding. A classic example of this is a MUD server which has built-in telnet. You can pretty much
borrow the telnet entry and change parts where needed.

24.9 When to use or not to use inetd
The decision to add or move a service into or out of inetd(8) isusually based on server load. As an
example, on most systems the telnet daemon does not require as many new connections as say a mail
server. Most of the time the administrator has to feel out if aservice should be moved.

A good example I have seen is mail services such as smtp and pop. I had setup a mail server in which
pop3 was in inetd(8) and exim was running in standalone, I mistakenly assumed it would run fine since
there was a low amount of users, namely myself and a diagnostic account. The server was also setup to
act as a backup MX and relay in case another heavily used one went down. When I ran some tests I
discovered a huge time lag for pop connections remotely. This was because of my steady fetching of mail
and the diagnostic user constantly mailing diagnostics back and forth. In the end I had to move the pop3
service out of inetd(8).

The reason for moving the service is actually quite interesting. When a particular service becomes
heavily used, of course, it causes a load on the system. In thecase of a service that runs within the
inetd(8) meta daemon the effects of a heavily loaded servicecan also harm other services that use

275

Chapter 24 The Internet Super Server inetd

inetd(8). If the multiplexor is getting too many requests for one particular service, it will begin to affect
the performance of other services that use inetd(8). The fix,in a situation like that, is to make the
offending service run outside of inetd(8) so the response time of both the service and inetd(8) will
increase.

24.10 Other Resources
Following is some additional reading and information abouttopics covered in this document.

NetBSD manual pages:

• inetd(8) (http://netbsd.gw.com/cgi-bin/man-cgi/man?inetd+8+NetBSD-current)

• protocols(5) (http://netbsd.gw.com/cgi-bin/man-cgi/man?protocols+5+NetBSD-current)

• rpc(5) (http://netbsd.gw.com/cgi-bin/man-cgi/man?rpc+5+NetBSD-current)

• services(5) (http://netbsd.gw.com/cgi-bin/man-cgi/man?services+5+NetBSD-current)

• hosts_access(5) (http://netbsd.gw.com/cgi-bin/man-cgi/man?hosts_access+5+NetBSD-current)

Miscellaneous links:

• IANA: Protocol Numbers and Assignment Services (http://www.iana.org/numbers.htm)

• RFC1700: Assigned Numbers (http://www.isi.edu/in-notes/rfc1700.txt)

276

Chapter 25

The Domain Name System

Use of the Domain Name System has been discussed in previous chapters, without going into detail on
the setup of the server providing the service. This chapter describes setting up a simple, small domain
with one Domain Name System (DNS) nameserver on a NetBSD system. It includes a brief explanation
and overview of the DNS; further information can be obtainedfrom the DNS Resources Directory
(DNSRD) at http://www.dns.net/dnsrd/.

25.1 DNS Background and Concepts
The DNS is a widely usednaming serviceon the Internet and other TCP/IP networks. The network
protocols, data and file formats, and other aspects of the DNSare Internet Standards, specified in a
number of RFC documents, and described by a number of other reference and tutorial works. The DNS
has a distributed, client-server architecture. There are reference implementations for the server and
client, but these are not part of the standard. There are a number of additional implementations available
for many platforms.

25.1.1 Naming Services

Naming services are used to provide a mapping between textual names and configuration data of some
form. A nameservermaintains this mapping, and clients request the nameserverto resolvea name into
its attached data.

The reader should have a good understanding of basic hosts toIP address mapping and IP address class
specifications, seeSection 22.6.

In the case of the DNS, the configuration data bound to a name isin the form of standardResource
Records(RR’s). These textual names conform to certain structural conventions.

25.1.2 The DNS namespace

The DNS presents a hierarchical name space, much like a UNIX filesystem, pictured as an inverted tree
with theroot at the top.

TOP-LEVEL .org
|

MID-LEVEL .diverge.org
______________________|________________________
| | |

BOTTOM-LEVEL strider.diverge.org samwise.diverge.org wormtongue.diverge.org

277

Chapter 25 The Domain Name System

The system can also be logically divided even further if one wishes at different points. The example
shown above shows three nodes on the diverge.org domain, butwe could even divide diverge.org into
subdomains such as "strider.net1.diverge.org", "samwise.net2.diverge.org" and
"wormtongue.net2.diverge.org"; in this case, 2 nodes reside in "net2.diverge.org" and one in
"net1.diverge.org".

There are directories of names, some of which may be sub-directories of further names. These directories
are sometimes calledzones. There is provision for symbolic links, redirecting requests for information
on one name to the records bound to another name. Each name recognised by the DNS is called a
Domain Name, whether it represents information about a specific host, ora directory of subordinate
Domain Names (or both, or something else).

Unlike most filesystem naming schemes, however, Domain Names are written with the innermost name
on the left, and progressively higher-level domains to the right, all the way up to the root directory if
necessary. The separator used when writing Domain Names is aperiod, ".".

Like filesystem pathnames, Domain Names can be written in an absolute or relative manner, though there
are some differences in detail. For instance, there is no wayto indirectly refer to the parent domain like
with the UNIX .. directory. Many (but not all) resolvers offer a search path facility, so that
partially-specified names can be resolved relative to additional listed sub-domains other than the client’s
own domain. Names that are completely specified all the way tothe root are calledFully Qualified
Domain Namesor FQDNs. A defining characteristic of an FQDN is that it is written with a terminating
period. The same name, without the terminating period, may be considered relative to some other
sub-domain. It is rare for this to occur without malicious intent, but in part because of this possibility,
FQDNs are required as configuration parameters in some circumstances.

On the Internet, there are some established conventions forthe names of the first few levels of the tree, at
which point the hierarchy reaches the level of an individualorganisation. This organisation is responsible
for establishing and maintaining conventions further downthe tree, within its own domain.

25.1.3 Resource Records

Resource Records for a domain are stored in a standardised format in an ASCII text file, often called a
zone file. The following Resource Records are commonly used (a numberof others are defined but not
often used, or no longer used). In some cases, there may be multiple RR types associated with a name,
and even multiple records of the same type.

Common DNS Resource Records

A: Address

This record contains the numerical IP address associated with the name.

CNAME: Canonical Name

This record contains the Canonical Name (an FQDN with an associated A record) of the host name
to which this record is bound. This record type is used to provide name aliasing, by providing a link
to another name with which other appropriate RR’s are associated. If a name has a CNAME record
bound to it, it is an alias, and no other RR’s are permitted to be bound to the same name.

278

Chapter 25 The Domain Name System

It is common for these records to be used to point to hosts providing a particular service, such as an
FTP or HTTP server. If the service must be moved to another host, the alias can be changed, and the
same name will reach the new host.

PTR: Pointer

This record contains a textual name. These records are boundto names built in a special way from
numerical IP addresses, and are used to provide a reverse mapping from an IP address to a textual
name. This is described in more detail inSection 25.1.8.

NS: Name Server

This record type is used todelegatea sub-tree of the Domain Name space to another nameserver.
The record contains the FQDN of a DNS nameserver with information on the sub-domain, and is
bound to the name of the sub-domain. In this manner, the hierarchical structure of the DNS is
established. Delegation is described in more detail inSection 25.1.4.

MX: Mail eXchange

This record contains the FQDN for a host that will accept SMTPelectronic mail for the named
domain, together with a priority value used to select an MX host when relaying mail. It is used to
indicate other servers that are willing to receive and spoolmail for the domain if the primary MX is
unreachable for a time. It is also used to direct email to a central server, if desired, rather than to
each and every individual workstation.

HINFO: Host Information

Contains two strings, intended for use to describe the host hardware and operating system platform.
There are defined strings to use for some systems, but their use is not enforced. Some sites, because
of security considerations, do not publicise this information.

TXT: Text

A free-form text field, sometimes used as a comment field, sometimes overlaid with site-specific
additional meaning to be interpreted by local conventions.

SOA: Start of Authority

This record is required to appear for each zone file. It lists the primary nameserver and the email
address of the person responsible for the domain, together with default values for a number of fields
associated with maintaining consistency across multiple servers and caching of the results of DNS
queries.

25.1.4 Delegation

Using NS records, authority for portions of the DNS namespace below a certain point in the tree can be
delegated, and further sub-parts below that delegated again. It is at this point that the distinction between
a domain and a zone becomes important. Any name in the DNS is called a domain, and the term applies
to that name and to any subordinate names below that one in thetree. The boundaries of a zone are
narrower, and are defined by delegations. A zone starts with adelegation (or at the root), and
encompasses all names in the domain below that point, excluding names below any subsequent
delegations.

279

Chapter 25 The Domain Name System

This distinction is important for implementation - a zone isa single administrative entity (with a single
SOA record), and all data for the zone is referred to by a single file, called azone file. A zone file may
contain more than one period-separated level of the namespace tree, if desired, by including periods in
the names in that zone file. In order to simplify administration and prevent overly-large zone files, it is
quite legal for a DNS server to delegate to itself, splittingthe domain into several zones kept on the same
server.

25.1.5 Delegation to multiple servers

For redundancy, it is common (and often administratively required) that there be more than one
nameserver providing information on a zone. It is also common that at least one of these servers be
located at some distance (in terms of network topology) fromthe others, so that knowledge of that zone
does not become unavailable in case of connectivity failure. Each nameserver will be listed in an NS
record bound to the name of the zone, stored in the parent zoneon the server responsible for the parent
domain. In this way, those searching the name hierarchy fromthe top down can contact any one of the
servers to continue narrowing their search. This is occasionally calledwalking the tree.

There are a number of nameservers on the Internet which are called root nameservers. These servers
provide information on the very top levels of the domain namespace tree. These servers are special in
that their addresses must be pre-configured into nameservers as a place to start finding other servers.
Isolated networks that cannot access these servers may needto provide their own root nameservers.

25.1.6 Secondaries, Caching, and the SOA record

In order to maintain consistency between these servers, oneis usually configured as theprimaryserver,
and all administrative changes are made on this server. The other servers are configured assecondaries,
and transfer the contents of the zone from the primary. This operational model is not required, and if
external considerations require it, multiple primaries can be used instead, but consistency must then be
maintained by other means. DNS servers that store Resource Records for a zone, whether they be
primary or secondary servers, are said to beauthoritativefor the zone. A DNS server can be authoritative
for several zones.

When nameservers receive responses to queries, they cancachethe results. This has a significant
beneficial impact on the speed of queries, the query load on high-level nameservers, and network
utilisation. It is also a major contributor to the memory usage of the nameserver process.

There are a number of parameters that are important to maintaining consistency amongst the secondaries
and caches. The values for these parameters for a particulardomain zone file are stored in the SOA
record. These fields are:

Fields of the SOA Record

Serial

A serial number for the zone file. This should be incremented any time the data in the domain is
changed. When a secondary wants to check if its data is up-to-date, it checks the serial number on
the primary’s SOA record.

280

Chapter 25 The Domain Name System

Refresh

A time, in seconds, specifying how often the secondary should check the serial number on the
primary, and start a new transfer if the primary has newer data.

Retry

If a secondary fails to connect to the primary when the refresh time has elapsed (for example, if the
host is down), this value specifies, in seconds, how often theconnection should be retried.

Expire

If the retries fail to reach the primary within this number ofseconds, the secondary destroys its
copies of the zone data file(s), and stops answering requestsfor the domain. This stops very old and
potentially inaccurate data from remaining in circulation.

TTL

This field specifies a time, in seconds, that the resource records in this zone should remain valid in
the caches of other nameservers. If the data is volatile, this value should be short. TTL is a
commonly-used acronym, that stands for "Time To Live".

25.1.7 Name Resolution

DNS clients are configured with the addresses of DNS servers.Usually, these are servers which are
authoritative for the domain of which they are a member. All requests for name resolution start with a
request to one of these local servers. DNS queries can be of two forms:

• A recursivequery asks the nameserver to resolve a name completely, and return the result. If the
request cannot be satisfied directly, the nameserver looks in its configuration and caches for a server
higher up the domain tree which may have more information. Inthe worst case, this will be a list of
pre-configured servers for the root domain. These addressesare returned in a response called a
referral. The local nameserver must then send its request to one of these servers.

• Normally, this will be aniterativequery, which asks the second nameserver to either respond with an
authoritative reply, or with the addresses of nameservers (NS records) listed in its tables or caches as
authoritative for the relevant zone. The local nameserver then makes iterative queries, walking the tree
downwards until an authoritative answer is found (either positive or negative) and returned to the
client.

In some configurations, such as when firewalls prevent directIP communications between DNS clients
and external nameservers, or when a site is connected to the rest of the world via a slow link, a
nameserver can be configured with information about aforwarder. This is an external nameserver to
which the local nameserver should make requests as a client would, asking the external nameserver to
perform the full recursive name lookup, and return the result in a single query (which can then be
cached), rather than reply with referrals.

25.1.8 Reverse Resolution

The DNS provides resolution from a textual name to a resourcerecord, such as an A record with an IP
address. It does not provide a means, other than exhaustive search, to match in the opposite direction;

281

Chapter 25 The Domain Name System

there is no mechanism to ask which name is bound to a particular RR.

For many RR types, this is of no real consequence, however it is often useful to identify by name the host
which owns a particular IP address. Rather than complicate the design and implementation of the DNS
database engine by providing matching functions in both directions, the DNS utilises the existing
mechanisms and creates a special namespace, populated withPTR records, for IP address to name
resolution. Resolving in this manner is often calledreverse resolution, despite the inaccurate
implications of the term.

The manner in which this is achieved is as follows:

• A normal domain name is reserved and defined to be for the purpose of mapping IP addresses. The
domain name used is "in-addr.arpa." which shows the historical origins of the Internet in the US
Government’s Defence Advanced Research Projects Agency’sfunding program.

• This domain is then subdivided and delegated according to the structure of IP addresses. IP addresses
are often written indecimal dotted quad notation, where each octet of the 4-octet long address is
written in decimal, separated by dots. IP address ranges areusually delegated with more and more of
the left-most parts of the address in common as the delegation gets smaller. Thus, to allow delegation
of the reverse lookup domain to be done easily, this is turnedaround when used with the hierarchical
DNS namespace, which places higher level domains on the right of the name.

• Each byte of the IP address is written, as an ASCII text representation of the number expressed in
decimal, with the octets in reverse order, separated by dotsand appended with the in-addr.arpa.
domain name. For example, to determine the hostname of a network device with IP address
11.22.33.44, this algorithm would produce the string "44.33.22.11.in-addr.arpa." which is a legal,
structured Domain Name. A normal nameservice query would then be sent to the nameserver asking
for a PTR record bound to the generated name.

• The PTR record, if found, will contain the FQDN of a host.

One consequence of this is that it is possible for mismatch tooccur. Resolving a name into an A record,
and then resolving the name built from the address in that A record to a PTR record, may not result in a
PTR record which contains the original name. There is no restriction within the DNS that the "reverse"
mapping must coincide with the "forward" mapping. This is a useful feature in some circumstances,
particularly when it is required that more than one name has an A record bound to it which contains the
same IP address.

While there is no such restriction within the DNS, some application server programs or network libraries
will reject connections from hosts that do not satisfy the following test:

• the state information included with an incoming connectionincludes the IP address of the source of
the request.

• a PTR lookup is done to obtain an FQDN of the host making the connection

• an A lookup is then done on the returned name, and the connection rejected if the source IP address is
not listed amongst the A records that get returned.

This is done as a security precaution, to help detect and prevent malicious sites impersonating other sites
by configuring their own PTR records to return the names of hosts belonging to another organisation.

282

Chapter 25 The Domain Name System

25.2 The DNS Files
Now let’s look at actually setting up a small DNS enabled network. We will continue to use the examples
mentioned inChapter 23, i.e. we assume that:

• Our IP networking is working correctly

• We have IPNAT working correctly

• Currently all hosts use the ISP for DNS

Our Name Server will be the “strider” host which also runs IPNAT, and our two clients use "strider" as a
gateway. It is not really relevant as to what type of interface is on "strider", but for argument’s sake we
will say a 56k dial up connection.

So, before going any further, let’s look at our/etc/hosts file on "strider" before we have made the
alterations to use DNS.

Example 25-1. strider’s/etc/hosts file

127.0.0.1 localhost
192.168.1.1 strider
192.168.1.2 samwise sam
192.168.1.3 wormtongue worm

This is not exactly a huge network, but it is worth noting thatthe same rules apply for larger networks as
we discuss in the context of this section.

The other assumption we want to make is that the domain we wantto set up isdiverge.org , and that
the domain is only known on our internal network, and not worldwide. Proper registration of the
nameserver’s IP address as primary would be needed in addition to a static IP. These are mostly
administrative issues which are left out here.

The NetBSD operating system provides a set of config files for you to use for setting up DNS. They are
stored in the/etc/namedb directory, I strongly suggest making a backup copy of this directory for
reference purposes.

The default directory contains the following files:

• named.conf

• localhost

• 127

• loopback.v6

• root.cache

You will see modified versions of these files in this section.

Note: The examples in this chapter refer to BIND major version 8, however, it should be noted that
format of the name database and other config files are almost 100% compatible between version.
The only difference I noticed was that the “$TTL” information was not required.

283

Chapter 25 The Domain Name System

25.2.1 /etc/namedb/named.conf

The first file we want to look at is/etc/namedb/named.conf . This file is the config file for bind
(hence the catchy name). Setting up system like the one we aredoing is relatively simple. First, here is
what mine looks like:

options {
directory "/etc/namedb";
allow-transfer { 192.168.1.0/24; };
allow-query { 192.168.1.0/24; };
listen-on port 53 { 192.168.1.1; };

};

zone "localhost" {
type master;
notify no;
file "localhost";

};

zone "127.IN-ADDR.ARPA" {
type master;
notify no;
file "127";

};

zone "0. 0.0.0.0.0.0.0.0.ip6.int" {
type master;
file "loopback.v6";

};

zone "diverge.org" {
type master;
notify no;
file "diverge.org";

};

zone "1.168.192.in-addr.arpa" {
type master;
notify no;
file "1.168.192";

};

zone "." in {
type hint;
file "root.cache";

};

Note that in mynamed.conf the root (".") section is last, that is because there is another domain called
diverge.org on the internet (I happen to own it) so I want the resolver to look out on the internet last. This
is not normally the case on most systems.

Another very important thing to remember here is that if you have an internal setup, in other words no
live internet connection and/or no need to do root server lookups, comment out the root (".") zone. It may

284

Chapter 25 The Domain Name System

cause lookup problems if a particular client decides it wants to reference a domain on the internet, which
our server couldn’t resolve itself.

Looks like a pretty big mess, upon closer examination it is revealed that many of the lines in each section
are somewhat redundant. So we should only have to explain them a few times.

Lets go through the sections ofnamed.conf :

25.2.1.1 options

This section defines some global parameters, most noticeable is the location of the DNS tables, on this
particular system, they will be put in/etc/namedb as indicated by the "directory" option.

Following are the rest of the params:

allow-transfer

This option lists which remote DNS servers acting as secondaries are allowed to do zone transfers,
i.e. are allowed to read all DNS data at once. For privacy reasons, this should be restricted to
secondary DNS servers only.

allow-query

This option defines hosts from what network may query this name server at all. Restricting queries
only to the local network (192.168.1.0/24) prevents queries arriving on the DNS server’s external
interface, and prevent possible privacy issues.

listen-on port

This option defined the port and associated IP addresses thisserver will run named(8) on. Again, the
"external" interface is not listened here, to prevent queries getting received from "outside".

The rest of thenamed.conf file consists of “zone”s. A zone is an area that can have items to resolve
attached, e.g. a domain can have hostnames attached to resolve into IP addresses, and a reverse-zone can
have IP addresses attached that get resolved back into hostnames. Each zone has a file associated with it,
and a table within that file for resolving that particular zone. As is readily apparent, their format in
named.conf is strikingly similar, so I will highlight just one of their records:

25.2.1.2 zone “diverge.org”

type

The type of a zone is usually of type "master" in all cases except for the root zone “.” and for zones
that a secondary (backup) service is provided - the type obviously is "secondary" in the latter case.

notify

Do you want to send out notifications to secondaries when yourzone changes? Obviously not in this
setup, so this is set to "no".

file

This option sets the filename in our/etc/namedb directory where records about this particular
zone may be found. For the "diverge.org" zone, the file/etc/namedb/diverge.org is used.

285

Chapter 25 The Domain Name System

25.2.2 /etc/namedb/localhost

For the most part, the zone files look quite similar, however,each one does have some unique properties.
Here is what thelocalhost file looks like:

Example 25-2.localhost

1|$TTL 3600
2|@ IN SOA strider.diverge.org. root.diverge.org. (
3| 1 ; Serial
4| 8H ; Refresh
5| 2H ; Retry
6| 1W ; Expire
7| 1D) ; Minimum TTL
8| IN NS localhost.
9|localhost. IN A 127.0.0.1

10| IN AAAA ::1

Line by line:

Line 1:

This is the Time To Live for lookups, which defines how long other DNS servers will cache that
value before discarding it. This value is generally the samein all the files.

Line 2:

This line is generally the same in all zone files exceptroot.cache . It defines a so-called "Start Of
Authority" (SOA) header, which contains some basic information about a zone. Of specific interest
on this line are "strider.diverge.org." and "root.diverge.org." (note the trailing dots!). Obviously one
is the name of this server and the other is the contact for thisDNS server, in most cases root seems a
little ambiguous, it is preferred that a regular email account be used for the contact information,
with the "@" replaced by a "." (for example, mine would be "jrf.diverge.org.").

Line 3:

This line is the serial number identifying the "version" of the zone’s data set (file). The serial number
should be incremented each time there is a change to the file, the usual format is to either start with
a value of "1" and increase it for every change, or use a value of "YYYYMMDDNN" to encode
year (YYYY), month (MM), day (DD) and change within one day (NN) in the serial number.

Line 4:

This is the refresh rate of the server, in this file it is set to once every 8 hours.

Line 5:

The retry rate.

Line 6:

Lookup expiry.

286

Chapter 25 The Domain Name System

Line 7:

The minimum Time To Live.

Line 8:

This is the Nameserver line, which uses a "NS" resource record to show that "localhost" is the only
DNS server handing out data for this zone (which is "@", whichindicates the zone name used in the
named.conf file, i.e. "diverge.org") is, well, "localhost".

Line 9:

This is the localhost entry, which uses an "A" resource record to indicate that the name "localhost"
should be resolved into the IP-address 127.0.0.1 for IPv4 queries (which specifically ask for the "A"
record).

Line 10:

This line is the IPv6 entry, which returns ::1 when someone asks for an IPv6-address (by
specifically asking for the AAAA record) of "localhost.".

25.2.3 /etc/namedb/zone.127.0.0

This is the reverse lookup file (or zone) to resolve the special IP address 127.0.0.1 back to "localhost":

1| $TTL 3600
2| @ IN SOA strider.diverge.org. root.diverge.org. (
3| 1 ; Serial
4| 8H ; Refresh
5| 2H ; Retry
6| 1W ; Expire
7| 1D) ; Minimum TTL
8| IN NS localhost.
9| 1.0.0 IN PTR localhost.

In this file, all of the lines are the same as the localhost zonefile with exception of line 9, this is the
reverse lookup (PTR) record. The zone used here is "@" again,which got set to the value given in
named.conf , i.e. "127.in-addr.arpa". This is a special "domain" whichis used to do reverse-lookup of IP
addresses back into hostnames. For it to work, the four bytesof the IPv4 address are reserved, and the
domain "in-addr.arpa" attached, so to resolve the IP address "127.0.0.1", the PTR record of
"1.0.0.127.in-addr.arpa" is queried, which is what is defined in that line.

25.2.4 /etc/namedb/diverge.org

This zone file is populated by records for all of our hosts. Here is what it looks like:

1| $TTL 3600
2| @ IN SOA strider.diverge.org. root.diverge.org. (
3| 1 ; serial
4| 8H ; refresh
5| 2H ; retry
6| 1W ; expire

287

Chapter 25 The Domain Name System

7| 1D) ; minimum seconds
8| IN NS strider.diverge.org.
9| IN MX 10 strider.diverge.org. ; primary mail server

10| IN MX 20 samwise.diverge.org. ; secondary mail server
11| strider IN A 192.168.1.1
12| samwise IN A 192.168.1.2
13| www IN CNAME samwise.diverge.org.
14| worm IN A 192.168.1.3

There is a lot of new stuff here, so lets just look over each line that is new here:

Line 9

This line shows our mail exchanger (MX), in this case it is "strider". The number that precedes
"strider.diverge.org." is the priority number, the lower the number their higher the priority. The way
we are setup here is if "strider" cannot handle the mail, then"samwise" will.

Line 11

CNAME stands for canonical name, or an alias for an existing hostname, which must have an A
record. So we have aliased the following:

www.diverge.org to samwise.diverge.org

The rest of the records are simply mappings of IP address to a full name (A records).

25.2.5 /etc/namedb/1.168.192

This zone file is the reverse file for all of the host records, tomap their IP numbers we use on our private
network back into hostnames. The format is similar to that ofthe "localhost" version with the obvious
exception being the addresses are different via the different zone given in thenamed.conf file, i.e.
"0.168.192.in-addr.arpa" here:

1|$TTL 3600
2|@ IN SOA strider.diverge.org. root.diverge.org. (
3| 1 ; serial
4| 8H ; refresh
5| 2H ; retry
6| 1W ; expire
7| 1D) ; minimum seconds
8| IN NS strider.diverge.org.
9|1 IN PTR strider.diverge.org.

10|2 IN PTR samwise.diverge.org.
11|3 IN PTR worm.diverge.org.

25.2.6 /etc/namedb/root.cache

This file contains a list of root name servers for your server to query when it gets requests outside of its
own domain that it cannot answer itself. Here are first few lines of a root zone file:

288

Chapter 25 The Domain Name System

;
; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache . <file>"
; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC
; under anonymous FTP as
; file /domain/db.cache
; on server FTP.INTERNIC.NET
; -OR- RS.INTERNIC.NET
;
; last update: Jan 29, 2004
; related version of root zone: 2004012900
;
;
; formerly NS.INTERNIC.NET
;
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;
; formerly NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 192.228.79.201
;
; formerly C.PSI.NET
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
;
...

This file can be obtained from ISC at http://www.isc.org/ andusually comes with a distribution of BIND.
A root.cache file is included in the NetBSD operating system’s "etc" set.

This section has described the most important files and settings for a DNS server. Please see the BIND
documentation in/usr/src/dist/bind/doc/bog and named.conf(5) for more information.

25.3 Using DNS
In this section we will look at how to get DNS going and setup "strider" to use its own DNS services.

Setting up named to start automatically is quite simple. In/etc/rc.conf simply setnamed=yes .
Additional options can be specified innamed_flags , for example, I like to use-g nogroup -u

nobody , so a non-root account runs the "named" process.

In addition to being able to startup "named" at boot time, it can also be controlled with thendc
command. In a nutshell thendc command can stop, start or restart the named server process.It can also
do a great many other things. Before use, it has to be setup to communicate with the "named" process,

289

Chapter 25 The Domain Name System

see the ndc(8) and named.conf(5) man pages for more details on setting up communication channels
between "ndc" and the "named" process.

Next we want to point "strider" to itself for lookups. We havetwo simple steps, first, decide on our
resolution order. On a network this small, it is likely that each host has a copy of the hosts table, so we
can get away with using/etc/hosts first, and then DNS. However, on larger networks it is much easier
to use DNS. Either way, the file where order of name services used for resolution is determined is
/etc/nsswitch.conf (seeExample 23-2). Here is part of a typicalnsswitch.conf :

. . .
group_compat: nis
hosts: files dns
netgroup: files [notfound=return] nis
. . .

The line we are interested in is the "hosts" line. "files" means the system uses the/etc/hosts file first
to determine ip to name translation, and if it can’t find an entry, it will try DNS.

The next file to look at is/etc/resolv.conf , which is used to configure DNS lookups ("resolution")
on the client side. The format is pretty self explanatory butwe will go over it anyway:

domain diverge.org
search diverge.org
nameserver 192.168.1.1

In a nutshell this file is telling the resolver that this machine belongs to the "diverge.org" domain, which
means that lookups that contain only a hostname without a "."gets this domain appended to build a
FQDN. If that lookup doesn’t succeed, the domains in the "search" line are tried next. Finally, the
"nameserver" line gives the IP addresses of one or more DNS servers that should be used to resolve DNS
queries.

To test our nameserver we can use several commands, for example:

host sam

sam.diverge.org has address 192.168.1.2

As can be seen, the domain was appended automatically here, using the value from
/etc/resolv.conf . Here is another example, the output of runninghost www.yahoo.com:

$ host www.yahoo.com

www.yahoo.com is an alias for www.yahoo.akadns.net.
www.yahoo.akadns.net has address 68.142.226.38
www.yahoo.akadns.net has address 68.142.226.39
www.yahoo.akadns.net has address 68.142.226.46
www.yahoo.akadns.net has address 68.142.226.50
www.yahoo.akadns.net has address 68.142.226.51
www.yahoo.akadns.net has address 68.142.226.54
www.yahoo.akadns.net has address 68.142.226.55
www.yahoo.akadns.net has address 68.142.226.32

Other commands for debugging DNS besides host(1) are nslookup(8) and dig(1). Note that ping(8) isnot
useful for debugging DNS, as it will use whatever is configured in /etc/nsswitch.conf to do the
name-lookup.

290

Chapter 25 The Domain Name System

At this point the server is configured properly. The procedure for setting up the client hosts are easier, you
only need to setup/etc/nsswitch.conf and/etc/resolv.conf to the same values as on the server.

25.4 Setting up a caching only name server
A caching only name server has no local zones; all the queriesit receives are forwarded to the root
servers and the replies are accumulated in the local cache. The next time the query is performed the
answer will be faster because the data is already in the server’s cache. Since this type of server doesn’t
handle local zones, to resolve the names of the local hosts itwill still be necessary to use the already
known/etc/hosts file.

Since NetBSD supplies defaults for all the files needed by a caching only server, it only needs to be
enabled and started and is immediately ready for use! To enable named, putnamed=yes into
/etc/rc.conf , and tell the system to use it adding the following line to the/etc/resolv.conf file:

cat /etc/resolv.conf

nameserver 127.0.0.1

Now we can start named:

sh /etc/rc.d/named restart

25.4.1 Testing the server

Now that the server is running we can test it using the nslookup(8) program:

$ nslookup

Default server: localhost
Address: 127.0.0.1

>

Let’s try to resolve a host name, for example "www.NetBSD.org":

> www.NetBSD.org

Server: localhost
Address: 127.0.0.1

Name: www.NetBSD.org
Address: 204.152.190.12

If you repeat the query a second time, the result is slightly different:

> www.NetBSD.org

Server: localhost
Address: 127.0.0.1

Non-authoritative answer:
Name: www.NetBSD.org
Address: 204.152.190.12

291

Chapter 25 The Domain Name System

As you’ve probably noticed, the address is the same, but the message “Non-authoritative answer” has
appeared. This message indicates that the answer is not coming from an authoritative server for the
domain NetBSD.org but from the cache of our own server.

The results of this first test confirm that the server is working correctly.

We can also try the host(1) and dig(1) commands, which give the following result.

$ host www.NetBSD.org

www.NetBSD.org has address 204.152.190.12
$

$ dig www.NetBSD.org

; <<>> DiG 8.3 <<>> www.NetBSD.org
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19409
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIO NAL: 0
;; QUERY SECTION:
;; www.NetBSD.org, type = A, class = IN

;; ANSWER SECTION:
www.NetBSD.org. 23h32m54s IN A 204.152.190.12

;; AUTHORITY SECTION:
NetBSD.org. 23h32m54s IN NS uucp-gw-1.pa.dec.com.
NetBSD.org. 23h32m54s IN NS uucp-gw-2.pa.dec.com.
NetBSD.org. 23h32m54s IN NS ns.NetBSD.org.
NetBSD.org. 23h32m54s IN NS adns1.berkeley.edu.
NetBSD.org. 23h32m54s IN NS adns2.berkeley.edu.

;; Total query time: 14 msec
;; FROM: miyu to SERVER: 127.0.0.1
;; WHEN: Thu Nov 25 22:59:36 2004
;; MSG SIZE sent: 32 rcvd: 175

As you can see dig(1) gives quite a bit of output, the expectedanswer can be found in the "ANSWER
SECTION". The other data given may be of interest when debugging DNS problems.

292

Chapter 26

Mail and news

This chapter explains how to set up NetBSD to use mail and news. Only a simple but very common setup
is described: the configuration of a host connected to the Internet with a modem through a provider. You
can think of this chapter as the continuation ofChapter 23, assuming a similar network configuration.
Even this “simple” setup proves to be difficult if you don’t know where to start or if you’ve only read
introductory or technical documentation. A general description of mail and news configuration is beyond
the scope of this guide; please read a good Unix Administration book (some very good ones are listed on
the NetBSD site).

This chapter also briefly describes the configuration (but not the usage) of two popular applications, mutt
for mail and tin for news. The usage is not described because they are easy to use and well documented.
Obviously, both mutt and tin are not mandatory choices: manyother similar applications exist but I think
that they are a good starting point because they are widely used, simple, work well and don’t use too
much disk space and memory. Both are console mode programs; if you prefer graphics applications there
are also many choices for X.

In short, the programs required for the configuration described in this chapter are:

• postfix

• fetchmail

• mutt

• tin

Of these, only postfix is installed with the base system; you can install the other programs from the
NetBSD package collection, pkgsrc.

Note: Since NetBSD 4.0, postfix is the default MTA (Mail Transport Agent) and sendmail was
removed. Also, because sendmail is widely popular and several programs like fetchmail are designed
to be used with it, postfix includes a command line wrapper that accepts sendmail’s commands line
syntax but works with postfix. See sendmail(1) for more details.

Before continuing, remember that none of the programs presented in this chapter is mandatory: there are
other applications performing similar tasks and many usersprefer them. You’ll find different opinions
reading the mailing lists. You can also use different strategies for sending and receiving mail: the one
explained here is only a starting point; once you understandhow it works you’ll probably want to modify
it to suit your needs or to adopt a different method altogether.

At the opposite extreme of the example presented here, thereis the usage of an application like Mozilla,
which does everything and frees you from the need of configuring many components: with Mozilla you
can browse the Internet, send and receive mail and read news.Besides, the setup is very simple. There is

293

Chapter 26 Mail and news

a price to pay, though: Mozilla is a “closed” program that will not cooperate easily with other standard
Unix utilities.

Another possibility is to use emacs to read mail and news. Emacs needs no introduction to Unix users
but, in case you don’t know, it is an extensible editor (although calling emacs an editor is somewhat
reductive) which becomes a complete work environment, and can be used to read mail, news and to
perform many operations. For many people emacs is the only environment that they need and they use it
for all their work. The configuration of emacs for mail and news is described in the emacs manual.

In the rest of this chapter we will deal with a host connected to the Internet through a PPP connection via
serial modem to a provider.

• the local host’s name is “ape” and the internal network is “insetti.net”, which means that the FQDN
(Fully Qualified Domain Name) is “ape.insetti.net”.

• the user’s login name on ape is “carlo”.

• the provider’s name is BigNet.

• the provider’s mail server is “mail.bignet.it”.

• the provider’s news server is “news.bignet.it”.

• the user’s (“carlo”) account at the provider is “alan” with the password “pZY9o”.

First some basic terminology:

MUA (mail user agent)

a program to read and write mail. For example: mutt, elm and pine but also the simple mail
application installed with the base system.

MTA (mail transfer agent)

a program that transfers mail between two host but also locally (on the same host). The MTA
decides the path that the mail will follow to get to the destination. On other BSD systems (but not
only) the standard MTA is sendmail, other examples are qmail, exim and Microsoft Exchange.

MDA (mail delivery agent)

a program, usually used by the MTA, that delivers the mail; for example, it physically puts the
messages in the recipient’s mailbox. For example, postfix uses one or more MDAs to deliver mail,
and procmail is another well-known MDA.

Figure 26-1depicts the mail system that we want to set up. Between the local network (or the single
host) and the provider there is a modem PPP connection. The “bubbles” with the thick border (postfix,
fetchmail, mutt) are the programs launched manually by the user; the remaining bubbles are the programs
that are launched automatically. The circled numbers referto the logical steps of the mail cycle:

1. In step (1) mail is downloaded from the provider’s POP server using fetchmail, which hands
messages off to postfix’s sendmail wrapper to put the messages in the user’s mailbox.

2. In step (2) the user launches mutt (or another MUA) to read mail, reply and write new messages.

3. In step (3) the user “sends” the mail from within mutt. Messages are accumulated in the spool area.

294

Chapter 26 Mail and news

4. In step (4) the user calls postfix’s sendmail wrapper to transfer the messages to the provider’s SMTP
server, that will deliver them to the final destination (possibly through other mail servers). The
provider’s SMTP server acts as arelay for our mail.

The connection with the provider must be up only during steps(1) and (4); for the remaining steps it is
not needed.

Figure 26-1. Structure of the mail system

mutt

sendmail

spool: /var/spool/mqueue

sendmail

mailbox: /var/mail

sendmail

fetchmail

POP server SMTP server

provider

home

1 4

2 3

PPP link

26.1 postfix
When an MTA must deliver a local message, it is delivered directly. If the message is intended for a
different domain, the MTA must find out the address of the mailserver for that domain. Postfix uses the
DNS service (described inChapter 25) to find a mail exchanger handling mail for the given domain, and
delivers the message to that mail server then.

Postfix is controlled by a set of configuration files and databases, of which/etc/postfix/main.cf

and/etc/postfix/master.cf are the most important.

295

Chapter 26 Mail and news

Note: Prior to version 1.5 of NetBSD, the mail configuration files were in /etc instead of /etc/mail .
Since NetBSD 4.0, the /etc/mail directory is only used to store the local aliases and the
corresponding postmap(1) database.

The first problem to be solved is that the local network we are dealing with is an internal network, i.e. not
directly accessible from the Internet. This means that the names used internally have no meaning on the
Internet; in short, “ape.insetti.net” cannot be reached byan external host: no one will be able to reply to a
mail sent with this return address (many mail systems will even reject the message as spam prevention as
it comes from an unknown host). The true address, the one visible from everybody, is assigned by the
provider and, therefore, it is necessary to convert the local address “carlo@ape.insetti.net” to the real
address “alan@bignet.it”. Postfix, if correctly configured, will take care of this when it transfers the
messages.

You’ll probably also want to configure postfix in order to sendthe e-mails to the provider’s mail server,
using it as arelay. In the configuration described in this chapter, postfix doesnot directly contact the
recipient’s mail server (as previously described) but relays all its mail to the provider’s mail server.

Note: The provider’s mail server acts as a relay , which means that it delivers mail which is not
destined to its own domain, to another mail server. It acts as an intermediary between two servers.

Since the connection with the provider is not always active,it is not necessary to start postfix as a
daemon in/etc/rc.conf : you can disable it with the line “postfix=NO ”. As a consequence it will be
necessary to launch postfix manually when you want to transfer mail to the provider. Local mail is
delivered correctly even if postfix is not active as a daemon.

Let’s start configuring postfix.

26.1.1 Configuration of generic mapping

This type of configuration uses a new file/etc/postfix/generic which contains the hostname
mapping used by postfix to rewrite the internal hostnames.

The first step is therefore to write the mapping file:

carlo@ape.insetti.net alan@bignet.it
root@ape.insetti.net alan@bignet.it
news@ape.insetti.net alan@bignet.it

These entries will map the mail sent from the users given on the left side into the globally valid email
addresses given on the right, making it appear as if the mail was really sent from that address.

For the sake of efficiency,generic must be transformed into a binary file with the following command:

postmap /etc/postfix/generic

Now it’s time to create the prototype configuration file whichwe’ll use to create the postfix configuration
file.

vi /etc/postfix/main.cf

296

Chapter 26 Mail and news

For the sake of simplicity, we’ll only show the variables youneed change:

relayhost = mail.bignet.it
smtp_generic_maps = hash:/etc/postfix/generic

This configuration tells postfix to rewrite the addresses of type “ape.insetti.net” using the real names
found in the/etc/postfix/generic file. It also says that mail should be sent to the “mail.bignet.it”
server. The meaning of the options is described in detail in postconf(5).

The last step is to reload the configuration. You can do that easily with:

/etc/rc.d/postfix reload

postfix/postfix-script: refreshing the Postfix mail syst em

Now everything is ready to start sending mail.

26.1.2 Testing the configuration

Postfix is finally configured and ready to work, but before sending real mail it is better to do some simple
tests. First let’s try sending a local e-mail with the following command (postfix’s sendmail wrapper):

$ sendmail carlo

Subject: test

Hello world

.

Please follow exactly the example above: leave a blank line after Subject: and end the message with a
line containing only one dot. Now you should be able to read the message with your mail client and
verify that the From: field has been correctly rewritten.

From: alan@bignet.it

26.1.3 Using an alternative MTA

Starting from version 1.4 of NetBSD sendmail is not called directly:

$ ls -l /usr/sbin/sendmail

lrwxr-xr-x 1 root wheel 21 Nov 1 01:14 /usr/sbin/sendmail@ - > /usr/sbin/mailwrapper

The purpose of mailwrapper is to allow the usage of an alternative MTA instead of postfix (for example,
sendmail). If you plan to use a different mailer I suggest that you read the mailwrapper(8) and the
mailer.conf(5) manpages, which are very clear.

26.2 fetchmail
If someone sends me mail, it is received and stored by the provider, and not automatically transferred to
the local hosts; therefore it is necessary to download it. Fetchmail is a very popular program that

297

Chapter 26 Mail and news

downloads mail from a remote mail server (using e.g. the PostOffice Protocol, POP) and forwards it to
the local system for delivery (usually using postfix’s sendmail wrapper). It is powerful yet easy to use
and configure: after installation, the file~/.fetchmailrc must be created and the program is ready to
run (~/.fetchmailrc contains a password so appropriate permissions on the file are required).

This is an example.fetchmailrc :

poll mail.bignet.it
protocol POP3
username alan there with password pZY9o is carlo here
flush
mda "/usr/sbin/sendmail -oem %T"

The last line (“mda ...”) is used only if postfix is not active as daemon on the system. Please note that the
POP-mail server indicated in this file (mail.bignet.it) is only used to retrieve mails, and that it is not
necessary the same as the mail relay used by postfix to send outmails.

After setting up the.fetchmailrc file, the following command can be used to download and deliver
mail to the local system:

$ fetchmail

The messages can now be read with mutt.

26.3 Reading and writing mail with mutt
Mutt is one of the most popular mail programs: it is “lightweight”, easy to use and has lots of features.
The man page mutt is very bare bones; the real documentation is in /usr/pkg/share/doc/mutt/ , in
particularmanual.txt .

Mutt’s configuration is defined by the~/.muttrc file. The easiest way to create it is to copy mutt’s
example muttrc file (usually/usr/pkg/share/examples/mutt/sample.muttrc) to the home
directory and modify it. The following example shows how to achieve some results:

• Save a copy of sent mail.

• Define a directory and two files for incoming and outgoing mailsaved by mutt (in this example the
directory is~/Mail and the files areincoming andoutgoing).

• Define some colors.

• Define an alias.

set copy=yes
set edit_headers
set folder="~/Mail"
unset force_name
set mbox="~/Mail/incoming"
set record="~/Mail/outgoing"
unset save_name

bind pager <up> previous-page
bind pager <down> next-page

298

Chapter 26 Mail and news

color normal white black
color hdrdefault blue black
color indicator white blue
color markers red black
color quoted cyan black
color status white blue
color error red white
color underline yellow black

mono quoted standout
mono hdrdefault underline
mono indicator underline
mono status bold

alias pippo Pippo Verdi <pippo.verdi@pluto.net>

To start mutt:

$ mutt

Please note that mutt supports color, but this depends on theterminal settings. Under X you can use
"xterm-color", for example:

$ env TERM=xterm-color mutt

26.4 Strategy for receiving mail
This section describes a simple method for receiving and reading mail. The connection to the provider is
activated only for the time required to download the messages; mail is then read offline.

1. Activate the connection to the provider.

2. Runfetchmail.

3. Deactivate the connection.

4. Read mail with mutt.

26.5 Strategy for sending mail
When mail has been written and “sent” with mutt, the messagesmust be transferred to the provider with
postfix. Mail is sent from mutt with they command, but this does not really send it; the messages are
enqueued in the spool area; if postfix is not active as a daemonit is necessary to start it manually or the
messages will remain on the hard disk. The necessary steps are:

1. Write mail with mutt, send it and exit mutt. You can check ifand what messages are in the postfix
mail queue using the mailq(1) program.

2. Activate the connection with the provider.

299

Chapter 26 Mail and news

3. If your provider requires you to do "SMTP-after-POP", i.e. it first wants to make sure to know who
you are before you are allowed to send mail (and no spam), you need to runfetchmail again first.

4. Write the command/usr/sbin/postfix flush to transfer the queued messages to the provider.

5. Deactivate the connection when the queue is empty.

26.6 Advanced mail tools
When you start using mail, you won’t probably have very sophisticated requirements and the already
described standard configuration will satisfy all your needs. But for many users the number of daily
messages will increase with time and a more rational organization of the mail storage will become
necessary, for example subdividing mail in different mail boxes organized by topic. If, for example, you
subscribe to a mailing list, you will likely receive many messages every day and you will want to keep
them separate from the rest of your mail. You will soon find that you are spending too much time every
day repeating the same manual operations to organize your mail boxes.

Why repeat the same operations manually when you can have a program perform them automatically for
you? There are numerous tools that you can add to your mail system to increase its flexibility and
automatically process your messages. Amongst the most known and used there are:

• procmail, an advanced mail delivery agent and general purpose mail filter for local mail, which
automatically processes incoming mail using user defined rulesets. It integrates smoothly with
sendmail/postfix.

• spamassassin or spamprobe, to help fight spam.

• metamail, a tool to process attachments.

• formail, a mail formatter.

In the remaining part of this section a sample configuration for procmail will be presented for a very
common case: delivering automatically to a user defined mailbox all the messages coming from a
mailing list. The configuration of postfix will be modified in order to call procmail directly (procmail
will be the local mailerused by sendmail). and a custom configuration file for procmail will be created.

First, procmail must be installed using the package system (mail/procmail) or pkg_add.

Next, the configuration of postfix must be changed, in order touse procmail as local mailer:

mailbox_command = /usr/pkg/bin/procmail

The line defines the path of the procmail program (you can see where procmail is installed with the
commandwhich procmail).

The last step is the creation of the procmail configuration file, containing the recipes for mail delivery.

Let’s say that, for example, you subscribed to a mailing liston roses whose address is
“roses@flowers.org” and that every message from the list contains the following line in the header:

Delivered-To: roses@flowers.org

Assuming you want to automatically sort all mails going overthat list into the local mail folder
"roses_list", the procmail configuration file (.procmailrc) looks like this:

300

Chapter 26 Mail and news

PATH=/bin:/usr/bin:/usr/pkg/bin
MAILDIR=$HOME/Mail
LOGFILE=$MAILDIR/from

:0

* ^Delivered-To: roses@flowers.org
roses_list

The previous file contains only one rule, beginning with the line containing “:0”. The following line
identifies all messages containing the string “Delivered-To: roses@flowers.org” and the last line says that
the selected messages must go to theroses_list mailbox (which you should have created in
$MAILDIR). The remaining messages will be delivered to the default mailbox. Note that $MAILDIR is
the same directory that you have configured with mutt:

set folder="~/Mail"

Of course the mailing list is only an example; procmail is a very versatile tool which can be used to filter
mail based on many criteria. As usual, refer to the man pages for more details: procmail(1),
procmailrc(5), and procmailex(5) (this last one contains many examples of configuration files).

26.7 News with tin
The wordnewsindicates the set of messages posted to the USENET newsgroups, a service available on
the Internet. Each newsgroup contains articles related to aspecific topic. Reading a newsgroup is
different than reading a mailing list: when you subscribe toa mailing list you receive the articles by mail
and you read them with a standard mail program like mutt, which you use also to send replies. News,
instead, are read directly from a news server with a dedicated program callednewsreaderlike, for
example, tin. With tin you can subscribe to the newsgroups that you’re interested in and follow the
threads. A thread is a sequence of articles which all derive from an article that we could call “original”.
In short, a message is sent to the group, someone answers, other people answer to those who answered in
the first place and so on, creating a tree like structure of messages and replies: without a newsreader it is
impossible to understand the correct sequence of messages.

After the installation of tin (from the package collection as usual) the only thing left to do is to write the
name of the NNTP server in the file/usr/pkg/etc/nntp/server , which you may need to create first.
For example:

news.bignet.it

Once this has been done, the program can be started with the commandtin . On the screen something
similar to the following example will be displayed:

$ tin

Connecting to news.bignet.it...
news.bignet.it InterNetNews NNRP server INN 1.7.2 08-Dec- 1997 ready (posting ok).
Reading groups from active file...
Checking for new groups...
Reading attributes file...
Reading newsgroups file...
Creating newsrc file...

301

Chapter 26 Mail and news

Autosubscribing groups...
Reading newsrc file...

Be patient when you connect for the first time, because tin downloads an immense list of newsgroups to
which you can subscribe and this takes several minutes. Whenthe download is finished, the program’s
main screen is displayed; usually no groups are displayed; to see the list of groups pressy. To subscribe
to a group, move on the group’s name and pressy.

Once that you have subscribed to some newsgroups you can start tin more quickly with the commandtin
-Q. The search for new groups is disabled (-q), only active groups are searched (-n) and newsgroup
description are not loaded (-d): it will not be possible to use they (yank) command in tin. When tin is
started with this option it can’t tell if a newsgroup is moderated or not.

Note that if you are connecting from an internal network (like in our example), when you send ("post") a
message the address at the beginning of the message will be wrong (because it is the internal address). To
solve the problem, use the option “mail_address” in the tin configuration file (~/.tin/tinrc) or set the
REPLYTO environment variable.

302

Chapter 27

Introduction to the Common
Address Redundancy Protocol
(CARP)

SeeSection D.3.3for the license of this chapter.

CARP is the Common Address Redundancy Protocol. Its primarypurpose is to allow multiple hosts on
the same network segment to share an IP address. CARP is a secure, free alternative to the Virtual Router
Redundancy Protocol (http://www.ietf.org/rfc/rfc3768.txt) and the Hot Standby Router Protocol
(http://www.ietf.org/rfc/rfc2281.txt).

CARP works by allowing a group of hosts on the same network segment to share an IP address. This
group of hosts is referred to as a "redundancy group". The redundancy group is assigned an IP address
that is shared amongst the group members. Within the group, one host is designated the "master" and the
rest as "backups". The master host is the one that currently "holds" the shared IP; it responds to any traffic
or ARP requests directed towards it. Each host may belong to more than one redundancy group at a time.

One common use for CARP is to create a group of redundant firewalls. The virtual IP that is assigned to
the redundancy group is configured on client machines as the default gateway. In the event that the
master firewall suffers a failure or is taken offline, the IP will move to one of the backup firewalls and
service will continue unaffected.

While highly redundant and fault-tolerant hardware minimizes the need for CARP, it doesn’t erase it.
There’s no hardware fault tolerance that’s capable of helping if someone knocks out a power cord, or if
your system administrator types reboot in the wrong window.CARP also makes it easier to make the
patch and reboot cycle transparent to users, and easier to test a software or hardware upgrade--if it
doesn’t work, you can fall back to your spare until fixed.

There are, however, situations in which CARP won’t help. CARP’s design does require that the members
of a group be on the same physical subnet with a static IP address, although with the introduction of the
carpdev directive, there is no more need for IP addresses on the physical interfaces. Similarly, services
that require a constant connection to the server (such as SSHor IRC) will not be transparently transferred
to the other system--though in this case, CARP can help with minimizing downtime. CARP by itself
does not synchronize data between applications, for example, manually duplicating data between boxes
with rsync, or whatever is appropriate for your application.

CARP supports both IPv4 and IPv6.

27.1 CARP Operation
The master host in the group sends regular advertisements tothe local network so that the backup hosts

303

Chapter 27 Introduction to the Common Address Redundancy Protocol (CARP)

know it’s still alive. If the backup hosts don’t hear an advertisement from the master for a set period of
time, then one of them will take over the duties of master (whichever backup host has the lowest
configured advbase and advskew values). It’s possible for multiple CARP groups to exist on the same
network segment. CARP advertisements contain the Virtual Host ID which allows group members to
identify which redundancy group the advertisement belongsto.

In order to prevent a malicious user on the network segment from spoofing CARP advertisements, each
group can be configured with a password. Each CARP packet sentto the group is then protected by an
SHA1 HMAC.

27.2 Configuring CARP
Each redundancy group is represented by a carp(4) virtual network interface. As such, CARP is
configured using ifconfig(8) The follow options are available:

carpN

The name of the carp(4) virtual interface where N is a integerthat represents the interface’s number
(e.g. carp0).

vhid

The Virtual Host ID. This is a unique number that is used to identify the redundancy group to other
nodes on the network. Acceptable values are from 1 to 255. This allows for multiple redundancy
groups to exist on the same network.

password

The authentication password to use when talking to other CARP-enabled hosts in this redundancy
group. This must be the same on all members of the redundancy group.

carpdev

This optional parameter specifies the physical network interface that belongs to this redundancy
group. By default, CARP will try to determine which interface to use by looking for a physical
interface that is in the same subnet as the ipaddress and maskcombination given to the carp(4)
interface.

advbase

This optional parameter specifies how often, in seconds, to advertise that we’re a member of the
redundancy group. The default is 1 second. Acceptable values are from 1 to 255.

304

Chapter 27 Introduction to the Common Address Redundancy Protocol (CARP)

advskew

This optional parameter specifies how much to skew the advbase when sending CARP
advertisements. By manipulating advbase, the master CARP host can be chosen. The higher the
number, the less preferred the host will be when choosing a master. The default is 0. Acceptable
values are from 1 to 254.

state

Force a carp(4) interface into a certain state. Valid statesare init, backup, and master

ipaddress

This is the shared IP address assigned to the redundancy group. This address does not have to be in
the same subnet as the IP address on the physical interface (if present). This address needs to be the
same on all hosts in the group, however.

mask

The subnet mask of the shared IP.

Further CARP behaviour can be controlled via sysctl(8)

net.inet.carp.allow

Accept incoming CARP packets or not. Default is 1 (yes).

net.inet.carp.preempt

Allow hosts within a redundancy group that have a better advbase and advskew to preempt the
master. In addition, this option also enables failing over all interfaces in the event that one interface
goes down. If one physical CARP-enabled interface goes down, CARP will change advskew to 240
on all other CARP-enabled interfaces, in essence, failing itself over. This option is 0 (disabled) by
default.

net.inet.carp.log

Log bad CARP packets. Default is 0 (disabled).

305

Chapter 27 Introduction to the Common Address Redundancy Protocol (CARP)

net.inet.carp.arpbalance

Load balance traffic across multiple redundancy group hosts. Default is 0 (disabled). See carp(4) for
more information.

27.3 Enabling CARP Support
CARP support is not enabled by default.

To use carp(4) you need a kernel with support for thecarp pseudo-device. Make sure the following line
is in your kernel configuration file:

pseudo-device carp # CARP

After configuring thecarp pseudo-device in your kernel configuration, you must recompile your kernel
and reboot to enable carp(4) support.

27.4 CARP Example
An example CARP configuration:

sysctl -w net.inet.carp.allow=1

ifconfig carp0 create

ifconfig carp0 vhid 1 pass lanpasswd \

carpdev em0 advskew 100 10.0.0.1 255.255.255.0

This sets up the following:

• Enables receipt of CARP packets (this is the default setting)

• Creates a carp(4) interface.

• Configures carp0 for virtual host #1, enables a password(lanpasswd), sets em0 as the interface
belonging to the group, and makes this host a backup due to theadvskew of 100 (assuming of course
that the master is set up with an advskew less than 100). The shared IP assigned to this group is
10.0.0.1/255.255.255.0.

Running ifconfig on carp0 shows the status of the interface:

ifconfig carp0

carp0: flags=8802<UP,BROADCAST,SIMPLEX,MULTICAST> mtu 1500
carp: BACKUP carpdev em0 vhid 1 advbase 1 advskew 100
inet 10.0.0.1 netmask 0xffffff00 broadcast 10.0.0.255

306

Chapter 27 Introduction to the Common Address Redundancy Protocol (CARP)

27.5 Advanced CARP configuration
The following example creates a cluster of two highly-available, redundant firewalls. The following
diagram presents what we’re trying to achieve:

+----| WAN/Internet |----+
| |

em1| |em1
+-----+ +-----+
| fw1 | | fw2 |
+-----+ +-----+
em0| |em0

| |
---+-------Shared LAN-------+---

Both firewalls are connected to the LAN on em0 and to a WAN/Internet connection on em1. IP addresses
are as follows:

• Firewall 1 (fw1) em0: 172.16.0.1

• Firewall 1 (fw1) em1: 192.0.2.1

• Firewall 2 (fw2) em0: 172.16.0.2

• Firewall 2 (fw2) em1: 192.0.2.2

The IP addresses we wish to share between the redundancy groups:

• WAN/Internet Shared IP: 192.0.2.100

• LAN Shared IP: 172.16.0.100

The network policy is that Firewall 1 (fw1) will be the preferred master.

The following configuration is for Firewall 1 (fw1):

#Enable preemption and group interface failover
sysctl -w net.inet.carp.preempt=1

#Configure CARP on the LAN side
ifconfig carp0 create

ifconfig carp0 vhid 1 pass lanpasswd carpdev em0 \

172.16.0.100 255.255.255.0

#Configure CARP on the WAN side
ifconfig carp1 create

ifconfig carp1 vhid 2 pass wanpasswd carpdev em1 \

192.0.2.100 255.255.255.0

As mentioned before, our policy is for Firewall 1 to be the preferred master. When configuring Firewall 2
we make theadvskew a higher value since it’s less preferred to be the master.

307

Chapter 27 Introduction to the Common Address Redundancy Protocol (CARP)

The following configuration is for Firewall 2 (fw2):

#Enable preemption and group interface failover
sysctl -w net.inet.carp.preempt=1

#Configure CARP on the LAN side
ifconfig carp0 create

ifconfig carp0 vhid 1 pass lanpasswd carpdev em0 \

advskew 128 172.16.0.100 255.255.255.0

#Configure CARP on the WAN side
ifconfig carp1 create

ifconfig carp1 vhid 2 pass wanpasswd carpdev em1 \

advskew 128 192.0.2.100 255.255.255.0

27.6 Forcing Failover of the Master
There can be times when it’s necessary to failover or demote the master node on purpose. Examples
include taking the master node down for maintenance or when troubleshooting a problem. The objective
here is to gracefully fail over traffic to one of the backup hosts so that users do not notice any impact.

To failover, shut down the carp(4) interface on the master node. This will cause the master to advertise
itself with an "infinite" advbase and advskew. The backup host(s) will see this and immediately take over
the role of master.

ifconfig carp0 down

308

Chapter 28

Network services

28.1 The Network File System (NFS)
Now that the network is working it is possible to share files and directories over the network using the
Network File System (NFS). From the point of view of file sharing, the computer which gives access to
its files and directories is called theserver, and the computer using these files and directories is the
client. A computer can be client and server at the same time.

• A kernel must be compiled with the appropriate options for the client and the server (the options are
easy to find in the kernel configuration file. SeeSection 23.1for more information on NFS related
kernel options.

• The server must enable the rpcbind, mountd lockd statd andnfs_server daemons in
/etc/rc.conf :

rpcbind=yes
mountd=yes
nfs_server=yes
lockd=yes
statd=yes

• The client must enable the rpcbind, lockd statd andnfs_client daemons in/etc/rc.conf :

rpcbind=yes
nfs_client=yes
lockd=yes
statd=yes

• The server must list the exported directories in/etc/exports and then run the commandkill -HUP
‘cat /var/run/mountd.pid (hup mountd may work too!).

A client host can access a remote directory through NFS if:

• The server host exports the directory to the client. The listof filesystems a NFS server exports can be
checked with theshowmount -ecommand, see showmount(8):

showmount -e 192.168.1.2

Exports list on 192.168.1.2:
/home host1 host2 host3

• The client host mounts the remote directory with the commandmount 192.168.1.2:/home /home

Themount command has a rich set of options for remote directories which are not very intuitive (to say
the least).

309

Chapter 28 Network services

28.1.1 NFS setup example

The scenario described here is the following: five client machines (cli1, ..., cli5) share some directories
on a server (buzz.toys.org). Some of the directories exported by the server are reserved for a specific
client, the other directories are common for all client machines. All the clients boot from the server and
must mount the directories.

The directories exported from the server are:

/export/cli?/root

the five root directories for the five client machines. Each client has its own root directory.

/export/cli?/swap

Five swap directories for the five swap machines.

/export/common/usr

/usr directory; common for all client hosts.

/usr/src

Common/usr/src directory for all client machines.

The following file systems exist on the server

/dev/ra0a on /
/dev/ra0f on /usr
/dev/ra1a on /usr/src
/dev/ra2a on /export

Each client needs the following file systems

buzz:/export/cli?/root on /
buzz:/export/common/usr on /usr
buzz:/usr/src on /usr/src

The server configuration is the following:

/etc/exports
/usr/src -network 192.168.1.0 -mask 255.255.255.0
/export -alldirs -maproot=root -network 192.168.1.0 -mas k 255.255.255.0

On the client machines/etc/fstab contains:

buzz:/export/cli X/root / nfs rw
buzz:/export/common/usr /usr nfs ro,nodev,nosuid
buzz:/usr/src /usr/src nfs rw,nodev,nosuid

Each client machine has its number substituted to the “X” character in the first line of the previous
example.

310

Chapter 28 Network services

28.1.2 Setting up NFS automounting for /net with amd(8)

28.1.2.1 Introduction

The problem with NFS (and other) mounts is, that you usually have to be root to make them, which can
be rather inconvenient for users. Using amd(8) you can set upa certain directory (Commonly/net),
under which one can make any NFS-mount as a normal user, as long as the filesystem about to be
accessed is actually exported by the NFS server.

To check if a certain server exports a filesystem, and which ones, use theshowmount-command with the
-e (export) switch:

$ showmount -e wuarchive.wustl.edu

Exports list on wuarchive.wustl.edu:
/export/home onc.wustl.edu
/export/local onc.wustl.edu
/export/adm/log onc.wustl.edu
/usr onc.wustl.edu
/ onc.wustl.edu
/archive Everyone

If you then want to mount a directory to access anything belowit (for example
/archive/systems/unix/NetBSD), just change into that directory:

$ cd /net/wuarchive.wustl.edu/archive/systems/unix/NetBSD

The filesystem will be mounted (byamd), and you can a access any files just as if the directory was
mounted by the superuser of your system.

28.1.2.2 Actual setup

You can set up such a/net directory with the following steps (including basicamd configuration):

1. in /etc/rc.conf , set the following variable:

amd=yes

2. mkdir /amd

3. mkdir /net

4. Taking/usr/share/examples/amd/amd.conf , put the following into/etc/amd.conf :

[/net]
map_name = /etc/amd/net
map_type = file

5. Taking/usr/share/examples/amd/net as example, put the following into/etc/amd/net :

/defaults type:=host;rhost:=${key};fs:=${autodir}/${ rhost}/root

* host==${key};type:=link;fs:=/ \
host!=${key};opts:=ro,soft,intr,nodev,nosuid,noconn

6. Reboot, or (re)startamd by hand:

sh /etc/rc.d/amd restart

311

Chapter 28 Network services

28.2 The Network Time Protocol (NTP)
It is not unusual to find that the system clock is wrong, often by several minutes: for some strange reason
it seems that computer clocks are not very accurate. The problem gets worse if you administer many
networked hosts: keeping the clocks in sync can easily become a nightmare. To solve this problem, the
NTP protocol (version 3) comes to our aid: this protocol can be used to synchronize the clocks of a
network of workstations using one or more NTP servers.

Thanks to the NTP protocol it is possible to adjust the clock of a single workstation but also to
synchronize an entire network. The NTP protocol is quite complex, defining a hierarchical master-slave
structure of servers divided in strata: the top of the hierarchy is occupied by stratum 1 servers, connected
to an external clock (ex. a radio clock) to guarantee a high level of accuracy. Underneath, stratum 2
servers synchronize their clocks with stratum 1, and so on. The accuracy decreases as we proceed
towards lower levels. This hierarchical structure avoids the congestion which could be caused by having
all hosts refer to the same (few) stratum 1 servers. If, for example, you want to synchronize a network,
you don’t connect all the hosts to the same public stratum 1 server. Instead, you create a local server
which connects to the main server and the remaining hosts synchronize their clocks with the local server.

Fortunately, to use the NTP tools you don’t need to understand the details of the protocol and of its
implementation (if you are interested, refer to RFC 1305) and you only need to know how to configure
and start some programs. The base system of NetBSD already contains the necessary tools to utilize this
protocol (and other time related protocols, as we’ll see), derived from the xntp implementation. This
section describes a simple method to always have a correct system time.

First, it is necessary to find the address of the public NTP servers to use as a reference; a detailed listing
can be found at http://ntp.isc.org/bin/view/Servers/WebHome. As an example, for Italy the two stratum 1
servers ntp1.ien.it and ntp2.ien.it can be used.

Next, to adjust the system clock give the following command as root:

ntpdate -b ntp1.ien.it ntp2.ien.it

(substitute the names of the servers in the example with the ones that you are actually using. Option-b

tellsntpdate to set the system time with the settimeofday system call, instead of slewing it with adjtime
(the default). This option is suggested when the differencebetween the local time and the correct time
can be considerable.

As you’ve seen, ntpdate is not difficult to use. The next step is to start it automatically, in order to always
have the correct system time. If you have a permanent connection to the Internet, you can start the
program at boot with the following line of/etc/rc.conf :

ntpdate=YES ntpdate_hosts=" ntp1.ien.it"

The name of the NTP server to use is specified in thentpdate_hosts variable; if you leave this field
empty, the boot script will try to extract the name from the/etc/ntp.conf file.

If you don’t have a permanent Internet connection (ex. you have a dial-up modem connection through an
ISP) you can start ntpdate from theip-up script, as explained inChapter 23. In this case add the
following line to theip-up script:

/usr/sbin/ntpdate -s -b ntp1.ien.it

(the path is mandatory or the script will probably not find theexecutable). Option-s diverts logging
output from the standard output (this is the default) to the system syslog(3) facility, which means that the

312

Chapter 28 Network services

messages from ntpdate will usually end up in/var/log/messages .

Besides ntpdate there are other useful NTP commands. It is also possible to turn one of the local hosts
into an NTP server for the remaining hosts of the network. Thelocal server will synchronize its clock
with a public server. For this type of configuration you must use thentpd daemon and create the
/etc/ntp.conf configuration file. For example:

server ntp1.ien.it

server ntp2.ien.it

ntpd can be started too fromrc.conf , using the relevant option:

ntpd=YES

NTP is not your only option if you want to synchronize your network: you can also use the timed
daemon or the rdate(8) command as well. timed was developed for 4.3BSD.

Timed too uses a master-slave hierarchy: when started on a host, timed asks the network time to a master
and adjusts the local clock accordingly. A mixed structure,using both timed and ntpd can be used. One of
the local hosts gets the correct time from a public NTP serverand is the timed master for the remaining
hosts of network, which become its clients and synchronize their clocks using timed. This means that the
local server must run both NTP and timed; care must be taken that they don’t interfere with each other
(timed must be started with the-F hostname option so that it doesn’t try to adjust the local clock).

Finally, rdate(8) can be used to synchronize once against a given host, much like ntpdate(8). The host in
question must have the "time" service (port 37) enabled in/etc/inetd.conf .

313

V. Building the system

Chapter 29

Obtaining the sources

To read the NetBSD sources from your local disk or to build thesystem or parts of it, you need to
download the NetBSD sources. This chapter explains how to get the NetBSD source using a number of
different ways, although the preferred one is to get the tarballs and then update via cvs(1).

29.1 Preparing directories
Kernel and userland sources are usually placed in/usr/src . This directory is not present by default in
the NetBSD installation and you will need to create it first. As it is in a system directory, you will need
root access to create the directory and make sure your normaluser account can write to it. For
demonstration purposes, it is assumed that the non-root login is carlo. Please replace it with a valid
login name on your system:

$ su

Password: *****
mkdir /usr/src

chown <carlo> /usr/src

Also, if you want X11R6 sources, you can prepare/usr/xsrc :

mkdir /usr/xsrc

chown <carlo> /usr/xsrc

Note: Please note that for the subsequent steps, root access is neither needed nor recommended,
so this preparation step should be done first. All CVS operations can (and should) be done as
normal user and you don’t need root privileges any more:

exit

$

29.2 Terminology
Before starting to fetch or download the required files, you may want to know the definitions of
“Formal releases”, “Maintenance branches” and other related terms. That information is available
under the NetBSD release glossary and graphs (http://www.NetBSD.org/releases/release-map.html).

315

Chapter 29 Obtaining the sources

29.3 Downloading tarballs
It is sometimes faster to download a tarball and then continue updating with cvs(1). You can download
tarballs (see tar(1)) from ftp.NetBSD.org (or any other mirror) for a number of releases or branches.

The only drawback is that the tarballs are updated less often. Normally, every three days.

Also, please note that these tarballs include theCVSdirectories, so you can download them and then
update your source tree using cvs(1), as explained in the CVSsection.

29.3.1 Downloading sources for a NetBSD release

The tarball files for the sources of a specific release are available under
/pub/NetBSD/NetBSD- <RELEASE-NUMBER>/source/sets/ on ftp.NetBSD.org (or a mirror), where
<RELEASE-NUMBER> is the release you want to fetch (for example, 4.0).

To fetch the sources of a NetBSD release using tarballs, simply do:

$ ftp -i ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-4.0/source/sets/

Trying 2001:4f8:4:7:2e0:81ff:fe21:6563...
Connected to ftp.NetBSD.org.
220 ftp.NetBSD.org FTP server (NetBSD-ftpd 20070809) read y.
331 Guest login ok, type your name as password.
[...]
250 CWD command successful.
250 CWD command successful.
250 CWD command successful.
ftp> mget *.tgz

local: gnusrc.tgz remote: gnusrc.tgz
229 Entering Extended Passive Mode (|||58302|)
150 Opening BINARY mode data connection for ’gnusrc.tgz’ (7 9233899 bytes).
[...]
ftp> quit

221-
Data traffic for this session was 232797304 bytes in 5 files.
Total traffic for this session was 232803039 bytes in 6 trans fers.

221 Thank you for using the FTP service on ftp.NetBSD.org.

You should now have 5 files:

$ ls *.tgz

gnusrc.tgz sharesrc.tgz src.tgz syssrc.tgz xsrc.tgz

You now must extract them all:

$ foreach file (*.tgz)

? tar -xzf $file -C /usr/src

? end

316

Chapter 29 Obtaining the sources

29.3.2 Downloading sources for a NetBSD stable branch

$ ftp -i ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-release-4-0/tar_files/src/

Trying 2001:4f8:4:7:2e0:81ff:fe21:6563...
Connected to ftp.NetBSD.org.
220 ftp.NetBSD.org FTP server (NetBSD-ftpd 20070809) read y.
331 Guest login ok, type your name as password.
[...]
250 CWD command successful.
250 CWD command successful.
250 CWD command successful.
250 CWD command successful.
ftp> mget *.tar.gz

local: bin.tar.gz remote: bin.tar.gz
229 Entering Extended Passive Mode (|||56011|)
150 Opening BINARY mode data connection for ’bin.tar.gz’ (9 14202 bytes).
[...]
ftp> quit

221-
Data traffic for this session was 149221420 bytes in 22 files .
Total traffic for this session was 149231539 bytes in 23 tran sfers.

221 Thank you for using the FTP service on ftp.NetBSD.org.

You should now have 22 files:

$ ls *.tar.gz

bin.tar.gz doc.tar.gz libexec.tar.gz tools.tar.gz
config.tar.gz etc.tar.gz regress.tar.gz top-level.tar. gz
contrib.tar.gz games.tar.gz rescue.tar.gz usr.bin.tar. gz
crypto.tar.gz gnu.tar.gz sbin.tar.gz usr.sbin.tar.gz
dist.tar.gz include.tar.gz share.tar.gz
distrib.tar.gz lib.tar.gz sys.tar.gz

You now must extract them all:

$ foreach file (*.tar.gz)

? tar -xzf $file -C /usr/src

? end

29.3.3 Downloading sources for a NetBSD-current developme nt branch

To download the NetBSD-current tarballs, located under
/pub/NetBSD/NetBSD-current/tar_files/src , just follow the same steps as in the previous
section, but now on a different directory.

You may also want to fetch the X11R6 source, available under:
/pub/NetBSD/NetBSD-current/tar_files/xsrc .

317

Chapter 29 Obtaining the sources

29.4 Fetching by CVS
CVS (Concurrent Versions System) can be used to fetch the NetBSD source tree or to keep the NetBSD
source tree up to date with respect to changes made to the NetBSD sources. There are three trees
maintained for which you can use cvs(1) to obtain them or keepthem up to date:

The list of currently maintained branches is available under src/doc/BRANCHES (see the “Status” entry
on “Release branches” section).

Before you can do an initial (full) checkout of the NetBSD sources viaanonymous CVS, you first have to
set some environment variables. For the C-Shell, type:

$ setenv CVS_RSH ssh

$ setenv CVSROOT anoncvs@anoncvs.NetBSD.org:/cvsroot

Or, the same for the bourne shell:

$ export CVS_RSH="ssh"

$ export CVSROOT="anoncvs@anoncvs.NetBSD.org:/cvsroot"

We will also use the-P option in the examples below since it is used to prune empty directories.

29.4.1 Fetching a NetBSD release

A release is a set of particular versions of source files, and once released does not change over time.

To get the NetBSD (kernel and userland) sources from a specific release, run the following command
after the preparations done above:

$ cd /usr

$ cvs checkout -r <BRANCH> -P src

Where<BRANCH> is the release branch to be checked out, for example, “netbsd-3-1-RELEASE” or
“netbsd-4-0-RELEASE”. If you want to fetch a different patchlevel, you would use
“netbsd-3-0-1-RELEASE” or “netbsd-3-0-2-RELEASE”.

For example, in order to fetch “netbsd-4-0-RELEASE” you would use:

$ cvs checkout -r netbsd-4-0-RELEASE -P src

To fetch the X11R6 source, just “checkout” the “xsrc” module. For example:

$ cvs checkout -r netbsd-4-0-RELEASE -P xsrc

29.4.2 Fetching a NetBSD stable branch

NetBSD stable branches are also called “Maintenance branches”. Please consult theSection 29.2.

If you want to follow a stable branch, just pass the branch name to the cvs(1)-r option.

For example, if you want to fetch the most recent version of “netbsd-4”, you just need to use that tag:

$ cd /usr

$ cvs checkout -r netbsd-4 -P src

318

Chapter 29 Obtaining the sources

And for the “xsrc” module:

$ cvs checkout -r netbsd-4 -P xsrc

If you have checked out sources from a stable branch in/usr/src and want to update them to get the
latest security-fixes and bug-fixes, run:

$ cd /usr/src

$ cvs update -Pd

The same applies to the “xsrc” module, but in that case you will have to change your working directory
to /usr/xsrc first.

Caution!: Be sure to take care in selecting the correct and desired branch tag so you don’t
accidentally downgrade your source tree.

29.4.3 Fetching the NetBSD-current development branch

To obtain the NetBSD-current source just omit “-r <BRANCH>” and replace it by “-A ”:

$ cd /usr

$ cvs checkout -A -P src

The “xsrc” is also available:

$ cd /usr

$ cvs checkout -A -P xsrc

To update your NetBSD-current source tree, add the-A flag:

$ cd /usr/src

$ cvs update -A -Pd

29.4.4 Saving some cvs(1) options

If you find yourself typing some options to cvs over and over again, you can as well put them into a file
.cvsrc in your home directory. It is useful for just typingcvs updateon a directory with a branch
checked out to update it (adding-A would revert the branch to the -current branch, which is not what one
usually wants!), For unified diffs, transfers should be compressed and “cvs update” should be mostly
quiet:

Example 29-1..cvsrc

#update -dPA
update -dP
rdiff -u
diff -u

319

Chapter 29 Obtaining the sources

cvs -q

29.5 Sources on CD (ISO)
If you prefer to download (and maybe burn) a CD-ROM image withthe NetBSD source, just fetch
sourcecd- <RELEASE-NUMBER>.iso from ftp.NetBSD.org or any other mirror.

Thesourcecd- <RELEASE-NUMBER>.iso file is located under /pub/NetBSD/iso/<RELEASE>, where
<RELEASE-NUMBER> is a release of NetBSD, for example, 3.1 or 4.0:

ftp://ftp.NetBSD.org/pub/NetBSD/iso/3.1/sourcecd-3. 1.iso
ftp://ftp.NetBSD.org/pub/NetBSD/iso/4.0/sourcecd-4. 0.iso

The next step is to burn the ISO image or mount it with the help of vnconfig(8). Please seeChapter 13as
it explains in detail how to do it.

Assuming you have mounted the CD under/mnt , /mnt/source/sets should have everything you
need to extract:

$ ls /mnt/source/sets

BSDSUM MD5 gnusrc.tgz src.tgz xsrc.tgz
CKSUM SYSVSUM sharesrc.tgz syssrc.tgz

All tarballs should be extracted to the root file system (/). The following command will do it:

$ foreach file (*.tgz)

? tar -xzf $file -C /

? end

After that, you should have/usr/src and/usr/xsrc populated with the NetBSD sources.

320

Chapter 30

Crosscompiling NetBSD with
build.sh

When targeting a product for an embedded platform, it’s not feasible to have all the development tools
available on that same platform. Instead, some method of crosscompiling is usually used today. NetBSD
1.6 and forward comes with a framework to build both the operating system’s kernel and the whole
userland for either the same platform that the compiler runson, or for a different platform, using
crosscompiling. Crosscompiling requires assembler, linker, compiler etc. to be available and built for the
target platform. The new build scheme will take care of creating these tools for a given platform, and
make them available ready to use to do development work.

In this chapter, we will show how to usebuild.sh to first create a crosscompiling toolchain, including
cross-compiler, cross-assembler, cross-linker and so on.While native kernel builds are covered in
Chapter 31, these tools are then used to manually configure and crosscompile a kernel for a different
platform, and then show how to usebuild.sh as a convenient alternative. After that works, the whole
NetBSD userland will be compiled and packed up in the format of a NetBSD release. In the examples,
we will use the Sun UltraSPARC ("sparc64") 64-bit platform as target platform, any other platform
supported by NetBSD can be targetted as well specifying its name (see/usr/src/sys/arch).

Before starting, take note that it is assumed that the NetBSDsources from the "netbsd-4-0" branch are
available in/usr/src as described inChapter 29.

A more detailed description of thebuild.sh framework can be found in Luke Mewburn and Matthew
Green’s paper (http://www.mewburn.net/luke/papers/build.sh.pdf) and their presentation
(http://www.mewburn.net/luke/talks/bsdcon-2003/index.html) from BSDCon 2003 as well as in
/usr/src/BUILDING .

30.1 Building the crosscompiler
The first step to do cross-development is to get all the necessary tools available. In NetBSD terminology,
this is called the "toolchain", and it includes BSD-compatible make(1), C/C++ compilers, linker,
assembler, config(8), as well as a fair number of tools that are only required when crosscompiling a full
NetBSD release, which we won’t cover here.

The command to create the crosscompiler is quite simple, using NetBSD’s newsrc/build.sh script.
Please note that all the commands here can be run as normal (non-root) user:

$ cd /usr/src

$./build.sh -m sparc64 tools

Make sure that the directory/usr/obj does exist, or add a "-O" option to the build.sh call, redirecting
the object directory someplace else.

321

Chapter 30 Crosscompiling NetBSD withbuild.sh

If the tools have been built previously and they only need updated, then the update option "-u" can be
used to only rebuild tools that have changed:

$./build.sh -u -m sparc64 tools

When the tools are built, information about them and severalenvironment variables is printed out:

...
===> build.sh started: Thu Dec 2 22:18:11 CET 2007
===> build.sh ended: Thu Dec 2 22:28:22 CET 2007
===> Summary of results:

build.sh command: ./build.sh -m sparc64 tools
build.sh started: Thu Dec 2 22:18:11 CET 2007
No nonexistent/bin/nbmake, needs building.
Bootstrapping nbmake
MACHINE: sparc64
MACHINE_ARCH: sparc64
TOOLDIR path: /usr/src/tooldir.NetBSD-4.0-i386
DESTDIR path: /usr/src/destdir.sparc64
RELEASEDIR path: /usr/src/releasedir
Created /usr/src/tooldir.NetBSD-4.0-i386/bin/nbmake
makewrapper: /usr/src/tooldir.NetBSD-4.0-i386/bin/nb make-sparc64
Updated /usr/src/tooldir.NetBSD-4.0-i386/bin/nbmake- sparc64
Tools built to /usr/src/tooldir.NetBSD-4.0-i386
build.sh started: Thu Dec 2 22:18:11 CET 2007
build.sh ended: Thu Dec 2 22:28:22 CET 2007

===> .

During the build, object directories are used consistently, i.e. special directories are kept that keep the
platform-specific object files and compile results. In our example, they will be kept in directories named
"obj.sparc64" as we build for UltraSPARC as target platform.

The toolchain itself is part of this, but as it’s hosted and compiled for a i386 system, it will get placed in
its own directory indicating where to cross-build from. Here’s where our crosscompiler tools are located:

$ pwd

/usr/src
$ ls -d tooldir.*
tooldir.NetBSD-4.0-i386

So the general rule of thumb is for a given "host" and "target"system combination, the crosscompiler
will be placed in the "src/tooldir.host" directory by default. A full list of all tools created for
crosscompiling the whole NetBSD operating system includes:

$ ls tooldir.NetBSD-4.0-i386/bin/

nbasn1_compile nbmakefs nbzic
nbcap_mkdb nbmakeinfo sparc64--netbsd-addr2li
nbcat nbmakewhatis sparc64--netbsd-ar
nbcksum nbmenuc sparc64--netbsd-as
nbcompile_et nbmkcsmapper sparc64--netbsd-c++
nbconfig nbmkdep sparc64--netbsd-c++filt
nbcrunchgen nbmkesdb sparc64--netbsd-cpp
nbctags nbmklocale sparc64--netbsd-dbsym

322

Chapter 30 Crosscompiling NetBSD withbuild.sh

nbdb nbmknod sparc64--netbsd-g++
nbeqn nbmktemp sparc64--netbsd-g77
nbfgen nbmsgc sparc64--netbsd-gcc
nbfile nbmtree sparc64--netbsd-gcc-3.3
nbgencat nbnroff sparc64--netbsd-gccbug
nbgroff nbpax sparc64--netbsd-gcov
nbhexdump nbpic sparc64--netbsd-ld
nbhost-mkdep nbpwd_mkdb sparc64--netbsd-lint
nbindxbib nbrefer sparc64--netbsd-mdsetim
nbinfo nbrpcgen sparc64--netbsd-nm
nbinfokey nbsoelim sparc64--netbsd-objcopy
nbinstall nbstat sparc64--netbsd-objdump
nbinstall-info nbsunlabel sparc64--netbsd-ranlib
nbinstallboot nbtbl sparc64--netbsd-readelf
nblex nbtexi2dvi sparc64--netbsd-size
nblorder nbtexindex sparc64--netbsd-strings
nbm4 nbtsort sparc64--netbsd-strip
nbmake nbuudecode
nbmake-sparc64 nbyacc

As you can see, most of the tools that are available native on NetBSD are present with some program
prefix to identify the target platform for tools that are specific to a certain target platform.

One important tool that should be pointed out here is "nbmake-sparc64". This is a shell wrapper for a
BSD compatible make(1) command that’s setup to use all the right commands from the crosscompiler
toolchain. Using this wrapper instead of /usr/bin/make allows crosscompiling programs that were written
using the NetBSD Makefile infrastructure (see src/share/mk). We will use this make(1) wrapper in a
second to cross compile the kernel!

30.2 Configuring the kernel manually
Now that we have a working crosscompiler available, the "usual" steps for building a kernel are needed -
create a kernel config file, run config(8), then build. As the config(8) program used to create header files
and Makefile for a kernel build is platform specific, we need touse the "nbconfig" program that’s part of
our new toolchain. That aside, the procedure is just as like compiling a "native" NetBSD kernel.
Commands involved here are:

$ cd /usr/src/sys/arch/sparc64/conf

$ cp GENERIC MYKERNEL

$ vi MYKERNEL

$ /usr/src/tooldir.NetBSD-4.0-i386/bin/nbconfig MYKERNEL

That’s all. This command has created a directory../compile/ MYKERNEL with a number of header files
defining information about devices to compile into the kernel, a Makefile that is setup to build all the
needed files for the kernel, and link them together.

323

Chapter 30 Crosscompiling NetBSD withbuild.sh

30.3 Crosscompiling the kernel manually
We have all the files and tools available to crosscompile our UltraSPARC-based kernel from our
Intel-based host system, so let’s get to it! After changing in the directory created in the previous step, we
need to use the crosscompiler toolchain’snbmake-sparc64 shell wrapper, which just calls make(1)
with all the necessary settings for crosscompiling for a sparc64 platform:

$ cd ../compile/MYKERNEL/

$ /usr/src/tooldir.NetBSD-4.0-i386/bin/nbmake-sparc64 depend

$ /usr/src/tooldir.NetBSD-4.0-i386/bin/nbmake-sparc64

This will churn away a bit, then spit out a kernel:

...
text data bss dec hex filename

5016899 163728 628752 5809379 58a4e3 netbsd
$ ls -l netbsd

-rwxr-xr-x 1 feyrer 666 5874663 Dec 2 23:17 netbsd
$ file netbsd

netbsd: ELF 64-bit MSB executable, SPARC V9, version 1 (SYSV), statically linked, not stripped

Now the kernel in the filenetbsd can either be transferred to a UltraSPARC machine (via NFS, FTP,
scp, etc.) and booted from a possible harddisk, or directly from our cross-development machine using
NFS.

After configuring and crosscompiling the kernel, the next logical step is to crosscompile the whole
system, and bring it into a distribution-ready format. Before doing so, an alternative approach to
crosscompiling a kernel will be shown in the next section, using thebuild.sh script to do configuration
and crosscompilation of the kernel in one step.

30.4 Crosscompiling the kernel with build.sh

A cross compiled kernel can be done manually as described in the previous sections, or by the easier
method of usingbuild.sh , which will be shown here.

Preparation of the kernel config file is the same as described above:

$ cd /usr/src/sys/arch/sparc64/conf

$ cp GENERIC MYKERNEL

$ vi MYKERNEL

Then editMYKERNEL and once finished, all that needs to be done is to usebuild.sh to build the kernel
(it will also configure it, running the steps shown above):

$ cd /usr/src

$./build.sh -u -m sparc64 kernel=MYKERNEL

Notice that update ("-u") was specified, the tools are already built, there is no reason to rebuild all of the
tools. Once the kernel is built,build.sh will print out the location of it along with other information:

...
===> Summary of results:

324

Chapter 30 Crosscompiling NetBSD withbuild.sh

build.sh command: ./build.sh -u -m sparc64 kernel= MYKERNEL

build.sh started: Thu Dec 2 23:30:02 CET 2007
No nonexistent/bin/nbmake, needs building.
Bootstrapping nbmake
MACHINE: sparc64
MACHINE_ARCH: sparc64
TOOLDIR path: /usr/src/tooldir.NetBSD-4.0-i386
DESTDIR path: /usr/src/destdir.sparc64
RELEASEDIR path: /usr/src/releasedir
Created /usr/src/tooldir.NetBSD-4.0-i386/bin/nbmake
makewrapper: /usr/src/tooldir.NetBSD-4.0-i386/bin/nb make-sparc64
Updated /usr/src/tooldir.NetBSD-4.0-i386/bin/nbmake- sparc64
Building kernel without building new tools
Building kernel: MYKERNEL

Build directory: /usr/src/sys/arch/sparc64/compile/ob j.sparc64/GENERIC
Kernels built from MYKERNEL:

/usr/src/sys/arch/sparc64/compile/obj.sparc64/ MYKERNEL/netbsd
build.sh started: Thu Dec 2 23:30:02 CET 2007
build.sh ended: Thu Dec 2 23:38:22 CET 2007

===> .

The path to the kernel built is of interest here:
/usr/src/sys/arch/sparc64/compile/obj.sparc64/ MYKERNEL/netbsd , it can be used the
same way as described above.

30.5 Crosscompiling the userland
By now it is probably becoming clear that the toolchain actually works in stages. First the crosscompiler
is built, then a kernel. Sincebuild.sh will attempt to rebuild the tools at every invocation, using
“update” saves time. It is probably also clear that outside of a few options, thebuild.sh semantics are
basicallybuild.sh command. So, it stands to reason that building the whole userland and/or a release is
a matter of using the right commands.

It should be no surprise that building and creating a releasewould look like the following:

$./build.sh -U -u -m sparc64 release

These commands will compile the full NetBSD userland and putit into a destination directory, and then
build a release from it in a release directory. The-U switch is added here for anunprivilegedbuild, i.e.
one that’s running as normal user and not as root. As no further switches tobuild.sh were given nor any
environment variables were set, the defaults ofDESTDIR=/usr/src/destdir.sparc64 and
RELEASEDIR=/usr/src/releasedir are used, as shown in thebuild.sh-output above.

30.6 Crosscompiling the X Window System
The NetBSD project has its own copy of the X Window System’s source which is currently based on
XFree86 version 4, and which contains changes to make X goingon as many of the platforms supported
by NetBSD as possible. Due to this, it is desirable to use the XWindow System version available from
and for NetBSD, which can also be crosscompiled much like thekernel and base system. To do so, the

325

Chapter 30 Crosscompiling NetBSD withbuild.sh

"xsrc" sources must be checked out from CVS into/usr/xsrc just as "src" and "pkgsrc" were as
described inChapter 29.

After this, X can be crosscompiled for the target platform byadding the-x switch to build.sh, e.g. when
creating a full release:

$./build.sh -U -x -u -m sparc64 release

The-U flag for doing unprivileged (non-root) builds and the-u flag for not removing old files before
building as well as the-m arch option to define the target architecture have already been introduced, and
the-x option to also (cross)compile "xsrc" is another option.

30.7 Changing build behaviour
Similar to the old, manual building method, the new toolchain has a lot of variables that can be used to
direct things like where certain files go, what (if any) toolsare used and so on. A look insrc/BUILDING

covers most of them. In this section some examples of changing default settings are given, each
following its own ways.

30.7.1 Changing the Destination Directory

Many people like to track NetBSD-current and perform cross compiles of architectures that they use.
The logic for this is simple, sometimes a new feature or device becomes available and someone may
wish to use it. By keeping track of changes and building everynow and again, one can be assured that
these architectures can build their own release.

It is reasonable to assume that if one is tracking and building for more than one architecture, they might
want to keep the builds in a different location than the default. There are two ways to go about this, either
use a script to set the new DESTDIR, or simply do so interactively. In any case, it can be set the same
way as any other variable (depending on your shell of course).

For bash, the Bourne or Korn shell, this is:

$ export DESTDIR=/usr/builds/sparc64

For tcsh and the C shell, the command is:

$ setenv DESTDIR /usr/builds/sparc64

Simple enough. When the build is run, the binaries and files will be sent to/usr/builds .

30.7.2 Static Builds

The NetBSD toolchain builds and links against shared libraries by default. Many users still prefer to be
able to link statically. Sometimes a small system can be created without having shared libraries, which is
a good example of doing a full static build. If a particular build machine will always need one
environment variable set in a particular way, then it is easiest to simply add the changed setting to
/etc/mk.conf .

To make sure a build box always builds statically, simply addthe following line to/etc/mk.conf :

326

Chapter 30 Crosscompiling NetBSD withbuild.sh

LDSTATIC=-static

30.7.3 Using build.sh options

Besides variables in environment and/etc/mk.conf , the build process can be influenced by a number
of switches to thebuild.sh script itself, as we have already seen when forcing unprivileged (non-root)
builds, selecting the target architecture or preventing deletion of old files before the build. All these
options can be listed by runningbuild.sh -h:

$ cd /usr/src

$ build.sh -h

Usage: build.sh [-EnorUux] [-a arch] [-B buildid] [-D dest] [-j njob]
[-M obj] [-m mach] [-N noisy] [-O obj] [-R release] [-T tools]
[-V var=[value]] [-w wrapper] [-X x11src] [-Z var]
operation [...]

Build operations (all imply "obj" and "tools"):
build Run "make build".
distribution Run "make distribution" (includes DESTDIR/e tc/ files).
release Run "make release" (includes kernels and distrib me dia).

Other operations:
help Show this message and exit.
makewrapper Create nbmake-${MACHINE} wrapper and nbmake.

Always performed.
obj Run "make obj". [Default unless -o is used]
tools Build and install tools.
install=idir Run "make installworld" to ‘idir’ to install a ll sets

except ‘etc’. Useful after "distribution" or "release"
kernel=conf Build kernel with config file ‘conf’
releasekernel=conf Install kernel built by kernel=conf to RELEASEDIR.
sets Create binary sets in RELEASEDIR/MACHINE/binary/set s.

DESTDIR should be populated beforehand.
sourcesets Create source sets in RELEASEDIR/source/sets.
params Display various make(1) parameters.

Options:
-a arch Set MACHINE_ARCH to arch. [Default: deduced from MAC HINE]
-B buildId Set BUILDID to buildId.
-D dest Set DESTDIR to dest. [Default: destdir.MACHINE]
-E Set "expert" mode; disables various safety checks.

Should not be used without expert knowledge of the build syst em.
-j njob Run up to njob jobs in parallel; see make(1) -j.
-M obj Set obj root directory to obj; sets MAKEOBJDIRPREFIX.

Unsets MAKEOBJDIR.
-m mach Set MACHINE to mach; not required if NetBSD native.
-N noisy Set the noisyness (MAKEVERBOSE) level of the build:

0 Quiet
1 Operations are described, commands are suppressed
2 Full output

[Default: 2]

327

Chapter 30 Crosscompiling NetBSD withbuild.sh

-n Show commands that would be executed, but do not execute th em.
-O obj Set obj root directory to obj; sets a MAKEOBJDIR patter n.

Unsets MAKEOBJDIRPREFIX.
-o Set MKOBJDIRS=no; do not create objdirs at start of build.
-R release Set RELEASEDIR to release. [Default: releasedir]
-r Remove contents of TOOLDIR and DESTDIR before building.
-T tools Set TOOLDIR to tools. If unset, and TOOLDIR is not set in

the environment, nbmake will be (re)built unconditionally .
-U Set MKUNPRIVED=yes; build without requiring root privil eges,

install from an UNPRIVED build with proper file permissions .
-u Set MKUPDATE=yes; do not run "make clean" first.

Without this, everything is rebuilt, including the tools.
-V v=[val] Set variable ‘v’ to ‘val’.
-w wrapper Create nbmake script as wrapper.

[Default: ${TOOLDIR}/bin/nbmake-${MACHINE}]
-X x11src Set X11SRCDIR to x11src. [Default: /usr/xsrc]
-x Set MKX11=yes; build X11R6 from X11SRCDIR
-Z v Unset ("zap") variable ‘v’.

As can be seen, a number of switches can be set to change the standard build behaviour. A number of
them has already been introduced, others can be set as appropriate.

30.7.4 make(1) variables used during build

Several variables control the behaviour of NetBSD builds. Unless otherwise specified, these variables
may be set in either the process environment or in the make(1)configuration file specified byMAKECONF.
For a definitive list of these options, seeBUILDING andshare/mk/bsd.README files in the toplevel
source directory.

BUILDID

Identifier for the build. The identifier will be appended to object directory names, and can be
consulted in the make(1) configuration file in order to set additional build parameters, such as
compiler flags.

DESTDIR

Directory to contain the built NetBSD system. If set, special options are passed to the compilation
tools to prevent their default use of the host system’s/usr/include , /usr/lib , and so forth. This
pathname should not end with a slash (/) character (For installation into the system’s root directory,
setDESTDIRto an empty string). The directory must reside on a filesystemwhich supports long
filenames and hard links.

Defaults to an empty string ifUSETOOLSis “yes”; unset otherwise. Note:build.sh will provide a
default (destdir.MACHINE in the top-level.OBJDIR) unless run in “expert” mode.

EXTERNAL_TOOLCHAIN

If defined by the user, points to the root of an external toolchain (e.g./usr/local/gnu). This
enables the cross-build framework even when default toolchain is not available (see
TOOLCHAIN_MISSINGbelow).

328

Chapter 30 Crosscompiling NetBSD withbuild.sh

Default: Unset

MAKEVERBOSE

The verbosity of build messages. Supported values:

0 No descriptive
messages are
shown.

1 Descriptive
messages are
shown.

2 Descriptive
messages are
shown (prefixed
with a ’#’) and
command
output is not
suppressed.

Default: 2

MKCATPAGES

Can be set to “yes” or “no”. Indicates whether preformatted plaintext manual pages will be created
during a build.

Default: “yes”

MKCRYPTO

Can be set to “yes” or “no”. Indicates whether cryptographiccode will be included in a build;
provided for the benefit of countries that do not allow strongcryptography. Will not affect the
standard low-security password encryption system, crypt(3).

Default: “yes”

MKDOC

Can be set to “yes” or “no”. Indicates whether system documentation destined for
DESTDIR/usr/share/doc will be installed during a build.

Default: “yes”

MKHOSTOBJ

Can be set to “yes” or “no”. If set to “yes”, then for programs intended to be run on the compile
host, the name, release and architecture of the host operating system will be suffixed to the name of
the object directory created by “make obj”. This allows for multiple host systems to compile
NetBSD for a single target. If set to “no”, then programs built to be run on the compile host will use
the same object directory names as programs built to be run onthe target.

Default: “no”

329

Chapter 30 Crosscompiling NetBSD withbuild.sh

MKINFO

Can be set to “yes” or “no”. Indicates whether GNU info files, used for the documentation of most
of the compilation tools, will be created and installed during a build.

Default: “yes”

MKLINT

Can be set to “yes” or “no”. Indicates whether lint(1) will berun against portions of the NetBSD
source code during the build, and whether lint libraries will be installed into
DESTDIR/usr/libdata/lint

Default: “yes”

MKMAN

Can be set to “yes” or “no”. Indicates whether manual pages will be installed during a build.

Default: “yes”

MKNLS

Can be set to “yes” or “no”. Indicates whether Native Language System locale zone files will be
compiled and installed during a build.

Default: “yes”

MKOBJ

Can be set to “yes” or “no”. Indicates whether object directories will be created when running
“make obj”. If set to “no”, then all built files will be locatedinside the regular source tree.

Default: “yes”

MKPIC

Can be set to “yes” or “no”. Indicates whether shared objectsand libraries will be created and
installed during a build. If set to “no”, the entire build will be statically linked.

Default: Platform dependent. As of this writing, all platforms except sh3 default to “yes”

MKPICINSTALL

Can be set to “yes” or “no”. Indicates whether the ar(1) format libraries (lib * _pic.a), used to
generate shared libraries, are installed during a build.

Default: “yes”

MKPROFILE

Can be set to “yes” or “no”. Indicates whether profiled libraries (lib * _p.a) will be built and
installed during a build.

Default: “yes”; however, some platforms turn offMKPROFILEby default at times due to toolchain
problems with profiled code.

330

Chapter 30 Crosscompiling NetBSD withbuild.sh

MKSHARE

Can be set to “yes” or “no”. Indicates whether files destined to reside inDESTDIR/usr/share will
be built and installed during a build. If set to “no”, then allof MKCATPAGES, MKDOC, MKINFO,
MKMANandMKNLSwill be set to “no” unconditionally.

Default: “yes”

MKTTINTERP

Can be set to “yes” or “no”. For X builds, decides if the TrueType bytecode interpreter is turned on.
See freetype.org (http://freetype.org/patents.html) for details.

Default: “no”

MKUNPRIVED

Can be set to “yes” or “no”. Indicates whether an unprivileged install will occur. The user, group,
permissions and file flags will not be set on the installed items; instead the information will be
appended to a file calledMETALOGin DESTDIR. The contents ofMETALOGare used during the
generation of the distribution tar files to ensure that the appropriate file ownership is stored.

Default: “no”

MKUPDATE

Can be set to “yes” or “no”. Indicates whether all install operations intended to write toDESTDIR

will compare file timestamps before installing, and skip theinstall phase if the destination files are
up-to-date. This also has implications on full builds (See below).

Default: “no”

MKX11

Can be set to “yes” or “no”. Indicates whether X11R6 is built fromX11SRCDIR.

Default: “yes”

TOOLDIR

Directory to hold the host tools, once built. This directoryshould be unique to a given host system
and NetBSD source tree. (However, multiple targets may share the sameTOOLDIR; the
target-dependent files have unique names). If unset, a default based on the uname(1) information of
the host platform will be created in the.OBJDIR of src .

Default: Unset.

USETOOLS

Indicates whether the tools specified byTOOLDIRshould be used as part of a build in progress.
Must be set to “yes” if cross-compiling.

yes Use the tools
from TOOLDIR.

331

Chapter 30 Crosscompiling NetBSD withbuild.sh

no Do not use the
tools from
TOOLNAME, but
refuse to build
native
compilation tool
components that
are
version-specific
for that tool.

never Do not use the
tools from
TOOLNAME,
even when
building native
tool
components.
This is similar
to the traditional
NetBSD build
method, but
does not verify
that the
compilation
tools in use are
up-to-date
enough in order
to build the tree
successfully.
This may cause
build or runtime
problems when
building the
whole NetBSD
source tree.

Default: “yes” if building all or part of a whole NetBSD source tree (detected automatically); “no”
otherwise (to preserve traditional semantics of thebsd. * .mk make(1) include files).

X11SRCDIR

Directory containing the X11R6 source. The main X11R6 source is found in
X11SRCDIR/xfree/xc .

Default: “usr/xsrc”

The following variables only affect the top levelMakefile and do not affect manually building subtrees
of the NetBSD source code.

332

Chapter 30 Crosscompiling NetBSD withbuild.sh

INSTALLWORLDDIR

Location for the “make installworld” target to install to.

Default: “/”

MKOBJDIRS

Can be set to “yes” or “no”. Indicates whether object directories will be created automatically (via a
“make obj” pass) at the start of a build.

Default: “no”

MKUPDATE

Can be set to “yes” or “no”. If set, then addition to the effects described forMKUPDATE=yesabove,
this implies the effect ofNOCLEANDIR(i.e., “make cleandir” is avoided).

Default: “no”

NOCLEANDIR

If set, avoids the “make cleandir” phase of a full build. Thishas the effect of allowing only changed
files in a source tree to recompiled. This can speed up builds when updating only a few files in the
tree.

Default: Unset

NODISTRIBDIRS

If set, avoids the “make distrib-dirs” of a full build. This skips running mtree(8) onDESTDIR, useful
on systems where building as an unprivileged user, or where it is known that the system wide mtree
files have not changed.

Default: Unset

NOINCLUDES

If set, avoids the “make includes” phase of a full build. Thishas the effect of preventing make(1)
from thinking that some programs are out-of-date simply because system include files have
changed. However, this option should not be trusted when updating the entire NetBSD source tree
arbitrarily; it is suggested to useMKUPDATE=yesin that case.

Default: Unset

RELEASEDIR

If set, specifies the directory to which a release(7) layout will be written at the end of a “make
release”.

Default: Unset

TOOLCHAIN_MISSING

Set to “yes” on platforms for which there is no working in-tree toolchain, or if you need/wish using
native system toolchain (i.e. non-cross tools available via your shell search path).

Default: depends on target platform; on platforms with in-tree toolchain is set to “no”.

333

Chapter 31

Compiling the kernel

Most NetBSD users will sooner or later want to recompile their kernel, or compile a customized kernel.
This might be for several reasons:

• you can install bug-fixes, security updates, or new functionality by rebuilding the kernel from updated
sources.

• by removing unused device drivers and kernel sub-systems from your configuration, you can
dramatically reduce kernel size and, therefore, memory usage.

• by enabling optimisations more specific to your hardware, ortuning the system to match your specific
sizing and workload, you can improve performance.

• you can access additional features by enabling kernel options or sub-systems, some of which are
experimental or disabled by default.

• you can solve problems of detection/conflicts of peripherals.

• you can customize some options (for example keyboard layout, BIOS clock offset, ...)

• you can get a deeper knowledge of the system.

31.1 Requirements and procedure
To recompile the kernel you must have installed the compilerset (comp.tgz).

The basic steps to an updated or customised kernel then are:

1. Install or update the kernel sources

2. Create or modify the kernel configuration file

3. Building the kernel from the configuration file, either manually or usingbuild.sh

4. Install the kernel

31.2 Installing the kernel sources

You can get the kernel sources from AnonCVS (seeChapter 29), or from thesyssrc.tgz

tarball that is located in thesource/sets/ directory of the release that you are using.

If you chose to use AnonCVS to fetch the entire source tree, bepatient, the operation can last many
minutes, because the repository contains thousands of files.

334

Chapter 31 Compiling the kernel

If you have a source tarball, you can extract it as root:

cd /

tar zxf /path/to/syssrc.tgz

Even if you used the tarball from the release, you may wish to use AnonCVS to update the sources with
changes that have been applied since the release. This mightbe especially relevant if you are updating
the kernel to include the fix for a specific bug, including a vulnerability described in a NetBSD Security
Advisory. You might want to get the latest sources on the relevant release or critical updates branch for
your version, or Security Advisories will usually contain information on the dates or revisions of the files
containing the specific fixes concerned. SeeSection 29.4for more details on the CVS commands used to
update sources from these branches.

Once you have the sources available, you can create a custom kernel: this is not as difficult as you might
think. In fact, a new kernel can be created in a few steps whichwill be described in the following
sections.

31.3 Creating the kernel configuration file
The directories described in this section are i386 specific.Users of other architectures must substitute the
appropriate directories, see the subdirectories ofsrc/sys/arch for a list.

The kernel configuration file defines the type, the number and the characteristics of the devices supported
by the kernel as well as several kernel configuration options. For the i386 port, kernel configuration files
are located in the/usr/src/sys/arch/i386/conf directory.

Please note that the names of the kernel configuration files are historically in all uppercase, so they are
easy to distinguish from other files in that directory:

$ cd /usr/src/sys/arch/i386/conf/

$ ls

CARDBUS GENERIC_PS2TINY NET4501
CVS GENERIC_TINY SWINGER
DELPHI GENERIC_VERIEXEC SWINGER.MP
DISKLESS INSTALL VIRTUALPC
GENERIC INSTALL.MP files.i386
GENERIC.FAST_IPSEC INSTALL_LAPTOP kern.ldscript
GENERIC.MP INSTALL_PS2 kern.ldscript.4MB
GENERIC.MPDEBUG INSTALL_SMALL largepages.inc
GENERIC.local INSTALL_TINY majors.i386
GENERIC_DIAGNOSTIC IOPENER std.i386
GENERIC_ISDN LAMB
GENERIC_LAPTOP Makefile.i386

The easiest way to create a new file is to copy an existing one and modify it. Usually the best choice on
most platforms is the GENERIC configuration, as it contains most drivers and options. In the
configuration file there are comments describing the options; a more detailed description is found in the
options(4) man page. So, the usual procedure is:

$ cp GENERIC MYKERNEL

$ vi MYKERNEL

335

Chapter 31 Compiling the kernel

The modification of a kernel configuration file basically involves three operations:

1. support for hardware devices is included/excluded in thekernel (for example, SCSI support can be
removed if it is not needed.)

2. support for kernel features is enabled/disabled (for example, enable NFS client support, enable
Linux compatibility, ...)

3. tuning kernel parameters.

Lines beginning with “#” are comments; lines are disabled bycommenting them and enabled by
removing the comment character. It is better to comment lines instead of deleting them; it is always
possible uncomment them later.

The output of the dmesg(8) command can be used to determine which lines can be disabled. For each
line of the type:

XXX at YYY

bothXXX andYYY must be active in the kernel configuration file. You’ll probably have to experiment a
bit before achieving a minimal configuration but on a desktopsystem without SCSI and PCMCIA you
can halve the kernel size.

You should also examine the options in the configuration file and disable the ones that you don’t need.
Each option has a short comment describing it, which is normally sufficient to understand what the
option does. Many options have a longer and more detailed description in the options(4) man page.
While you are at it you should set correctly the options for local time on the CMOS clock. For example:

options RTC_OFFSET=-60

Theadjustkernel Perl script, which is available through pkgsrc, analyzes the output of dmesg(8) and
automatically generates a minimal configuration file. Installing adjustkernel basically boils down to:

$ cd /usr/pkgsrc/sysutils/adjustkernel

$ make install

You can now run the script with:

$ cd /usr/src/sys/arch/i386/conf

$ adjustkernel GENERIC > MYKERNEL

This script usually works very well, saving a lot of manual editing. But be aware that the script only
configures the available devices: you must still configure the other options manually.

31.4 Building the kernel manually
Based on your kernel configuration file, either one of the standard configurations or your customised
configuration, a new kernel must be built.

These steps can either be performed manually, or using thebuild.sh command that was introduced in
sectionChapter 30. This section will give instructions on how to build a nativekernel using manual
steps, the following sectionSection 31.5describes how to usebuild.sh to do the same.

336

Chapter 31 Compiling the kernel

• Configure the kernel

• Generate dependencies

• Compile the kernel

31.4.1 Configuring the kernel manually

When you’ve finished modifying the kernel configuration file (which we’ll call MYKERNEL), you should
issue the following command:

$ config MYKERNEL

If MYKERNELcontains no errors, the config(8) program will create the necessary files for the compilation
of the kernel, otherwise it will be necessary to correct the errors before running config(8) again.

Notes for crosscompilings: As the config(8) program used to create header files and Makefile for a
kernel build is platform specific, it is necessary to use the nbconfig program that’s part of a newly
created toolchain (created for example with

/usr/src/build.sh -m sparc64 tools/

). That aside, the procedure is just as like compiling a "native" NetBSD kernel. The command is for
example:

% /usr/src/tooldir.NetBSD-4.0-i386/bin/nbconfig MYKERNEL

This command has created a directory ../compile/ MYKERNEL with a number of header files defining
information about devices to compile into the kernel, a Makefile that is setup to build all the needed
files for the kernel, and link them together.

31.4.2 Generating dependencies and recompiling manually

Dependencies generation and kernel compilation is performed by the following commands:

$ cd ../compile/MYKERNEL

$ make depend

$ make

It can happen that the compilation stops with errors; there can be a variety of reasons but the most
common cause is an error in the configuration file which didn’tget caught by config(8). Sometimes the
failure is caused by a hardware problem (often faulty RAM chips): the compilation puts a higher stress
on the system than most applications do. Another typical error is the following: option B, active, requires
option A which is not active. A full compilation of the kernelcan last from some minutes to several
hours, depending on the hardware.

The result of a successful make command is thenetbsd file in the compile directory, ready to be
installed.

337

Chapter 31 Compiling the kernel

Notes for crosscompilings: For crosscompiling a sparc64 kernel, it is necessary to use the
crosscompiler toolchain’s nbmake-sparc64 shell wrapper, which calls make(1) with all the necessary
settings for crosscompiling for a sparc64 platform:

% cd ../compile/MYKERNEL/

% /usr/src/tooldir.NetBSD-4.0-i386/bin/nbmake-sparc64 depend

% /usr/src/tooldir.NetBSD-4.0-i386/bin/nbmake-sparc64

This will churn away a bit, then spit out a kernel:

...
text data bss dec hex filename
5016899 163728 628752 5809379 58a4e3 netbsd
% ls -l netbsd

-rwxr-xr-x 1 feyrer 666 5874663 Dec 2 23:17 netbsd
% file netbsd

netbsd: ELF 64-bit MSB executable, SPARC V9, version 1 (SYSV), statically linked, not stripped

Now the kernel in the file netbsd can either be transferred to an UltraSPARC machine (via NFS, FTP,
scp, etc.) and booted from a possible harddisk, or directly from the cross-development machine
using NFS.

31.5 Building the kernel using build.sh

After creating and possibly editing the kernel config file, the manual steps of configuring the kernel,
generating dependencies and recompiling can also be done using thesrc/build.sh script, all in one
go:

$ cd /usr/src

$./build.sh kernel=MYKERNEL

This will perform the same steps as above, with one small difference: before compiling, all old object
files will be removed, to start with a fresh build. This is usually overkill, and it’s fine to keep the old file
and only rebuild the ones whose dependencies have changed. To do this, add the-u option tobuild.sh :

$ cd /usr/src

$./build.sh -u kernel=MYKERNEL

At the end of its job,build.sh will print out the location where the new compiled kernel canbe found.
It can then be installed.

31.6 Installing the new kernel
Whichever method was used to produce the new kernel file, it must now be installed. The new kernel file
should be copied to the root directory, after saving the previous version.

mv /netbsd /netbsd.old

mv netbsd /

338

Chapter 31 Compiling the kernel

Customization can considerably reduce the kernel’s size. In the following examplenetbsd.old is the
install kernel andnetbsd is the new kernel.

-rwxr-xr-x 3 root wheel 3523098 Dec 10 00:13 /netbsd
-rwxr-xr-x 3 root wheel 7566271 Dec 10 00:13 /netbsd.old

The new kernel is activated after rebooting:

shutdown -r now

31.7 If something went wrong
When the computer is restarted it can happen that the new kernel doesn’t work as expected or even
doesn’t boot at all. Don’t worry: if this happens, just reboot with the previously saved kernel and remove
the new one (it is better to reboot “single user”):

• Reboot the machine

• Press the space bar at the boot prompt during the 5 seconds countdown

boot:

• Type

> boot netbsd.old -s

• Now issue the following commands to restore the previous version of the kernel:

fsck /

mount /

mv netbsd.old netbsd

reboot

This will give you back the working system you started with, and you can revise your custom kernel
config file to resolve the problem. In general, it’s wise to start with a GENERIC kernel first, and then
make gradual changes.

339

Chapter 32

Updating an existing system
from sources

Note: Please remember to check src/UPDATING
(http://cvsweb.NetBSD.org/bsdweb.cgi/src/UPDATING) for the latest changes.

If you are running a stable NetBSD release (such as NetBSD 5.0(../releases/formal-5/)), in a production
environment, you should occasionally update your sources and rebuild the system or the kernel, in order
to incorporate any security fixes that have been applied to the branch since its release.

Note: The update process is the same for NetBSD-current, therefore the following steps apply to
-current systems as well.

Most of the following steps can be done as ordinary user. Onlythe installation of a new kernel and the
userland will require root privileges. Although/usr is choosen as the working directory in the following
examples, the procedure can also take place in a user’s home directory. Ordinary users have normally not
the permissions to make changes in/usr , but this can be changed by root.

Having up-to-date sources is a prerequisite for the following steps.Section 29.4informs about the ways
to retrieve or update the sources for a release, stable or current branch (using CVS).

Please always refer to the output ofbuild.sh -h and the filesUPDATING> andBUILDING for details - it’s
worth it, there aremanyoptions that can be set on the command line or in/etc/mk.conf

32.1 The updating procedure

32.1.1 Building a new userland

The first step is to build the userland:

$ cd /usr/src

$./build.sh -U distribution

32.1.2 Building a new kernel

The next step will build the kernel:

340

Chapter 32 Updating an existing system from sources

$ cd /usr/src

$./build.sh -O ../obj -T ../tools kernel=<KERNEL>

32.1.3 Installing the kernel and userland

Installing the new kernel, rebooting (to ensure that the newkernel works) and installing the new userland
are the final steps of the updating procedure:

$ cd /usr/src

$ su

mv /netbsd /netbsd.old

mv /usr/obj/sys/arch/<ARCH>/compile/<KERNEL>/netbsd /

shutdown -r now

...
$ cd /usr/src

$ su

./build.sh -O ../obj -T ../tools -U install=/

If the new kernelnetbsd does not boot successfully, you can fall back on booting thenetbsd.old

kernel.

32.1.4 Updating the system configuration files

Run theetcupdatescript (etcupdate(8)) and follow the instructions in the output for fixing obsolete files:

/usr/sbin/etcupdate -s /usr/src

Optionally reboot to ensure all running services are using the new binaries:

shutdown -r now

32.1.5 Summary

1. From the root of the source tree:

$ cd /usr/src

2. Build the userland:

$./build.sh -O ../obj -T ../tools -U -u distribution

3. Build the kernel:

$./build.sh -O ../obj -T ../tools -U -u kernel=GENERIC

4. Install the kernel:

$ cd ../obj/sys/arch/<ARCH>/compile/GENERIC

341

Chapter 32 Updating an existing system from sources

$ su

mv /netbsd /netbsd.old

cp netbsd /netbsd

5. Reboot into the new kernel:

shutdown -r now

6. Install the new userland:

$ cd /usr/src

$ su

./build.sh -O ../obj -T ../tools -U install=/

7. Update the system and configuration files;:

/usr/sbin/etcupdate -s /usr/src

Note: In the procedure above, the -u option indicates an update process, and that a make clean
operation should not be run before starting the build. This is useful when doing an update from a
previous build and/or a fresh build. The -U option allows the entire build by a non-root user followed
with an install by root.

32.1.6 Alternative: using sysinst

It is also possible to usesysinst to install a freshly built system. The steps are as follows:

1. Build a complete release:

$./build.sh -O ../obj -T ../tools -U -u -x release

2. The resulting install sets will be in the/usr/obj/releasedir/ directory.

3. Copy the install kernel to the root directory of your NetBSD system, reboot from it, and upgrade
with sysinst (seeChapter 4).

32.2 More details about the updating of configuration and sta rtup
files

etcupdate is a script to help users compare, merge and install new configuration and startup files (files
found in the etc.tgz distribution set) in /dev, /etc and /root after performing an operating system upgrade.
The upgrade of the operating system could have been performed either by compiling sources or by
extracting the distribution binaries.

32.2.1 Using etcupdate with source files

In case where the sources are in /usr/src the following command should be enough:

etcupdate

342

Chapter 32 Updating an existing system from sources

But what if your NetBSD sources are in an alternative location, such as in/home/jdoe/netbsd/src ?
Don’t worry, tell etcupdate the location of your source treewith -s srcdir and it will work just fine:

etcupdate -s /home/jdoe/netbsd/src

32.2.2 Using etcupdate with binary distribution sets

Sometimes it’s not possible have the sources around but you still want to update the configuration and
startup files. The solution is to extract the desired distribution files (at least etc.tgz) and use the -b srcdir
switch to tell etcupdate that we don’t have the sources but only the official distribution sets.

mkdir /tmp/temproot

cd /tmp/temproot

tar xpzf /some/where/etc.tgz

etcupdate -s /tmp/temproot

32.2.3 Using etcmanage instead of etcupdate

Theetcmanage perl script (available from pkgsrc/sysutils/etcmanage
(http://pkgsrc.se/sysutils/etcmanage) or as binary package) is an alternative toetcupdate . It should be
used in the following way, in combination with postinstall(8):

/usr/pkg/bin/etcmanage

/usr/sbin/postinstall

343

Chapter 33

Building NetBSD installation
media

33.1 Creating custom install or boot floppies for your archit ecture
e.g. i386

Sometimes you may want to create your own boot or install floppies for i386 instead of using the
precompiled ones, or tailor the ones built by the NetBSD build system. This section outlines the steps to
do so.

The overall idea is to have a filesystem with some tools (sysinst, ls, whatever), and embed this filesystem
as some sort of ramdisk into a NetBSD kernel. The kernel needsto include themdpseudo device to be
able to hold a ramdisk. The kernel with the ramdisk can then beput on removable media or made
available via the net (using NFS or TFTP).

To perform the following steps, you need to be running a kernel with thevnd pseudo device enabled (this
is the default for a GENERIC kernel).

1. First, you must create a valid kernel to put on your floppies, e.g. INSTALL. This kernel must include
themdpseudo device, which allows embedding a ramdisk. SeeChapter 31for kernel building
instructions.

2. The next step is to create the ramdisk that gets embedded into the kernel. The ramdisk contains a
filesystem with whatever tools are needed, usually init(8) and some tools like sysinst, ls(1), etc. To
create the standard ramdisk, runmake in thesrc/distrib/i386/ramdisks/ramdisk-big

directory (for NetBSD 3.x:src/distrib/i386/floppies/ramdisk-big).

This will create theramdisk.fs file in the directory. If you want to customize the contents ofthe
filesystem, customize thelist file.

3. Now, the ramdisk gets inserted into the kernel, producinga new kernel which includes the ramdisk,
all in one file. To do so, change into thesrc/distrib/i386/instkernel directory (for NetBSD
3.x: src/distrib/i386/floppies/instkernel) and runmake.

4. The next step is to make one or more floppy images, dependingon the size of the kernel (including
the ramdisk). This is done by changing into
/usr/src/distrib/i386/floppies/bootfloppy-big , and runningmake again.

This will create one or two (depending on the size of kernel) files namedboot1.fs andboot2.fs

5. Last, transfer these files to the floppies with the commands

dd if=boot1.fs of=/dev/fd0a bs=36b

dd if=boot2.fs of=/dev/fd0a bs=36b

344

Chapter 33 Building NetBSD installation media

6. Put the first floppy in the drive and power on!

33.2 Creating a custom install or boot CD with build.sh
Creating custom install or boot CDs is easy withbuild.sh. The NetBSD base system includes themakefs
tool for creating filesystems. This tool is used to create iso-images. Creating iso-images includes these
tasks:

1. Release build

#./build.sh release

2. CD-ROM iso-image build

#./build.sh iso-image

Thebuild.sh iso-image command will build a CD-ROM image in
RELEASEDIR/MACHINE/installation

Warning
For now not all architectures are supported. The mac/68k ports doesn’t boot for
now.

345

Appendix A.

Information

A.1 Where to get this document
This document is currently available in the following formats:

• HTML (http://www.NetBSD.org/docs/guide/en/index.html)

• gzip’d PDF (http://www.NetBSD.org/docs/guide/download/netbsd-en.pdf.gz)

• gzip’d PostScript (http://www.NetBSD.org/docs/guide/download/netbsd-en.ps.gz)

In addition, this guide is also sold on occasion in printed form at tradeshows and exhibitions, with all
profits being donated to the NetBSD Foundation. On demand printing may at some point be available as
well. If you are interested in obtaining a printed and bound copy of this document, please contact
<www@NetBSD.org>.

A.2 Guide history
This guide was born as a collection of sparse notes that Federico Lupi, the original author of the NetBSD
Guide, wrote mostly for himself. When he realized that they could be useful to other NetBSD users he
started collecting them and created the first version of the guide using the groff formatter. In order to
“easily” get a wider variety of output formats (e.g. HTML andPostScript/PDF), he made the “mistake”
of moving to SGML/DocBook, which is the current format of thesources. Maintainership was picked up
by the NetBSD project and its developers later, and the format was changed to XML/DocBook later due
to better tools and slightly more knowhow on customisations.

The following open source tools were used to write and formatthe guide:

• the vi editor which ships with NetBSD (nvi).

• the libxslt parser from GNOME for transforming XML/DocBookinto HTML.

• the TeX system from the NetBSD packages collection. TeX is used as a backend to produce the PS
and PDF formats.

• the tgif program for drawing the figures.

• the gimp and xv programs for converting between image formats and making small modifications to
the figures.

Many thanks to all the people involved in the development of these great tools.

346

Appendix B.

Contributing to the NetBSD
guide

There is a interest for both introductory and advanced documentation on NetBSD: this is probably a sign
of the increased popularity of this operating system and of agrowing user base. It is therefore important
to keep adding new material to this guide and improving the existing text.

Whatever your level of expertise with NetBSD, you can contribute to the development of this guide. This
appendix explains how, and what you should know before you start.

If you are a beginner and you found this guide helpful, pleasesend your comments and suggestions to
<www@NetBSD.org>. For example, if you tried something described here and it didn’t work for you, or
if you think that something is not clearly explained, or if you have an idea for a new chapter, etc: this
type of feedback is very useful.

If you are an intermediate or advanced user, please considercontributing new material to the guide: you
could write a new chapter or improve an existing one.

If you have some spare time, you could translate the guide into another language if you want (please read
Section B.1).

Whatever you choose to do, don’t start working before havingcontacted us, in order to avoid duplicating
efforts.

B.1 Translating the guide
We have decided to keep only the english version of the NetBSDguide. The reason for this is that we do
not have (and history has shown that) enough manpower to maintain multiple translations of the NetBSD
guide, and keep them all in sync. If you want to translate the guide in your preferred language feel free to
do that and make it available for others on your own webspace.It is possible that we list a link to that
location. Please send informations about your projekt to <www@NetBSD.org>.

If you want to translate the guide the first thing to do is, as already said, to contact <www@NetBSD.org>
or to write to the <netbsd-docs@NetBSD.org > mailing list. There are several possible scenarios:

• someone else is already working on a translation into your language; you could probably help him.

• nobody is currently working on a translation into your language, but some chapters have already been
translated and you can translate the remaining chapters.

• you start a new translation. Of course you don’t need to translate all the guide: this is a big effort, but if
you start translating one or two chapters it’ll be a good starting point for someone else.

347

Appendix B. Contributing to the NetBSD guide

Even if a translation is already available, it is always necessary to keep it up to date with respect to the
master version when new material is added or corrections aremade: you could become the maintainer of
a translation.

B.1.1 What you need to start a translation

In short, all you need is:

• the guide sources. They are part of “htdocs”, check it out from (anonymous) CVS like you would
check out “src” or “pkgsrc” as described inChapter 29.

• a text editor, such as vi or emacs.

Important: Don’t start working with HTML or other formats: it will be very difficult to convert your
work to XML/DocBook, the format used by the NetBSD guide.

B.1.2 Writing XML/DocBook

In order to translate the guide you don’t need tolearnXML/DocBook; get the XML/DocBook sources of
the NetBSD guide and work directly on them, in order to reuse the existing format (i.e. tags) in your
work. For example, to translate the previous note, you woulddo the following:

1. load the english source of the current chapter,ap-contrib.xml , in your editor.

2. find the text of the previous note. You will see something like:

<important>
<para>

Don’t start working with HTML or other formats:
it will be very difficult to convert you work
to XML/DocBook, the format used by the NetBSD
guide.

</para>
</important>

3. add your translation between the tags, after the english version. The text now looks like this:

<important>
<para>

Don’t start working with HTML or other formats:
it will be very difficult to convert you work
to XML/DocBook, the format used by the NetBSD
guide.
your translation goes here
your translation goes here
your translation goes here

</para>
</important>

4. delete the four lines of english text between thetagsleaving your translation.

348

Appendix B. Contributing to the NetBSD guide

<important>
<para>

your translation goes here
your translation goes here
your translation goes here

</para>
</important>

When you write the translation please use the same indentation and formatting style of the original text.
SeeSection B.3for an example.

One problem that you will probably face when writing the DocBook text is that of national characters
(e.g. accented letters like “è”). You can use these characters in your source document but it’s preferable
to replace them with XMLentities. For example, “è” is written as “è”. Of course this makes your
source text difficult to write and to read; the first problem, writing, can be solved using a good editor with
macro capabilities. Vi and emacs, which are very popular choices, both have this feature and you can
map the accented keys of your keyboard to generate the required entities automatically. For example, for
vi you can put a line like the following in your.exrc file:

map! è è

Appendix Cexplains how to install the software tools to generate HTML and other formats from the
DocBook sources. This is useful if you want to check your work(i.e. make sure you didn’t inadvertently
delete some tag) or to see what the output looks like, but it isnot a requirement for a translation. If you
don’t want to install the software tools, send your patches and sources to <www@NetBSD.org> and we’ll
check them and create the various output formats.

B.2 Sending contributions
If you want to contribute some material to the guide you have several options, depending on the amount
of text you want to write. If you just want to send a small fix, the easiest way to get it into the guide is to
send it to <www@NetBSD.org> via e-mail. If you plan to write a substantial amount of text, such as a
section or a chapter, you can choose among many formats:

• XML/DocBook; this is the preferred format. If you choose to use this format, please get the guide
sources and use them as a template for the indentation and text layout, in order to keep the formatting
consistent.

• text; if the formatting is kept simple, it is not difficult to convert text to XML format.

• other formats are also accepted if you really can’t use any ofthe previous ones.

B.3 XML/DocBook template
For the guide I use a formatting style similar to a program. The following is a template:

<chapter id="chap-xxxxx">
<title> This is the title of the chapter</title>

349

Appendix B. Contributing to the NetBSD guide

<para>
This is the text of a paragraph. This is the text of a paragraph.
This is the text of a paragraph. This is the text of a paragraph.
This is the text of a paragraph.

</para>

<!-- === ============== -->

<sect1>
<title> This is the title of a sect1</title>

<para>
This is the text of a paragraph. This is the text of a paragraph.
This is the text of a paragraph. This is the text of a paragraph.
This is the text of a paragraph.

</para>

<!-- -->

<sect2>
<title> This is the title of a sect2</title>

<para>
A sect2 is nested inside a sect1.

</para>
</sect2>

</sect1>

<!-- === ============== -->

<sect1>
<title> This is the title of another sect1</title>

<para>
An itemized list:
<itemizedlist>

<listitem>
<para>
text

</para>
</listitem>
<listitem>

<para>
text

</para>
</listitem>

</itemizedlist>
</para>

</sect1>
</chapter>

350

Appendix B. Contributing to the NetBSD guide

The defaults are:

• two spaces for each level of indentation

• lines not longer than 72 characters.

• use separator lines (comments) between sect1/sect2.

351

Appendix C.

Getting started with
XML/DocBook

This appendix describes the installation of the tools needed to produce a formatted version of the
NetBSD guide. Besides that it contains instructions that describe how to build the guide..

C.1 What is XML/DocBook
XML (eXtensible Markup Language) is a language which is usedto define other languages based on
markups, i.e. with XML you can define the grammar (i.e. the valid constructs) of markup languages.
HTML, for example, can be defined using XML. If you are a programmer, think of XML like the BNF
(Backus-Naur Form): a tool used to define grammars.

DocBook is a markup template defined using XML; DocBook liststhe valid tags that can be used in a
DocBook document and how they can be combined together. If you are a programmer, think of DocBook
as the grammar of a language specified with the BNF. For example, it says that the tags:

<para> ... </para>

define a paragraph, and that a <para> can be inside a <sect1> but that a <sect1> cannot be inside a
<para>.

Therefore, when you write a document, you write a document inDocBook and not in XML: in this
respect DocBook is the counterpart of HTML (although the markup is richer and a few concepts are
different).

The DocBook specification (i.e. the list of tags and rules) iscalled a DTD (Document Type Definition).

In short, a DTD defines how your source documents look like butit gives no indication about the format
of your final (compiled) documents. A further step is required: the DocBook sources must be converted
to some other representation like, for example, HTML or PDF.This step is performed by a tool like Jade,
which applies the DSSSL transforms to the source document. DSSSL (Document Style Semantics and
Specification Language) is a format used to define thestylesheetsnecessary to perform the conversion
from DocBook to other formats. The build structure for the guide also supports the XSL (Extensible
Stylesheet Language) stylesheet language. Thexsltproc program is used for transforming XML with
XSL stylesheets.

C.2 Installing the necessary tools
All the tools that are needed to generate the guide in variousformats can be installed through the
netbsd-www, netbsd-doc, andnetbsd-doc-printmeta-packages. Together thenetbsd-docandnetbsd-www

352

Appendix C. Getting started with XML/DocBook

packages install everything that is needed to generate the HTML version of the guide. To be able to
generate printable formats, such as Postscript and PDF, install thenetbsd-doc-printmeta-package.

Supposing that a current pkgsrc tree is installed at/usr/pkgsrc , you can install all these
meta-packages with:

$ cd /usr/pkgsrc/meta-pkgs/netbsd-www

$ make install

$ cd /usr/pkgsrc/meta-pkgs/netbsd-doc

$ make install

$ cd /usr/pkgsrc/meta-pkgs/netbsd-doc-print

$ make install

C.3 Using the tools
This section provides an overview of how the guide can be compiled from XML to any of the following
target formats:html, html-split, ascii, ps, andpdf. Creating all formats is the default. To produce any of
the above output formats, runmakewith the format(s) as argument.

Let’s look at a few examples.

Before looking at the output generated in any of the above-mentioned formats, integrity of the XML
structure has to be ensured. This can be done by runningmake lint:

$ cd htdocs/guide/en

$ make lint

Fix any errors you may get. When working on the contents of theguide, you may want to produce the
HTML version to have a look at it for proofreading:

$ cd htdocs/guide/en

$ make html-split

After this, please update the Postscript and PDF versions ofthe guide too. The command for this is:

$ cd htdocs/guide/en

$ make pdf

Before you go and commit the generated files, please make surethat you commit the XML files first,
then re-generated all formats, i.e. the procedure would be something like:

$ cd htdocs/guide/en

$ cvs commit *.xml

$

$ make lint

$ make

$ make install-doc

$

$ cd ..

$ cvs commit en download

353

Appendix C. Getting started with XML/DocBook

When runningmake with no argument, all formats will be re-generated. This is the default way to build
the guide for the NetBSD.org website.

C.4 Language-specific notes

C.4.1 Enabling hyphenation for the Italian language

The NetBSD guide is currently available in three languages:English, French and Italian. Of these, only
English and French are automatically hyphenated by TeX. To turn on hyphenation for the Italian
language, some simple steps are required:

Edit /usr/pkg/share/texmf/tex/generic/config/language.da t and remove the comment (%)
from the line of the Italian hyphenation. I.e.

%italian ithyph.tex

becomes

italian ithyph.tex

Note: As more translations of the guide become available, you will probably need to enable other
hyphenation patterns as well.

Now the latex and pdflatex formats must be recreated:

cd /usr/pkg/share/texmf/web2c

fmtutil --byfmt latex

fmtutil --byfmt pdflatex

If you check, for example,latex.log you will find something like:

Babel <v3.6Z> and hyphenation patterns for american, frenc h, german,
ngerman, italian, nohyphenation, loaded.

Please note that there are many ways to perform these operations, depending on your level of expertise
with the TeX system (mine is very low). For example, you coulduse the "texconfig" interactive program,
or you could recreate the formats by hand using thetex program.

If you know a better way of doing the operations described in this appendix, please let me know.

C.5 Links
The official DocBook home page (http://www.oasis-open.org/docbook/) is where you can find the
definitive documentation on DocBook. You can also read online or download a copy of the book
DocBook: The Definitive Guide (http://www.oasis-open.org/docbook/documentation/reference/) by
Norman Walsh and Leonard Muellner.

354

Appendix C. Getting started with XML/DocBook

For DSSSL start looking at http://nwalsh.com.

XSL is described at http://www.w3.org/Style/XSL/.

Jade/OpenJade sources and info can be found on the OpenJade Home Page
(http://openjade.sourceforge.net/).

If you want to produce Postscript and PDF documents from yourDocBook source, look at the home
page of JadeTex (http://sourceforge.net/projects/jadetex).

355

Appendix D.

Acknowledgements

The NetBSD Guide was originally written by Federico Lupi whomanaged the sources, coordinated
updates, and merged all contributions on his own. Since then, it has been updated and maintained by the
NetBSD www team. The Guide has progressed thanks to the contributions of many people who have
volunteered their time and effort, supplied material and sent in suggestions and corrections.

D.1 Original acknowledgements
Federico’s original credits are:

• Paulo Aukar

• Grant Beattie, converted to XML DocBook.

• Manolo De Santis, Audio Chapter

• Eric Delcamp, Boot Floppies

• Hubert Feyrer, who contributed the Introduction to TCP/IP Networking inChapter 22including Next
generation Internet protocol - IPv6 and the section on getting IPv6 Connectivity & Transition via 6to4
in Section 23.9. He also helped with the SGML to XML transition.

• Jason R. Fink

• Daniel de Kok, audio and linux chapters fixes.

• Reinoud Koornstra, CVS chapter and rebuilding/dev in the Misc chapter.

• Brian A. Seklecki <lavalamp@burghcom.com > who contributed the CCD Chapter.

• Guillain Seuillot

• Martti Kuparinen, RAIDframe documentation.

• David Magda

D.2 Current acknowledgements
This document is currently maintained by the NetBSD www team. Thanks to their efforts, the document
is kept up to date and available online at all times. In addition, special thanks go to (in alphabetical
order):

• Hubert Feyrer, for getting the guide up to speed for NetBSD 2.0, and for making numerous
improvements to all chapters.

• Jason R. Fink, for maintaining this document and integrating changes.

356

Appendix D. Acknowledgements

• Andreas Hallman, for his information inSection 23.9.10.

• Joel Knight for theChapter 27. SeeSection D.3.3for the accompanying license.

• Daniel de Kok, for constant contributions of new chapters, maintenance of existing chapters and his
translation work.

• Hiroki Sato, for allowing us to build PDF and PS versions of this document.

• Jan Schaumann, for maintenance work and www/htdocs management.

• Lubomir Sedlacik, for some details on using CGD for swap inSection 14.5.

• Dag-Erling Smørgrav, for the article onChapter 17. SeeSection D.3.2for the accompanying license.

• Florian Stöhr, forSection 14.4.

D.3 Licenses

D.3.1 Federico Lupi’s original license of this guide

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or othermaterials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by Federico Lupi for the NetBSD
Project.

4. The name of the author may not be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

D.3.2 Networks Associates Technology’s license on the PAM a rticle

Copyright (c) 2001-2003 Networks Associates Technology, Inc.
All rights reserved.

357

Appendix D. Acknowledgements

This software was developed for the FreeBSD Project by ThinkSec AS and
Network Associates Laboratories, the Security Research Division of
Network Associates, Inc. under DARPA/SPAWAR contract N66001-01-C-8035
("CBOSS"), as part of the DARPA CHATS research program.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “ASIS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORSBE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

D.3.3 Joel Knight’s license on the CARP article

Copyright (c) 2005 Joel Knight <enabled@myrealbox.com>

Permission to use, copy, modify, and distribute this documentation for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear inall copies.

THE DOCUMENTATION IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS DOCUMENTATION INCLUDING ALLIMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USEOR
PERFORMANCE OF THIS DOCUMENTATION

358

Appendix E.

Bibliography

Bibliography

[AeleenFrisch] Aeleen Frisch, 1991, O’Reilly & Associates, Essential System Administration.

[CraigHunt] Craig Hunt, 1993, O’Reilly & Associates,TCP/IP Network Administration.

[RFC1034] P. V. Mockapetris, 1987,RFC 1034: Domain names - concepts and facilities.

[RFC1035] P. V. Mockapetris, 1987,RFC 1035: Domain names - implementation and specification.

[RFC1055] J. L. Romkey, 1988,RFC 1055: Nonstandard for transmission of IP datagrams overserial
lines: SLIP.

[RFC1331] W. Simpson, 1992,RFC 1331: The Point-to-Point Protocol (PPP) for the Transmission of
Multi-protocol Datagrams over Point-to-Point Links.

[RFC1332] G. McGregor, 1992,RFC 1332: The PPP Internet Protocol Control Protocol (IPCP).

[RFC1933] R. Gilligan and E. Nordmark, 1996,RFC 1933: Transition Mechanisms for IPv6 Hosts and
Routers.

[RFC2004] C. Perkins, 1996,RFC 2003: IP Encapsulation within IP.

[RFC2401] S. Kent and R. Atkinson, 1998,RFC 2401: Security Architecture for the Internet Protocol.

[RFC2411] R. Thayer, N. Doraswamy, and R. Glenn, 1998,RFC 2411: IP Security Document Roadmap.

[RFC2461] T. Narten, E. Nordmark, and W. Simpson, 1998,RFC 2461: Neighbor Discovery for IP
Version 6 (IPv6).

[RFC2529] B. Carpenter and C. Jung, 1999,RFC 2529: Transmission of IPv6 over IPv4 Domains
without Explicit Tunnels.

[RFC3024] G. Montenegro, 2001,RFC 3024: Reverse Tunneling for Mobile IP.

[RFC3027] M. Holdrege and P. Srisuresh, 2001,RFC 3027: Protocol Complications with the IP Network
Address Translator.

[RFC3056] B. Carpenter and K. Moore, 2001,RFC 3056: Connection of IPv6 Domains via IPv4 Clouds.

359

	The NetBSD Guide
	Table of Contents
	List of Tables
	
	Purpose of this guide
	I. About NetBSD
	Chapter 1
	What is NetBSD?
	1.1 The story of NetBSD
	1.2 NetBSD features
	1.3 Supported platforms
	1.4 NetBSD's target users
	1.5 Applications for NetBSD
	1.6 How to get NetBSD

	II. System installation and related issues
	Chapter 2
	Installing NetBSD: Preliminary considerations and preparations
	2.1 Preliminary considerations
	2.1.1 Dual booting
	2.1.2 NetBSD on emulation and virtualization

	2.2 Install preparations
	2.2.1 The INSTALL document
	2.2.2 Partitions
	2.2.3 Hard disk space requirements
	2.2.4 Network settings
	2.2.5 Backup your data and operating systems!
	2.2.6 Preparing the installation media
	2.2.6.1 Booting the install system from CD
	2.2.6.2 Booting the install system from floppy

	2.3 Checklist

	Chapter 3
	Example installation
	3.1 Introduction
	3.2 The installation process
	3.3 Keyboard layout
	3.4 Starting the installation
	3.5 MBR partitions
	3.6 Disklabel partitions
	3.7 Setting the disk name
	3.8 Last chance!
	3.9 The disk preparation process
	3.10 Choosing the installation media
	3.10.1 Installing from CDROM or DVD
	3.10.2 Installing from an unmounted file system
	3.10.3 Installing via FTP
	3.10.4 Installing via NFS

	3.11 Extracting sets
	3.12 System configuration
	3.13 Finishing the installation

	Chapter 4
	Upgrading NetBSD
	4.1 Overview
	4.2 The INSTALL document
	4.3 Performing the upgrade

	III. System configuration, administration and tuning
	Chapter 5
	The first steps on NetBSD
	5.1 Troubleshooting
	5.1.1 Boot problems
	5.1.2 Misconfiguration of /etc/rc.conf

	5.2 The man command
	5.3 Editing the configuration files
	5.4 Login
	5.5 Changing the root password
	5.6 Adding users
	5.7 Shadow passwords
	5.8 Changing the keyboard layout
	5.9 System time
	5.10 Secure Shell (ssh(1))
	5.11 Basic configuration in /etc/rc.conf
	5.12 Basic network settings
	5.13 Mounting a CDROM
	5.14 Mounting a floppy
	5.15 Installing additional software
	5.15.1. Using packages from pkgsrc
	5.15.2. Storing thirdparty software

	5.16 Security alerts
	5.17 Stopping and rebooting the system

	Chapter 6
	Editing
	6.1 Introducing vi
	6.1.1 The vi interface
	6.1.2 Switching to Edit Mode
	6.1.3 Switching Modes & Saving Buffers to Files
	6.1.4 Yanking and Putting
	6.1.4.1 Oops I Did Not Mean to do that!

	6.1.5 Navigation in the Buffer
	6.1.6 Searching a File, the Alternate Navigational Aid
	6.1.6.1 Additional Navigation Commands

	6.1.7 A Sample Session

	6.2 Configuring vi
	6.2.1 Extensions to .exrc
	6.2.2 Documentation

	6.3 Using tags with vi

	Chapter 7
	rc.d System
	7.1 The rc.d Configuration
	7.2 The rc.d Scripts
	7.3 The Role of rcorder and rc Scripts
	7.4 Additional Reading

	Chapter 8
	Console drivers
	8.1 wscons
	8.1.1 wsdisplay
	8.1.1.1 Virtual consoles
	8.1.1.2 50 lines text mode with wscons
	8.1.1.3 Enabling VESA framebuffer console
	8.1.1.4 Enabling scrollback on the console
	8.1.1.5 Wscons and colors
	8.1.1.6 Loading alternate fonts

	8.1.2 wskbd
	8.1.2.1 Keyboard mappings
	8.1.2.2 Changing the keyboard repeat speed

	8.1.3 wsmouse
	8.1.3.1 Serial mouse support
	8.1.3.2 Cut&paste on the console with wsmoused

	8.2 pccons

	Chapter 9
	X
	9.1 What is X?
	9.2 Configuration
	9.3 The mouse
	9.4 The keyboard
	9.5 The monitor
	9.6 The video card
	9.6.1 XFree 3.x
	9.6.2 XFree86 4.x

	9.7 Starting X
	9.8 Customizing X
	9.9 Other window managers
	9.10 Graphical login with xdm

	Chapter 10
	Linux emulation
	10.1 Emulation setup
	10.1.1 Configuring the kernel
	10.1.2 Installing the Linux libraries
	10.1.3 Installing Acrobat Reader

	10.2 Directory structure
	10.3 Emulating /proc
	10.4 Using Linux browser plugins
	10.5 Further reading
	Bibliography

	Chapter 11
	Audio
	11.1 Basic hardware elements
	11.2 BIOS settings
	11.3 Configuring the audio device
	11.4 Configuring the kernel audio devices
	11.5 Advanced commands
	11.5.1 audioctl(1)
	11.5.2 mixerctl(1)
	11.5.3 audioplay(1)
	11.5.4 audiorecord(1)

	Chapter 12
	Printing
	12.1 Enabling the printer daemon
	12.2 Configuring /etc/printcap
	12.3 Configuring Ghostscript
	12.4 Printer management commands
	12.5 Remote printing

	Chapter 13
	Using removable media
	13.1 Initializing and using floppy disks
	13.2 How to use a ZIP disk
	13.3 Reading data CDs with NetBSD
	13.4 Reading multisession CDs with NetBSD
	13.5 Allowing normal users to access CDs
	13.6 Mounting an ISO image
	13.7 Using video CDs with NetBSD
	13.8 Using audio CDs with NetBSD
	13.9 Creating an MP3 (MPEG layer 3) file from an audio CD
	13.10 Using a CDR writer with data CDs
	13.11 Using a CDR writer to create audio CDs
	13.12 Creating an audio CD from MP3s
	13.13 Copying an audio CD
	13.14 Copying a data CD with two drives
	13.15 Using CDRW rewritables
	13.16 DVD support
	13.17 Creating ISO images from a CD
	13.18 Getting volume information from CDs and ISO images

	Chapter 14
	The cryptographic device driver (CGD)
	14.1 Overview
	14.1.1 Why use disk encryption?
	14.1.2 Logical Disk Drivers
	14.1.3 Availability

	14.2 Components of the CryptoGraphic Disk system
	14.2.1 Kernel driver pseudodevice
	14.2.2 Ciphers
	Encryption Methods
	14.2.3 Verification Methods
	Verification Methods

	14.3 Example: encrypting your disk
	14.3.1 Preparing the disk
	14.3.2 Scrubbing the disk
	14.3.3 Creating the cgd
	14.3.4 Modifying configuration files
	14.3.5 Restoring data

	14.4 Example: encrypted CDs/DVDs
	14.4.1 Introduction
	14.4.2 Creating an encrypted CD/DVD
	14.4.3 Using an encrypted CD/DVD

	14.5 Suggestions and Warnings
	14.5.1 Using a randomkey cgd for swap
	14.5.2 Warnings

	14.6 Further Reading
	Bibliography

	Chapter 15
	Concatenated Disk Device (CCD) configuration
	15.1 Install physical media
	15.2 Configure Kernel Support
	15.3 Disklabel each volume member of the CCD
	15.4 Configure the CCD
	15.5 Initialize the CCD device
	15.6 Create a 4.2BSD/UFS filesystem on the new CCD device
	15.7 Mount the filesystem

	Chapter 16
	NetBSD RAIDframe
	16.1 RAIDframe Introduction
	16.1.1 About RAIDframe
	16.1.2 A warning about Data Integrity, Backups, and High Availability
	16.1.3 Getting Help

	16.2 Setup RAIDframe Support
	16.2.1 Kernel Support
	16.2.2 Power Redundancy and Disk Caching

	16.3 Example: RAID1 Root Disk
	16.3.1 PseudoProcess Outline
	16.3.2 Hardware Review
	16.3.3 Initial Install on Disk0/wd0
	16.3.4 Preparing Disk1/wd1
	16.3.5 Initializing the RAID Device
	16.3.6 Setting up Filesystems
	16.3.7 Setting up kernel dumps
	16.3.8 Migrating System to RAID
	16.3.9 The first boot with RAID
	16.3.10 Adding Disk0/wd0 to RAID
	16.3.11 Testing Boot Blocks

	16.4 Testing kernel dumps

	Chapter 17
	Pluggable Authentication Modules (PAM)
	17.1 About
	17.2 Introduction
	17.3 Terms and conventions
	17.3.1 Definitions

	account
	applicant
	arbitrator
	chain
	client
	facility
	module
	policy
	server
	service
	session
	token
	transaction
	17.3.2 Usage examples
	17.3.2.1 Client and server are one
	17.3.2.2 Client and server are separate
	17.3.2.3 Sample policy

	17.4 PAM Essentials
	17.4.1 Facilities and primitives
	17.4.2 Modules
	17.4.2.1 Module Naming
	17.4.2.2 Module Versioning
	17.4.2.3 Module Path

	17.4.3 Chains and policies
	17.4.4 Transactions

	17.5 PAM Configuration
	17.5.1 PAM policy files
	17.5.1.1 The /etc/pam.conf file
	17.5.1.2 The /etc/pam.d directory
	17.5.1.3 The policy search order

	17.5.2 Breakdown of a configuration line
	17.5.3 Policies

	17.6 PAM modules
	17.6.1 Common Modules
	17.6.1.1 pamdeny(8)
	17.6.1.2 pamecho(8)
	17.6.1.3 pamexec(8)
	17.6.1.4 pamftpusers(8)
	17.6.1.5 pamgroup(8)
	17.6.1.6 pamguest(8)
	17.6.1.7 pamkrb5(8)
	17.6.1.8 pamksu(8)
	17.6.1.9 pamlastlog(8)
	17.6.1.10 pamloginaccess(8)
	17.6.1.11 pamnologin(8)
	17.6.1.12 pampermit(8)
	17.6.1.13 pamradius(8)
	17.6.1.14 pamrhosts(8)
	17.6.1.15 pamrootok(8)
	17.6.1.16 pamsecuretty(8)
	17.6.1.17 pamself(8)
	17.6.1.18 pamssh(8)
	17.6.1.19 pamunix(8)

	17.6.2 FreeBSDspecific PAM Modules
	17.6.2.1 pamopie(8)
	17.6.2.2 pamopieaccess(8)
	17.6.2.3 pampasswdqc(8)
	17.6.2.4 pamtacplus(8)

	17.6.3 NetBSDspecific PAM Modules
	17.6.3.1 pamskey(8)

	17.7 PAM Application Programming
	17.8 PAM Module Programming
	17.9 Sample PAM Application
	17.10 Sample PAM Module
	17.11 Sample PAM Conversation Function
	17.12 Further Reading
	Bibliography
	Papers
	User Manuals
	Related Web pages

	Chapter 18
	Tuning NetBSD
	18.1 Introduction
	18.1.1 Overview
	18.1.1.1 What is Performance Tuning?
	18.1.1.2 When does one tune?
	18.1.1.3 What these Documents Will Not Cover
	18.1.1.4 How Examples are Laid Out

	18.2 Tuning Considerations
	18.2.1 General System Configuration
	18.2.1.1 Filesystems and Disks
	18.2.1.2 Swap Configuration

	18.2.2 System Services
	18.2.3 The NetBSD Kernel
	18.2.3.1 Removing Unrequired Drivers
	18.2.3.2 Configuring Options
	18.2.3.3 System Settings

	18.3 Visual Monitoring Tools
	18.3.1 The top Process Monitor
	18.3.1.1 Other Neat Things About Top

	18.3.2 The sysstat utility

	18.4 Monitoring Tools
	18.4.1 fstat
	18.4.2 iostat
	18.4.3 ps
	18.4.4 vmstat

	18.5 Network Tools
	18.5.1 ping
	18.5.2 traceroute
	18.5.3 netstat
	18.5.4 tcpdump
	18.5.4.1 Specific tcpdump Usage

	18.6 Accounting
	18.6.1 Accounting
	18.6.2 Reading Accounting Information
	18.6.2.1 lastcomm
	18.6.2.2 sa

	18.6.3 How to Put Accounting to Use

	18.7 Kernel Profiling
	18.7.1 Getting Started
	18.7.1.1 Using kgmon

	18.7.2 Interpretation of kgmon Output
	18.7.2.1 Flat Profile
	18.7.2.2 Call Graph Profile

	18.7.3 Putting it to Use
	18.7.4 Summary

	18.8 System Tuning
	18.8.1 Using sysctl
	18.8.2 memfs & softdeps
	18.8.2.1 Using memfs
	18.8.2.2 Using softdeps

	18.8.3 LFS

	18.9 Kernel Tuning
	18.9.1 Preparing to Recompile a Kernel
	18.9.2 Configuring the Kernel
	18.9.2.1 Some example Configuration Items
	18.9.2.2 Some Drivers
	18.9.2.3 Multi Pass

	18.9.3 Building the New Kernel
	18.9.4 Shrinking the NetBSD kernel
	18.9.4.1 Removing ELF sections and debug information
	18.9.4.2 Compressing the Kernel

	Chapter 19
	NetBSD Veriexec subsystem
	19.1 How it works
	19.2 Signatures file
	19.3 Generating fingerprints
	19.4 Strict levels
	19.5 Veriexec and layered file systems
	19.6 Kernel configuration

	Chapter 20
	Bluetooth on NetBSD
	20.1 Introduction
	20.2 Supported Hardware
	20.3 System Configuration
	20.4 Human Interface Devices
	20.4.1 Mice
	20.4.2 Keyboards

	20.5 Personal Area Networking
	20.5.1 Personal Area Networking User

	20.6 Serial Connections
	20.7 Audio
	20.7.1 SCO Audio Headsets
	20.7.2 SCO Audio Handsfree

	20.8 Object Exchange
	20.9 Troubleshooting

	Chapter 21
	Miscellaneous operations
	21.1 Installing the boot manager
	21.2 Deleting the disklabel
	21.3 Speaker
	21.4 Forgot root password?
	21.5 Password file is busy?
	21.6 Adding a new hard disk
	21.7 How to rebuild the devices in /dev

	IV. Networking and related issues
	Chapter 22
	Introduction to TCP/IP Networking
	22.1 Audience
	22.2 Supported Networking Protocols
	22.3 Supported Media
	22.3.1 Serial Line
	22.3.2 Ethernet

	22.4 TCP/IP Address Format
	22.5 Subnetting and Routing
	22.6 Name Service Concepts
	22.6.1 /etc/hosts
	22.6.2 Domain Name Service (DNS)
	22.6.3 Network Information Service (NIS/YP)
	22.6.4 Other

	22.7 Next generation Internet protocol IPv6
	22.7.1 The Future of the Internet
	22.7.2 What good is IPv6?
	22.7.2.1 Bigger Address Space
	22.7.2.2 Mobility
	22.7.2.3 Security

	22.7.3 Changes to IPv4
	22.7.3.1 Addressing
	22.7.3.2 Multiple Addresses
	22.7.3.3 Multicasting
	22.7.3.4 Name Resolving in IPv6

	Chapter 23
	Setting up TCP/IP on NetBSD in practice
	23.1 A walk through the kernel configuration
	23.2 Overview of the network configuration files
	23.3 Connecting to the Internet with a modem
	23.3.1 Getting the connection information
	23.3.2 resolv.conf and nsswitch.conf
	23.3.3 Creating the directories for pppd
	23.3.4 Connection script and chat file
	23.3.5 Authentication
	23.3.5.1 PAP/CHAP authentication
	23.3.5.2 Login authentication

	23.3.6 pppd options
	23.3.7 Testing the modem
	23.3.8 Activating the link
	23.3.9 Using a script for connection and disconnection
	23.3.10 Running commands after dialin

	23.4 Creating a small home network
	23.5 Setting up an Internet gateway with IPNAT
	23.5.1 Configuring the gateway/firewall
	23.5.2 Configuring the clients
	23.5.3 Some useful commands

	23.6 Setting up a network bridge device
	23.6.1 Bridge example

	23.7 A common LAN setup
	23.8 Connecting two PCs through a serial line
	23.8.1 Connecting NetBSD with BSD or Linux
	23.8.2 Connecting NetBSD and Windows NT
	23.8.3 Connecting NetBSD and Windows 95

	23.9 IPv6 Connectivity & Transition via 6to4
	23.9.1 Getting 6to4 IPv6 up & running
	23.9.2 Obtaining IPv6 Address Space for 6to4
	23.9.3 How to get connected
	23.9.4 Security Considerations
	23.9.5 Data Needed for 6to4 Setup
	23.9.6 Kernel Preparation
	23.9.7 6to4 Setup
	23.9.8 Quickstart using pkgsrc/net/hf6to4
	23.9.9 Known 6to4 Relay Routers
	23.9.10 Tunneling 6to4 through an IPFilter firewall
	23.9.11 Conclusion & Further Reading

	Chapter 24
	The Internet Super Server inetd
	24.1 Overview
	24.2 What is inetd?
	24.3 Configuring inetd /etc/inetd.conf
	24.4 Services /etc/services
	24.5 Protocols /etc/protocols
	24.6 Remote Procedure Calls (RPC) /etc/rpc
	24.7 Allowing and denying hosts /etc/hosts.{allow,deny}
	24.8 Adding a Service
	24.9 When to use or not to use inetd
	24.10 Other Resources

	Chapter 25
	The Domain Name System
	25.1 DNS Background and Concepts
	25.1.1 Naming Services
	25.1.2 The DNS namespace
	25.1.3 Resource Records
	Common DNS Resource Records
	25.1.4 Delegation
	25.1.5 Delegation to multiple servers
	25.1.6 Secondaries, Caching, and the SOA record
	Fields of the SOA Record
	25.1.7 Name Resolution
	25.1.8 Reverse Resolution

	25.2 The DNS Files
	25.2.1 /etc/namedb/named.conf
	25.2.1.1 options
	25.2.1.2 zone diverge.org

	25.2.2 /etc/namedb/localhost
	25.2.3 /etc/namedb/zone.127.0.0
	25.2.4 /etc/namedb/diverge.org
	25.2.5 /etc/namedb/1.168.192
	25.2.6 /etc/namedb/root.cache

	25.3 Using DNS
	25.4 Setting up a caching only name server
	25.4.1 Testing the server

	Chapter 26
	Mail and news
	26.1 postfix
	26.1.1 Configuration of generic mapping
	26.1.2 Testing the configuration
	26.1.3 Using an alternative MTA

	26.2 fetchmail
	26.3 Reading and writing mail with mutt
	26.4 Strategy for receiving mail
	26.5 Strategy for sending mail
	26.6 Advanced mail tools
	26.7 News with tin

	Chapter 27
	Introduction to the Common Address Redundancy Protocol (CARP)
	27.1 CARP Operation
	27.2 Configuring CARP

	carpN
	vhid
	password
	carpdev
	advbase
	advskew
	state
	ipaddress
	mask
	net.inet.carp.allow
	net.inet.carp.preempt
	net.inet.carp.log
	net.inet.carp.arpbalance
	27.3 Enabling CARP Support
	27.4 CARP Example
	27.5 Advanced CARP configuration
	27.6 Forcing Failover of the Master

	Chapter 28
	Network services
	28.1 The Network File System (NFS)
	28.1.1 NFS setup example
	28.1.2 Setting up NFS automounting for /net with amd(8)
	28.1.2.1 Introduction
	28.1.2.2 Actual setup

	28.2 The Network Time Protocol (NTP)

	V. Building the system
	Chapter 29
	Obtaining the sources
	29.1 Preparing directories
	29.2 Terminology
	29.3 Downloading tarballs
	29.3.1 Downloading sources for a NetBSD release
	29.3.2 Downloading sources for a NetBSD stable branch
	29.3.3 Downloading sources for a NetBSDcurrent development branch

	29.4 Fetching by CVS
	29.4.1 Fetching a NetBSD release
	29.4.2 Fetching a NetBSD stable branch
	29.4.3 Fetching the NetBSDcurrent development branch
	29.4.4 Saving some cvs(1) options

	29.5 Sources on CD (ISO)

	Chapter 30
	Crosscompiling NetBSD with build.sh
	30.1 Building the crosscompiler
	30.2 Configuring the kernel manually
	30.3 Crosscompiling the kernel manually
	30.4 Crosscompiling the kernel with build.sh
	30.5 Crosscompiling the userland
	30.6 Crosscompiling the X Window System
	30.7 Changing build behaviour
	30.7.1 Changing the Destination Directory
	30.7.2 Static Builds
	30.7.3 Using build.sh options
	30.7.4 make(1) variables used during build

	Chapter 31
	Compiling the kernel
	31.1 Requirements and procedure
	31.2 Installing the kernel sources
	31.3 Creating the kernel configuration file
	31.4 Building the kernel manually
	31.4.1 Configuring the kernel manually
	31.4.2 Generating dependencies and recompiling manually

	31.5 Building the kernel using build.sh
	31.6 Installing the new kernel
	31.7 If something went wrong

	Chapter 32
	Updating an existing system from sources
	32.1 The updating procedure
	32.1.1 Building a new userland
	32.1.2 Building a new kernel
	32.1.3 Installing the kernel and userland
	32.1.4 Updating the system configuration files
	32.1.5 Summary
	32.1.6 Alternative: using sysinst

	32.2 More details about the updating of configuration and startup files
	32.2.1 Using etcupdate with source files
	32.2.2 Using etcupdate with binary distribution sets
	32.2.3 Using etcmanage instead of etcupdate

	Chapter 33
	Building NetBSD installation media
	33.1 Creating custom install or boot floppies for your architecture e.g. i386
	33.2 Creating a custom install or boot CD with build.sh

	Appendix A.
	Information
	A.1 Where to get this document
	A.2 Guide history

	Appendix B.
	Contributing to the NetBSD guide
	B.1 Translating the guide
	B.1.1 What you need to start a translation
	B.1.2 Writing XML/DocBook

	B.2 Sending contributions
	B.3 XML/DocBook template

	Appendix C.
	Getting started with XML/DocBook
	C.1 What is XML/DocBook
	C.2 Installing the necessary tools
	C.3 Using the tools
	C.4 Languagespecific notes
	C.4.1 Enabling hyphenation for the Italian language

	C.5 Links

	Appendix D.
	Acknowledgements
	D.1 Original acknowledgements
	D.2 Current acknowledgements
	D.3 Licenses
	D.3.1 Federico Lupi's original license of this guide
	D.3.2 Networks Associates Technology's license on the PAM article
	D.3.3 Joel Knight's license on the CARP article

	Appendix E.
	Bibliography
	Bibliography

